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Travelling waves in a drifting flux lattice
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Starting from the time-dependent Ginzburg-Landau (TDGL) equations for a type II superconduc-
tor, we derive the equations of motion for the displacement field of a moving vortex lattice ignoring
pinning and inertia. We show that it is linearly stable and, surprisingly, that it supports wavelike

long-wavelength excitations arising not from inertia or elasticity but from the strain-dependent mo-
bility of the moving lattice. It should be possible to image these waves, whose speeds are a few
µm/s, using fast scanning tunnelling microscopy.

PACS numbers: 74.60.Ge, 74.20.De

It was shown in [1], on general symmetry grounds, that
an ordered array of particles moving through a dissipative
medium (e.g., a steadily sedimenting colloidal crystal or
a flux-point lattice drifting through a type II supercon-
ductor) is governed by dynamical equations qualitatively
different from those for a lattice at thermal equilibrium.
Even the long-wavelength dynamical stability of such a
drifting lattice was shown to rest not on its elasticity but
on the signs of certain phenomenological parameters [see
eqns. (1) and (2) below] governing the dependence of
the local mobility on the lattice strain. A microscopic
calculation [2] showed (see [1]) that for a sedimenting
colloidal crystal the signs were such as to lead to an in-

stability. We know of no analogous calculation for driven
flux lattices. In this Letter we ask: are drifting flux lat-
tices stable? We answer this question of fundamental
importance starting from a time-dependent Ginzburg-
Landau (TDGL) treatment without quenched disorder.
We find that the moving lattice state is stable, with small-
amplitude, long-wavelength disturbances propagating as
underdamped waves whose speed, we emphasise, is deter-
mined by the strain -dependent mobility and the imposed
current, and not by inertia and flux-lattice elasticity. We
calculate the wavespeed (a few µm/s) in terms of inde-
pendently measurable parameters arising in the TDGL
equations.

We begin by summarising the derivation of the coarse-
grained dynamical equations for a drifting lattice [1] and
defining the quantities we are going to calculate. Con-
sider a slab of type II superconductor of thickness much
larger than the magnetic penetration depth λH , lying in
the xy plane, threaded by a flux lattice (spacing <∼ λH)
with magnetic field along the z direction. An applied spa-
tially uniform transport current density Jt = Jtx̂, gives
a Lorentz force −Jtφŷ/c per unit length on a vortex car-
rying flux φẑ, c being the speed of light. The perfect
flux-point lattice will then acquire a constant, spatially
uniform drift speed vL = MJtφ/c. Here M , the macro-
scopic mobility of the lattice, is determined by dissipative
processes in the normal core as well as by the relaxation
of the electromagnetic and order-parameter fields in the

region between the vortices. Any perturbation of the per-
fect moving lattice will result in inhomogeneities in the lo-
cal electromagnetic and order parameter fields, and thus
to a spatially varying flux-point velocity. The mobility is
thus a tensor which depends on the local state of distor-
tion of the flux lattice. For a lattice drifting along −ŷ,
ignoring Hall effects, pinning, inertia [3], and the effects
of lattice periodicity, the displacement field u = (ux, uy)
as a function of position r and time t, defined with re-
spect to a perfectly ordered crystal, in a frame co-moving
on average with the flux lattice, must then obey [1]

∂tux = v1∂yux + v2∂xuy +DT∇2ux +DL∂
2
xux +

DL∂x∂yuy +O(∇u∇u); (1)

∂tuy = v3∂xux + v4∂yuy +DT∇2uy +DL∂
2
yuy +

DL∂x∂yux +O(∇u∇u), (2)

where the terms containing the phenomenological coef-
ficients [4] vi ∝ vL arise from the “hydrodynamic” in-
teraction of the moving vortices, DL = M(λ + 2µ), and
DT = Mµ, λ and µ being the Lamé coefficients of the flux
lattice [5]. These equations are constructed using general
symmetry arguments and hold for any steadily drifting
lattice at large length scales (≫ λH , for a flux lattice).
In this Letter we calculate the coefficients vi for the spe-
cific case of a drifting flux lattice, from a time-dependent
Ginzburg-Landau (TDGL) description to which we turn
next. The importance of the {vi} for the long-wavelength
behaviour of the drifting flux lattice is clear: v2v3 > 0
yields a wavelike dispersion whereas v2v3 < 0 a linear
instability.

