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Abstract

General principles of symmetry and conservation are used to construct the hydrodynamic equa-
tions for orientationally ordered suspensions of self-propelled particles (SPPs). Without knowl-
edge of the microscopic origins of the ordering or the mechanisms of self-propulsion, we are
able to make a number of striking, testable predictions for the properties of these nonequilibrium
phases of matter. These include: novel wavelike excitations in vectorially ordered suspensions;
the absolute instability of nematic SPP suspensions at long wavelengths; the convective in-
stability of low-Reynolds-number vector-ordered suspensions; and giant number &uctuations in
vector-ordered SPP suspensions. c© 2002 Published by Elsevier Science B.V.

PACS: 87.10.+e

1. Introduction and results

1.1. Motivation

Groups of living organisms are frequently found to move coherently in a single
direction [1,2]. Such examples of spontaneously broken rotation-invariance (and pos-
sibly translation-invariance [1]) in driven systems are important territory for the sta-
tistical mechanician to explore. The relevant “living” aspect of these organisms, for the
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purposes of this work, is not that they reproduce or have DNA, but that they metabolise,
generating the energy to move without the action of an external force. They are
thus self-propelled particles (hereafter SPPs). While SPPs are most naturally thought
of as moving in a given direction, i.e., vector-like, Gruler [3] discusses a class of
active, energy-dissipating amoeboid cells which are head–tail symmetric or apolar and
hence have the symmetry of a nematic director. We shall call both types of particles
SPPs, since both display internally generated motion. Similarly, two types of macro-
scopic uniaxial orientational order are possible in SPPs, namely, (i) a moving state, in
which the order parameter is a vector, and (ii) a purely nematic state, with head–tail
symmetry and hence no net motion. The ordered states formed by polar and apolar
particles would be predisposed 1 to be vectorial and nematic “living liquid crystalline”
[4] states, respectively. Many SPPs function [5–7] in a &uid medium, in which the
hydrodynamic interaction between the particles plays an essential role; most studies
of ordering phenomena in SPPs [1] have, however, ignored this interaction. We con-
centrate here on such SPP suspensions, rather than on SPPs on a substrate, to which
the analysis of [1] should apply unaltered. Our interest here is in uncovering the es-
sential qualitative ways in which such ordered, nonequilibrium suspensions diDer from
their thermal equilibrium analogues. Accordingly, this work (see also [8]) uses general
arguments based on symmetries and conservation laws to construct the hydrodynamic
equations of motion for ordered phases of collections of self-propelled particles sus-
pended in a &uid medium. Our detailed analysis is for uniaxial orientational order,
i.e., for vector- and nematic-ordered SPP suspensions, but the method generalises
simply to other types of ordered states. The predictions we make can be tested in
careful studies of video images of ordered phases of coherently swimming Esh or
bacteria (depending on the Reynolds-number range of interest), Stokesian or Lattice
Boltzmann computer simulations, or perhaps experiments on suspensions of artiEcial
SPPs.

1.2. Results

Our main results, obtained by linearising our equations of motion about a perfectly
ordered state with no externally imposed orienting or &ow Eelds, are as follows: SPP
suspensions with purely nematic order, i.e., orientationally ordered but with no mean
motion in any direction, are always linearly unstable to a coupled long-wavelength mod-
ulation of the axis of orientation and the hydrodynamic velocity Eeld, with wavevector
q oriented near 45◦ to the nematic axis. This instability is not inevitable in vectorially
ordered suspensions; i.e., parameter ranges of nonzero extent can always be found such
that it is averted. Vector-ordered SPP suspensions display novel propagating modes as
a result of the coupling of hydrodynamic &ow with distortions in the ordering axis
and the concentration. DeEning � to be the angle between the wavevector and the

1 One could in principle imagine purely nematic phases made of paired-up, oppositely directed polar
particles, or vector phases made of V-shaped pairings of apolar particles.
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Fig. 1. The three speeds c1;2;3 of the splay-concentration waves for wavevectors oriented at an angle � to
the z-axis are given by the radial distances of the curves from the origin (a schematic sketch).

