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Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
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Arguments are presented that the 7 =0 conductance G of a disordered electronic system de-
pends on its length scale L in a universal manner. Asymptotic forms are obtained for the
scaling function 3(G) =dInG/dInL, valid for both G<<G,~ e?/fi and G> G,. In three dimensions,
G, is an unstable fixed point. In two dimensions, there is no true metallic behavior; the con-
ductance crosses over smoothly from logarithmic or slower to exponential decrease with L.
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Scaling theories of localization have been dis-
cussed by Thouless and co-authors!™® and by Weg-
ner.* Recently Schuster,’ using methods related

W dE/AN e

to those of Aharony and Imry,® has proposed a
close relationship of the localization problem to
a dirty XY model of the same dimensionality.
Wegner has proposed a scaling for dimensionality
d+ 2 of the conductivity

o~(E -E)4 27, (1)

while Schuster identifies v as the correlation-
length exponent of the XY model - 3 atd>4. The
latter proposes a universal jump of conductivity
for d =2 given by e®/#r®. This is not inconsistent
with the results of Wegner* and is in rough agree-
ment with the early calculations of Ref. 2. It has
not been clear how (1) could be reconciled with
the physical ideas of Mott” as related to the be-
ginning of a scaling theory by Thouless.® We
here develop a renormalization-group scheme
based on the Mott-Thouless arguments, which in
many essential ways agrees with Wegner’s re-
sults, and in other ways severely disagrees. In
particular, we recover (1) for d>2, where v is
the localization-length exponent below E .. This
is in clear contradiction to Mott,” who argues that
in all cases the conductivity jumps to zero at E .
At d =2, we find no jump in o but a steep cross-
over from exponential to very slow dependence
on size. There is no true metallic conductivity.
These results were presaged by Thouless and co-
workers®® to some extent, with Ref. 8 indicating
a transition region for three dimensions, and Ref.
9 a size-dependent minimum metallic conductiv-
ity.

Our ideas are based on the relationship® be-
tween conductance as determined by the Kubo-
Greenwood formula and the response to perturba-
tion of boundary conditions in a finite sample de-

Here G is the conductance (not conductivity o) of
a hypercube of size L* [here L >> L, (L,=micro-
scopic size)], dE/dN is the mean spacing of its
energy levels, and AE is the geometric mean of
the fluctuation in energy levels caused by replac-
ing periodic by antiperiodic boundary conditions.
Actually, when “V/W?» is relatively large, it is
hard to match the energy levels and, in fact, AE
is defined using the curvature for small ¥ when
we replace periodic ¥(n+1)=y9(1) by P +1)=e’X -
X (1) boundary conditions. This procedure is
valid throughout the range of interest.®* We will
comment on the validity of (2) in a fuller paper,
but here we add the following remarks. The
equivalence of the Kubo-Greenwood formula and
the breadth v of the distribution of AE as de-
scribed in Ref. 3a is not quite precisely provable
but does not depend as stated in that reference on
independence of momentum matrix elements p g
and energy difference E  ~E 5 between two states,
only on a uniform distribution of those E ,~E,
which have large p ;.

Our scaling theory depends on the following
ideas.

(I) We define a generalized dimensionless con-
ductance which we call the “Thouless number” as
a function of scale L:

__AE(L) (_G(L)
g0 =BTy /an <_ez/2ﬁ> ’ ®

where we now contemplate a small finite hyper-
cube of size L. Inthe case L >, the mean free
path, we may use (2) to define a conductance

G (L) which is not related directly to the macro-
scopic conductivity but is a function of L, and is
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defined by (3) from the average of the Thouless
energy-level differences at scale L. When L<I,
there is phase coherence on a scale L and g is

no longer given by (3) but it can be shown that (e?/
7)g =G can be defined as the conductance of a hy-
percube imbedded in a perfect crystal.