Scaling lengths by λH , energies by the condensation
energy Ec in a volume λ3

H , the order parameter by
its bulk mean-field value in the superconducting phase,
times by h̄/Ec, the magnetic field H by

√
2Hc where Hc

is the thermodynamic critical field, the total electrochem-
ical potential by Ec/e

∗ where e∗ = 2e is the charge of the
Cooper pair, and defining the Ginzburg-Landau param-
eter κ = λH/ξ where ξ is the bare coherence length, we
obtain the dimensionless TDGL equations [6–8] for the
dynamics of the superconducting order parameter ψ(r, t):

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291535206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/cond-mat/9904105v2


(∂t + iΦ)ψ = Γ

[

(∇
κ

− iA

)2

ψ + ψ− | ψ |2 ψ
]

, (3)

where the phenomenological kinetic coefficient Γ is in
general complex, with real and imaginary parts Γ1 and
Γ2 respectively.

The equation of motion for the vector potential is given
by Ampère’s law,

∇×∇× A = Jn + Js , (4)

where the normal and super currents are, respectively,

Jn = σ.

[

−∇Φ

κ
− ∂tA

]

,

Js =
1

2κi
(ψ∗∇ψ − ψ∇ψ∗)− | ψ |2 A , (5)

σ being the normal-state conductivity tensor.
We work in the large κ limit, where a phase-only ap-

proximation of the TDGL equations (3) applies, and,
for simplicity, we set the normal state Hall conductivity
σxy = 0. We begin by writing ψ in terms of an amplitude
f and a phase χ:

ψ(r, t) = f(r, t)exp[iχ(r, t)]. (6)

In terms of the gauge-invariant vector and scalar poten-
tials, Q = A−∇χ/κ and P = Φ+∂tχ, the magnetic and
electric fields are then, respectively,

h = ∇× Q , E = −∇P
κ

− ∂tQ . (7)

For large κ, deep in the superconducting phase, the
amplitude relaxes rapidly to a value determined by the
phase. We can thus solve for f in terms of χ from (3)
yielding, to leading order in 1/κ, the effective phase-only
TDGL equation

∂tχ+ Φ = P = −∇.Q/γ1κ . (8)

with γ1 = Re
[

Γ−1
]

and

∇×∇× Q = σ.

[−∇P
κ

− ∂tQ

]

− Q . (9)

Lastly, charge conservation — ∇.(Jn + Js) = 0 – with
(5) and (7) leads to

∇.(σ.E) −∇.Q = 0 (10)

which, with (8) and (9) implies

σxx
∇.
κ

[

−∇P
κ

− ∂tQ

]

+ γ1P = 0 . (11)

The {vi} in (1), (2), which encode the change in the
mobility of a region of the flux lattice when it is com-
pressed or tilted, arise primarily from electromagnetic

field disturbances, screened on the scale λH [9]. Ideally,
therefore, we should calculate the mobility of distorted
regions on a scale λH . However, our main concern is the
signs of the {vi}, i.e., in the direction of drift of a tilted
region and in whether a denser region drifts faster or
slower than a rarer region. To this end, we take the sim-
plest compressions/rarefactions and tilts, namely, those
taking place at the level of a pair of particles. This should
give a qualitatively correct assessment of the stability and
a reasonable estimate of the wavespeed. Indeed, our cal-
culation shows that the vis decrease by a factor of 10 as
the flux-lattice spacing varies from .25 λH to λH , justify-
ing post facto this nearest neighbour approximation. We
work, therefore, with a pair of flux points moving rigidly
with a velocity vL, as a function of their fixed separa-
tion vector a. For such rigid motion, time-derivatives
can be replaced by −vL.∇. Expanding (8), (9), and (11)
in powers of vL, we obtain at O(1) the equilibrium, time-
independent Ginzburg-Landau equations, and at O(vL)
a set of linear inhomogenous differential equations.