ordering direction, we End: (i) a pair of bend-twist waves with waves peeds

cbt(�) = (v1 ± v2) cos � ; (1)

where v1 and v2 are phenomenological constants of order the SPP drift speed v0, and
(ii) three splay-concentration waves whose speeds ci for i = 1 to 3 are more simply
understood from Fig. 1 than from an equation. The above wavespeeds are of course
calculated at lowest order in wavenumber, neglecting viscous damping which arises at
the next order. This is acceptable for schools of small Esh, i.e., small enough to keep
the Reynolds number from reaching the turbulent range and yet large enough that vis-
cosity does not dominate totally. Experiments on bacterial suspensions are, however,
likely to be in the Stokesian limit Re�qa�1, where Re= v0a=� is the Reynolds num-
ber of an SPP of size a in a &uid with kinematic viscosity �. In that regime we End,
remarkably, that a vector-ordered suspension always suDers an instability related to that
mentioned above for nematic suspensions. In the vector case, however, the instability
is convective: the mode propagates, with a speed ∼ v0, as it grows. For � near �=4 its
frequency

! ∼ −iB cos 2� ± const: × q ; (2)

implying an instability just above or just below � = �=4, depending on the sign of
the phenomenological constant B ∼ v20=�. Lastly, we predict that the relative vari-
ance (〈N 2〉 − 〈N 〉2)=〈N 〉 should diverge as N 2=3 as the number of particles N →∞,
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in vector-ordered SPP suspensions, whereas the same quantity in thermal equilibrium
liquid crystalline phases would approach a Enite constant.
Some of the above Endings are generalisations of behaviours already predicted [1]

for SPPs on a substrate, i.e., ignoring hydrodynamic &uid &ow. The bend-twist waves
and the instabilities are, however, unique to SPP suspensions and are should therefore
be of particular interest to experimenters. Our results are robust because they arise
not from microscopic modelling of a particular class of SPPs but from coarse-grained
equations of motions which should be obeyed by any SPP mesophase with a given
type of order. Let us now show brie&y how these equations arise.

2. The model

2.1. Constructing the equations of motion

Our aim in this section is to construct equations of motion which are to SPP
mesophases what the equations of, say, [9,10] are to thermal equilibrium liquid crys-
tals. The general principles governing their construction are a natural, nonequilibrium
generalisation of those stated in Ref. [11]: (i) Use only those variables (“conserved”
and “broken-symmetry” [11]) which relax or oscillate at a rate which vanishes as the
wavenumber goes to zero; these are the “slow modes” or “hydrodynamic variables”
of the problem and provide a complete description of the dynamics of the system
at asymptotically large length- and time-scales. (ii) Rule out from the equations of
motion only those terms explicitly forbidden by symmetry or conservation laws. (iii)
Work to leading orders in a gradient expansion. That’s all. Since our systems are in
nonequilibrium steady states, we may not demand that forces arise from a free-energy
functional, nor may we relate the various phenomenological coeMcients to each other
or to the strengths of noise sources in our model, except perhaps on grounds of purely
geometrical symmetry.
The slow modes 2 are, therefore, the &uctuations �c(r; t) in the local concentration

c(r; t) of SPPs about its mean c0, the total momentum density g(r,t) of solute plus
solvent, and the broken-symmetry modes which we describe below. We treat the mass
density � of the suspension as constant since the SPPs swim exceedingly slowly. The
hydrodynamic velocity Eeld u ≡ g=� therefore satisEes ∇ · u = 0.
We consider two kinds of uniaxial order, along the ẑ direction: nematic, invariant

under ẑ → −ẑ, and vectorial, where ẑ and −ẑ are inequivalent. The transverse xy
directions are labelled ⊥. The nematic order parameter [9,10] is a traceless symmet-
ric 2nd-rank tensor Q(r; t) [ = Q0 diag(−1;−1; 2) on average when diagonalised in
the ordered phase], and the vector order parameter is simply the drift velocity vec-
tor v(r; t) [ = (0; 0; v0) on average in the ordered phase] of the SPPs relative to the
5uid. The broken-symmetry modes in both these phases are the deviations �n⊥ of a

2 Ignoring the energy density as well as any nutrient Eelds, and working on timescales on which birth
and death of SPPs can be neglected.
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unit vector Eeld n̂ (the local axis of orientation) with mean value (0; 0; 1). The order
parameters are related to �n⊥ by Q⊥z = Qz⊥ = Q0�n⊥; v⊥ = v0�n⊥.