(IT) We remark that g(L) is the relevant dimen-
sionless ratio which determines the change of en-
ergy levels when two hypercubes are fitted togeth-
er. This is the hypothesis of Thouless and can be
justified in several ways on physical grounds.
For instance, once L >mean free path, the phase
relationships for an arbitrary integration of the
wave equation across the cube are as random
from one side to another as those between wave
functions on different cubes. This could be shown
to be related to Wegner’s “neglect of eigenvalues
far from E;” by a scaling argument. In this limit
g(L) represents [as indicated in (2)] the “V/W” of
an equivalent many-level Anderson model where
each block has (L/L,)* energy levels and a width
of spectrum

W = (dE /dN)(L/L,) .

We cannot see how any statistical feature of the
energy levels other than this coupling/granularity
ratio can be relevant.

(IIT) We then contemplate combining »¢ cubes in-
to blocks of side bL and computing the new AE’/
(dE/dN)’ at the resulting scale bL. The result
will be

gbL)=70,g(L), (4)

or in continuous terms
dlng(L)/dInL =p(g(L)). (5)

~ The scaling trajectory has only one parameter, g.
(IV) At large and small g we can get the asymp-
totics of B from general physical arguments. For
large g, macroscopic transport theory is correct
and, as in (2),

G(L)=0L%"2,

so that
lim B,(g)=d - 2. (6)
&>

For small g (V/W « 1), exponential localization
is surely valid and therefore g falls off exponen-
tially:

g=g.e “*F
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Thence

lim B,(g) =1nlg/g,(d)]. (7
g
Here g, is a dimensionless ratio of order unity.
From the asymptotics (6) and (7), we may
sketch the universal curve B,;(g) ind=1,2,3 di-
mensions (Fig. 1). The central assumption of
Fig. 1 is continuity: Since B represents the block-
ing of finite groups of sites, it can have no built-
in singularity, and hence it would be unreason-
able for it to have the cusp indicated by the
dashed line: This is the curve which would be
required to give the Mott-Schuster jump in con-
ductivity for d =2. The only singularities then,
must be fixed points 8 =0. Physically, it is also
certain that 8 is monotonic in g, since smaller
V/W surely always means more localization.
In constructing Fig. 1, we have used perturba-
tion theory in V/W which shows that the first de-
viation of 8 from In(g/g,) is positive, with

B=In(g/g N 1+ag+~g*+...], (8)

since this is essentially just the “locator” per-
turbation series first discussed by Anderson.'®
The steepening of the slope of g given by (8)
makes vs 1, as we shall see, for d=3 or great-
er.

For large g, we suppose that 8 may be calcu-
lated as a perturbation series in W/V=g"":

dg/dInL=gd-2-a/g+...). (9)

_dfng

B'd!nl_

FIG. 1. Plot of B(g) vs Ing for d> 2, d=2, d<2. g(L)
is the normalized “local conductance.” The approxima-
tion 8 =s In(g/g,) is shown for g> 2 as the solid-circled
line; this unphysical behavior necessary for a conduc-
tance jump in d =2 is shown dashed.
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The first correction term in this series may be
estimated in perturbation theory by considering
backscattering processes of the sort first dis-
cussed by Langer and Neal! in their analysis of
the dependence of resistivity on impurity concen-
tration.

The use of Langer and Neal involves a rather
subtle question. Converting the calculation of
Langer and Neal to dimensionality 2 in particu-
lar, one obtains

g(L) =g, - & 1nA,

where A is a length cutoff for a certain divergent
integral of second order in the density of scat-
terers. Langer and Neal assume this cutoff is I,
the mean free path; for scales L </, it should,

of course, be L and we obtain just the result ex-
pected from (9), dlng/dInL~~g"%, On the other
hand, our universality argument seems to re-
quire L >I, We have restudied the cutoff question
and will show in a fuller paper that their cutoff
is not correct.

On the other hand, we have been unable to show
definitively that the mean free path does nof rep-
resent a relevant scale for the problem, since
once L>I, we find, for example, that the coeffi-
cient of InL depends on /. We must rely rather
on our general arguments from continuity and
regularity, and an intuition that only g is relevant
to suppose that a series development of 8in g-!
should exist, once L > 1,

The consequences of Fig. 1 and Egs. (8) and (9)
are as follows: For d>2, the B function has a
zero at g, of order unity. It is an unstable fixed
point which signals the mobility edge. The criti-
cal behavior can be estimated by integrating 8
starting from a microscopic L, and with g, near
&.. We use the linear approximation

B=sIn(g/g.), (10)

where s >1, since a >0 in (8).
obtain

For g,>g., we

(11)

e? g, g (d-2)/s
A% _8c_ 29
0=A L <1n gc> s
where A is of order unity. The distance to the
mobility edge is measured by

ezln(go/gc)z(go—gc)/gc’ (12)

and the factor Ae?/%L,%"2 in (11) is the Mott con-
ductivity which here appears in the scaling form
proposed by Wegner,.