Exploiting [10,8] the invariance of the time-
independent Ginzburg-Landau equations under an arbi-
trary virtual displacement d, the requirement of compat-
ibility between vL and the imposed transport current Jt

leads, for large κ and within the phase only approxima-
tion, to the “solvability condition” for the inhomogeneous
O(vL) equations:

1

κ

∫

dS.(J1sχd − Jdχ1) = γ1

∫

(χdP )dr; (12)

the integral on the left-hand side is over the boundary
of the sample, Jd ≡ d.∇J0, χd ≡ d.∇χ0, J0 and χ0 be-
ing respectively the supercurrent and phase field at equi-

librium, and the subscripts 0,1 denoting the O(1) and
O(vL) parts respectively of the term in question. Eq.
(12) will yield the relation between Jt = Jtx̂ and vL, i.e.

the vortex equation of motion.
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FIG. 1. Coordinate system (r, θ) for two-vortex case
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Consider a pair of identical unit vortices, in a geometry
defined in Fig.1 (in cylindrical polar coordinates (r, θ, z)).
ψ and φ are the angles made by Jt with a and the vir-
tual displacement d respectively, and θ0 that between vL

and the negative y-axis. We assume the flux lines to be
parallel to the z-axis and ignore the effects of line wan-
dering. We also define cylindrical coordinates (r1, θ1, z)
and (r2, θ2, z) with their origins at the two vortices. The
surface integral on the left-hand side of (12) can be ex-
pressed in terms of the applied transport current. At the
boundaries the fields are effectively those of a single vor-
tex at the origin, with twice the winding number. There-
fore J1s(r = ∞, θ) = Jt, Jd.êr = 2d sin(θ − φ)/(κr2),
χd = 2d.∇θ = −2d sin(θ − φ)/r and χ1 = κJtr cos θ.
Substituting these expressions into the left-hand side of
(12), and performing the angular integration we find

1

κ

∫

dS.[J1sχd − Jdχ1] = −2
2π

κ
(Jt × ẑ).d . (13)

Evaluation of the right-hand side of (12) requires solving
for P (r, t) from (11) which, at O(vL), is simply

σxx

κ2
∇2P − γ1P = 0 (14)

Near the centre of each vortex P ≈ −vL.∇χ and χ is
equal to the angular variable θ1 or θ2 around that vor-
tex. Therefore P ≈ vL cos(θ1 − θ0)/r1 as r1 → 0 and
P ≈ vL cos(θ2 − θ0)/r2 as r2 → 0. The solution to
eqn.(14) for the vortex pair with these boundary con-
ditions is

P (r) = ṽ[K1(αr1) cos(θ1 − θ0) +K1(αr2) cos(θ2 − θ0)]

(15)

where ṽ = vLα and α = κ
√

γ1/σxx. Also,

χd = d.∇χ = d[sin(φ− θ1)/r1 + sin(φ− θ2)/r2] . (16)

Using (15) and (16) on the right hand side of (12), and
noting that d is arbitrary, we obtain the vortex-pair equa-
tion of motion in the form

2
2π

κ
(Jt × ẑ) = AvL +B(vL × ẑ) + C(vL.â)â

−Dâ.(vL × ẑ)â (17)

where A,B,C, and D are functions of α and a = |a| only.
All dependence on the angle of tilt ψ is in the scalar and
vector products in (17). Evaluating the integrals, we find
that B = 0 = D (a consequence of the phase-only ap-
proximation and the assumption σxy = 0), and A,C > 0.
Inverting (17) we see that

vLi = M

[

δij −
N

1 +N

aiaj

a2

]

Fj (18)

where F = − 4π
κ Jtŷ is the Lorentz force, M = 1/A, and

N = C/A. (18) differs from that for a single vortex [10,8]

in the N term: for ψ 6= 0 or π/2 the centre-of-mass ve-
locity is not parallel to the driving force.