Having assembled the hydrodynamic variables, we now construct the equations of
motion, linearized about a perfectly ordered state, to lowest order in a gradient ex-
pansion. This won’t tell us the damping rates of the propagating modes, but it will
give us their speeds, which are of primary interest to us here. We shall discuss the
role of viscosities and diDusivities later. It is most convenient to discuss the case of a
vector-ordered phase of SPPs Erst, and then take up the nematic as a limiting case. We
present the equations without deriving them, and then explain the physical origin of
the terms therein. To leading order in gradients, the broken-symmetry Eeld �n⊥ obeys

(@t + �1v0@z)�n⊥ = 1
2 (�2 + 1)@zu⊥

+ 1
2 (�2 − 1)∇⊥uz − �1∇⊥�c + O(∇∇) + nonlin: terms : (3)

The lack of z → −z symmetry is apparent in the advection term on the left-hand side
of (3), as well as in the � term, which is a nonequilibrium “osmotic pressure”, arising
since �n⊥ is a velocity. The “&ow-alignment” [9,10] terms involving the phenomeno-
logical parameters �2 ± 1 are standard in nematic hydrodynamics, and play a central
role in our story.
The suspension as a whole (SPP + &uid) is subject to no external forces. Thus, the

generalised Navier–Stokes equation for an SPP suspension follows from the condition
of momentum conservation @tgi=−∇j�ij, and the stress tensor �ij contains, apart from
the terms already present in any &uid, a shear stress �(p)

ij ˙ c0[ninj − (1=3)�ij]. This
term, which is unique to self-propelling systems, is not forbidden by any symmetry,
but is nonetheless ruled out in thermal equilibrium nematics because it cannot be
obtained via Poisson brackets [12] from a free-energy functional. The usual [9,10]
nematic elastic torques, which do follow from such a functional, are of higher order
in gradients than �(p)

ij and therefore do not feature in our analysis. The form of �(p)
ij

can also be obtained [8,13] by considering the force density associated with a single
SPP. Incorporating �p

ij in the momentum equation, and imposing incompressibility,
we see after some straightforward algebra that the hydrodynamic velocity Eeld uq at
wavevector q obeys

@u⊥
@t

=−iw0

(
I− 2

q⊥q⊥
q2

)
· �n⊥ − i

q2z
q2

$(q⊥�c) ; (4)

where I is the unit tensor, and several phenomenological parameters have been intro-
duced. The anisotropic “pressure” ($) term and and the force density proportional to
the curvature qz�n⊥ are both fundamentally nonequilibrium eDects.
Conservation of the number of SPPs implies

(@t + iv0qz) �c + ic0v0q⊥ · �n⊥ = 0 ; (5)

the concentration changes by advection by the mean drift v0 or by a divergence in the
local SPP velocity. Coupling to the hydrodynamic velocity Eeld does not enter here in
a linearised description, since u is divergence-free.
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2.2. Mode structure: waves and instabilities

With equations in hand, we can now study the dynamic mode structure, that is, the
dispersion relation between frequency ! and wavevector q, with particular attention
to those features which distinguish it qualitatively from that which obtains [1] if &uid
&ow is ignored. The analysis is straightforward, and we describe it only brie&y.
Bend and twist (∇ × n⊥) of the axis of orientation couple to vorticity (∇ × u⊥)

in the &uid &ow, as can be seen by taking the curl of (3) and (4). This results in
propagating bend-twist waves with speeds given by Eq. (1). Without hydrodynamic
&ow, these degrees of freedom would relax in a purely diDusive manner. 3

If instead we take the divergence of (3) and (4) we see that splay (∇ ·n⊥), in-plane
expansion (∇ · u⊥) and concentration &uctuations �c combine to yield three wavelike
eigenmodes whose speeds as a function of direction are illustrated schematically in
Fig. 1. In the simplifying limit �1=$=0, they can be seen as the coupled dynamics of
splay and in-plane expansion, accompanied by simple advection of the concentration
by the mean drift.
Having discussed the propagating modes, let us turn next to the instabilities we

mentioned in Section 1.2. The equations of motion for an SPP nematic suspension
follow from (3)–(5) upon setting v0 = �1 = $ = 0, i.e., restoring z → −z invariance.
A little algebra then shows that the squares of the splay-concentration wavespeeds
vanish for � = �=4, which means the speeds themselves are imaginary (signalling
an instability) either just above or just below 45◦, depending on the sign of some
phenomenological parameters. Physically, this is because the z → −z symmetry means
that a distortion with wavevector at exactly 45◦ does not know which way to go, so
the O(q2) contribution to the squared frequency !2(q) vanishes at this angle. 4