In the localized regime (g,<g,), we get

g=g.exp(-AlelYL/L), (13)

so that the exponent of the localization length is
the inverse slope of Bat g,

v=1/s. (14)

These results again agree with those of Wegner.

In two dimensions, we have a strikingly differ-
ent picture (see Fig. 1). Instead of a sharp mo-
bility edge there is 7o critical g, where B(g,) =0,
but B is always negative so that in all cases g(L
- o) =0, Instead of a sharp universal minimum
metallic conductivity, there is a universal cross-
over from logarithmic to exponential behavior
which for many experimental purposes may re-
semble a sharp mobility edge fairly closely. If
we extrapolate the form we would deduce from
Langer’s perturbation-theory calculation, on the
“extended” side of the crossover

£=8 _Agcln(L/Lo)

the conductivity decreases logarithmically with
scale until g=g, at the scale L,, where

L 1/g :I
Zi-exp| —(22 -1}
LO exp|:A<gc >

From this point on g decreases exponentially
with L, the localization length being of order L,
as given by (16). This type of behavior was al-
ready anticipated from computer studies,® but the
nature of the actual solution is surprising to say
the least, as well as the fact that it appears to
have been anticipated in terms of a divergence of
perturbation theory in the weak-coupling limit by
Langer and Neal,!!
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Theory for the Acoustic-Wave-Induced Electric Field Gradient in Transition Metals
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For transition metals I report the dependence of the acoustic-wave—induced electric
field gradient (EFG) onN (0), the electronic density of states at the Fermi-energy eg.
It is shown that the EFG due to linear volume deformation of the unit cells of the crystal
is proportional to N (0), the s-electron density of states at e, but does not correlate
with N(0) which is in general largely due to d electrons. However, the EFG due to long-
wavelength shear waves correlates linearly with N;(0), the d-electron density of states

at €f.

Recently, the electronic contribution to the
electric-field—gradient (EFG) tensor in Mo, Nb,
and Ta caused by acoustic waves was determined
by nuclear acoustic resonance (NAR).'** The re-
sults are shown in Fig. 1. Most remarkable is
the fact that the change, Ag, in EFG is insensi-
tive to N(0), the electronic density of states at
the Fermi energy €, if the acoustic wave caus-
ing Aq only gives rise to linear dilatations of the
unit cells of the crystal. However, Aq seems to
be proportional to N (0) if the acoustic wave giving
rise to Ag causes shear dilatations of the unit
cells, With the assumption that the observed
electronic change in EFG results from the elec-
tron-lattice coupling, it then becomes immediate-
1y obvious that these results of the NAR experi-
ments are of interest in understanding the coup-
ling of shear modes and volume deformations to
electrons, in particular d electrons, in transi-
tion metals.

In the following simple physical arguments and
a simple theory are presented to explain the de-
pendence on N (0) of the acoustically induced EFG.
First, one expects on general physical grounds
that in transition metals long-wavelength volume
deformations couple essentially only to s elec-
trons since, because of different screening of
the electron redistribution, the “compression”
and “expansion” of d-electron bonds caused by
d-electron response to volume deformations cost
much more energy than is the case for s-elec-
tron response.* Therefore, the electronic change,

Ag, in EFG should essentially result from the
coupling of the s electrons to the acoustic wave
and thus should correlate to Ng(0), the s-elec-
tron density of states at €y, but not to the total
density of states N (0) which is in general largely
determined by the d-electron density of states,
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FIG. 1. Dependence on N(0) of the change, Aq, of
EFG due to an acoustic wave (Refs. 1,2), The parame-
ter n is discussed in Ref. 3. We put Ag(Mo) = O expre
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