Now consider a steadily drifting undistorted flux-point
lattice, and focus on a nearest neighbour pair of flux
points with initial separation vector a0. Perturb it
slightly: a0 → a0 + δa, thus causing a velocity perturba-
tion δv. Then we can extract the {vi} by differentiating
our two-vortex result (18) as follows: if a0||ŷ and δa||x̂,
then δvx

δa/a0

= v1; if a0||x̂ and δa||ŷ, then δvx

δa/a0

= v2; if

a0||x̂ and δa||x̂, then
δvy

δa/a0

= v3; if a0||ŷ and δa||ŷ, then
δvy

δa/a0

= v4; We have assumed, as justified early in the

paper, that changes in vortex velocity due to a local dis-
tortion are local. We find: (a) v2 > 0, so that a lattice
moving in the −ŷ direction will veer to the right(left)
if the horizontal crystal planes are tilted up to the right
(left); and (b) v3 > 0, so that a local x-compression of the
lattice increases the velocity in the direction of the force.
From (1) and (2), this means the moving flux-lattice is
stable. Also, v1 > 0 and v4 < 0 for the coefficients con-
trolling the wavespeeds along the drift [11]. The resulting
mode structure is summarised in Fig.2 and, from (1) and
(2), in the small-wavenumber dispersion relation

2ω = −(v1 + v4)k sin θ ± vok − i(2DT +DL)k2

±ik2DL sin θ

[

v1 − v4
vo

cos 2θ + 2
v2 + v3
vo

cos2 θ

]

(19)

between frequency ω and wavenumber k, where

vo =

√

(v1 − v4)2 sin2 θ + 4v2v3 cos2 θ, (20)

and θ is the circular polar angle.

FIG. 2. The wave travelling along ±x̂ that follows a local
compression of an array of vortices moving along −ŷ
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We estimate the resulting wave-speeds for NbSe2 in the
mixed phase [12]. Its TDGL parameters are: λH ∼ 700
Å, ξ ∼ 80Å, Tc ≈ 7 K , ρ(n) = 5µΩ cm. For an ap-
plied transport current Jt = 1 A/cm2 and inter-vortex
separation a ∼ λH , the wave-speeds c± ∼ 1µm/sec.

The most obvious physical consequence of these waves
is that the dynamic structure factor of a drifting flux lat-
tice should display peaks at nonzero frequency (see (19)).
More dramatically, if a region of the flux-lattice moves
past an impurity site, the impurity will “pluck” the flux
lattice, and the effect will propagate along and trans-

verse to the axis of drift, shaking up the lattice globally,
through the sequence of events depicted in Fig.2. This
wave propagation in the absence of inertia is remarkable,
and could well be a mechanism for nonthermal noise in
drifting flux lattices. In addition, time-dependent exter-
nal disturbances could excite resonances with the wave-
like normal modes.

Let us estimate the length scale ℓc above which
these modes are actually propagative in character. For
wavevectors k = (kx, 0) we see that

ℓc ∼
πDL√
v2v3

(21)

DL ∼ Mλ [see after (1), (2)] and vi ∼ MF where
F = Jtφ0/c is the Lorentz force per unit length on a
vortex. Then

ℓc
a

∼ λ

F
. (22)

λ ≈ aH2/8π [13], a being the flux-lattice spacing, so
for a ∼ 10µm and applied currents Jt ∼ 100 A/cm2,
ℓc/a ∼ 1, and the propagating modes should dominate.
However, if a ∼ 103Å, ℓc/a ∼ 106.

In closing, we remark that our work settles an im-
portant issue in the theory of the dynamics of moving
flux lattices, namely their stability [14]. We have shown
that dynamic interactions between vortices in a drifting
flux lattice without inertia or pinning lead to a steady
state with stable linear-response properties. Small dis-
turbances about the drifting state travel as waves with
a direction-dependent speed which, when calculated in
terms of the parameters in the TDGL equations, turns
out to be a few µm/s. These waves should be observ-
able in systems with large flux-lattice spacing, at large
imposed transport currents. The fast scanning tunneling
microscopy approach of Troyanovskii et al. [15] seems to
be the ideal way to observe these waves directly.
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