Beyond leading order in q, we must include viscous damping ∼ �q2u in the mo-
mentum equation, director relaxation Dnq2�n⊥ in the equation for �n, and particle
diDusion Dq2�c in the concentration equation, where � is the kinematic viscosity of
the suspension, and Dn and D are diDusivities for the director and the concentration
respectively. For SPPs whose size a is more than a few �m, thermal Brownian motion
should be negligible. D and Dn should then be dominantly of hydrodynamic origin:
D ∼ Dn ∼ v0a, where v0 is a typical speed of an SPP. We thus see that the real parts of
the wave frequencies ∼ v0q�Dq2 ∼ Dnq2 for all q upto 1=a, whereas viscous damping
�q2�v0q for q�v0=�, i.e., for particle-scale Reynolds number Re ≡ v0a=�; �qa�1.
While this regime is nonexistent for large, fast SPPs like Esh, it is precisely the range
of interest for experiments on bacteria [14,7,5]. For such low Reynolds number [15]
we can take the velocity Eeld u, out to length scales ∼ a=Re, to be determined in-
stantaneously by a balance between viscous and other (e.g., self-propulsive) stresses,
i.e., we can replace the left-hand side of (4) by �q2u. Eliminating u from (3) and

3 This is strictly true only in a linearised description. When nonlinearities are included, as in Ref. [1], the
mode would remain non-propagating, but with a dynamic exponent that can diDer from 2.

4 The conventional nematic-elastic torques, which enter at next order in q, will mitigate the instability
beyond a crossover wavenumber q∗, which means that systems of size L¡q−1∗ , will not show the instability
[8,13].



268 R.A. Simha, S. Ramaswamy / Physica A 306 (2002) 262–269

(5) via (4) yields eDective equations of motion for �n⊥ and �c. The coupled dynam-
ics of splay and �c in this case leads to the unstable mode with growth rate as in
Eq. (2). The constant B in (2) is independent of the magnitude of q as a result of the
long-ranged Stokesian hydrodynamic interaction.

2.3. Number 5uctuations

We turn next to the giant number &uctuations advertised at the start of this article.
SPP suspensions &uctuate for three reasons: thermal Brownian motion (negligible for
particles larger than a few microns), the chaos of moving, hydrodynamically interacting
particles, and intrinsic &uctuations in the self-propelling activity of individual SPPs.
We thus include (Gaussian) noise sources fu, fc, and fn, delta-correlated in time, in
the equations of motion for u; c, and n. For wavenumber q → 0, the variances for
fu and fc are O(q2) as a result of momentum and number conservation, while that
for fn is nonvanishing. With the noise and damping terms in place we can calculate
the steady-state correlation functions of the various Eelds. Unsurprisingly for a broken
symmetry Eeld, we End that the variance of director &uctuations 〈|�nq|2〉 at wavenumber
q grows as q−2 at small q. Remarkably, the variance 〈|�cq|2〉 ∼ q−2 as well. This
means that the variance of the number N of particles, scaled by the mean, grows as
N 2=3 in three dimensions, whereas it would be a constant in any thermal equilibrium
system away from a critical point. This is a direct consequence of the nonequilibrium
nature of SPP systems: a curvature in the director Eeld produces a proportionate mass
&ow. The large director &uctuations lead immediately to giant number &uctuations.
This eDect was already predicted in the analysis of [1], which does not include the
eDects of hydrodynamic &ow. It is reassuring to note that it survives when such &ow
is included.

3. Experiments and future prospects

All the eDects we have predicted are testable in laboratory experiments. The wave-
speeds are expected to be of order the drift speed of an SPP (from microns to centime-
tres per second, from bacteria to Esh), and can thus be measured easily. The growth
rate of the convectively unstable mode in Stokesian vector-ordered SPP suspensions,
say for bacteria (where velocities are ∼ 10 �m=s, size a ∼ �m), should be about 0:1 s−1

if the viscosity is taken to be that of water. Although this is slow, careful experiments
performed on a timescale of tens of minutes should see it. We urge experimenters to
carry out such tests of our predictions.
Our current [8,13] and future research on these exciting systems will focus on:

the complete nonlinear equations of motion of with noise, to look for singular renor-
malisations of the speeds and dampings of the modes, and of the scaling of number
&uctuations; the interaction of SPPs with imposed &ow Eelds; the nature of phase tran-
sitions to the isotropic and other phases; the behaviour of topological defects in these
systems; the behaviour of isotropic SPP suspensions, to understand the observations of
Ref. [6]; and SPP nematics on a substrate [16].
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