Prediction of absorption efficiency from food nitrogen in amphibians ## T J PANDIAN and M PETER MARIAN School of Biology, Madurai Kamaraj University, Madurai 625 021, India MS received 26 November 1985 Abstract. Gravimetric estimation of absorption efficiency in amphibians is a time-consuming process and still subject to technical errors. The need for the application of indirect methods requiring no quantitative recovery of feces is indicated. From 41 values reported for 11 amphibian species, it is observed that nitrogen content of food is significantly (P < 0.001) and positively correlated (>0.9) with absorption efficiency. From the obtained regression equation (absorption efficiency = 49.615 + 4.596 nitrogen), the per cent efficiency can be predicted with 3.748 standard error. Keywords. Absorption efficiency; methods of estimation; food nitrogen as index of Ae. #### 1. Introduction Absorption is measured as the difference between ingestion (I) and egestion (E). Absorption efficiency (Ae) is an index of the proportion of I that is transferred from the gut lumen into the body of the animal. It is usually expressed as percentage. Hence the quantitative estimation of feces has become an important component in the study of amphibian energetics. Unlike many invertebrates (e.g. Crustacea: Lautenschlager et al 1978), most amphibians produce semi-solid fecal pellets, which are not bagged by a 'peritrophic membrane'; on being voided, the semi-solid fecal pellets (i) lose soluble materials immediately (Marian 1982), (ii) undergo decomposition (Robinson and Bailey 1981), (iii) may be reingested by the experimental animal (e.g. Rana catesbeiana tadpoles: Steinwascher 1978) and/or (iv) may be ingested by the offered prey organism (e.g. Tubifex tubifex ingesting feces of Rana tigrina tadpole: Marian 1982); hence, the recovery of feces in a given experimental situation may not be complete. Moreover, the very process of collection of feces is cumbersome and time-consuming, and yet liable for errors. Hence, relatively few estimates of Ae of amphibians have been attempted (Seale 1985). The difficulties involved in the processes of recovery and quantification of feces call for identifying an easily measurable component of food, which could serve as a reliable index of Ae of amphibians. We have considered nitrogen, a non-inert moiety of food, as a possible index of Ae and have found that the nitrogen content of food is positively and significantly correlated with the Ae of fishes, reptiles, polychaetes and aquatic insects (Pandian and Marian 1985a,b,c,d). In the present paper, we have attempted to use this approach to estimate the absorption efficiency of amphibians. ### 2. Materials and methods Using gravimetric procedure (Marian and Pandian 1985), few estimates of Ae were made in the tadpoles of *Bufo melanostictus* and *Rana cyanophlyctis* (table 1). However, most information for the present study was taken from pertinent Table 1. Absorption efficiency (Ae) of amphibians fed feed containing different nitrogen levels. | | | | | | | THE RESERVE THE PARTY OF THE PROPERTY OF THE PARTY OF THE PARTY. | - | |--------------------------|-------------|--------|-------------------|------------|------------|--|---------------------| | | | | | Nitrogen | Absorption | | | | | Temperature | Ration | | content | efficiency | | , | | pecies, size and sex | (C) | (%) | Food | (% dry wt) | (%) | Comments | References | | audates | | | | | | | | | Plethoden cinereus | 10 | ad lib | Lasius americanus | 7.0^a | 06 | T affects Ae | Merchant (1970) | | | 15 | ad lib | L. americanus | 7.0^a | 98 | | | | | 20 | ad lib | L. americanus | 7.0^a | 80 | | | | P. cinereus | 10 | ad lib | Drosophila sp. | 8.14 | 06 | T affects Ae | Bobka et al (1981) | | 0.40 | 15 | ad lib | Drosophila sp. | 8.14 | 98 | but no size effect | | | + | 70 | ad lib | Drosophila sp. | 8.14 | 80 | | | | P. cinereus | 5, 20, 25 | ad lib | Drosophila sp. | 8.14 | 06 | No effect of | Crump (1979) | | (g 89·0-60·0) | | | | | | Wt and T | | | P. shenandoah | 10 | ad lib | Drosophila sp. | 8.1^a | 91 | | | | | 70 | ad lib | Drosophila sp. | 8.1a | 80 | | | | Triturus helveticus | | | Enchytraeus | 6.0^{a} | 91 | | Avery (1971) | | | 1 | | albidus | | | | | | T. vulgaris | | | | | | | | | Eurycea bislineata | \$ | ad lib | Chironomid | 9.1 | 98 | No T effect | Fitzpatrick (1973a) | | | | | larvae | | | | | | | 10 | ad lib | · * | 6.1^a | 94 | | | | | 15 | ad lib | • | 9.1 | 94 | | | | Desmognathus ochrophaeus | | | · | | | | | | Gravid ♀ | 15 | ad lib | Phormia maggots | 0.8 | 87 | | Fitzpatrick (1973b) | | Nongravid 2 | 15 | ad lib | Phormia maggots | 0.8 | 98 | | | | Nongravid \$ | 15 | ad lib | Phormia maggots | 8.0 | 88 | | | | Anurans | | | | | | | | | Rana tigrina tadpole | 27 | ad lib | Wolffia | 4:3 | 79 | No T effect | Marian (1982) | | | 27 | ad lib | Chironomus sp. | 9.1 | 91 | | | | | 27 | ad lib | Streptocephalus | 0.6 | 16 | | | | | 27 | ad lib | Tubifex tubifex | 9.6 | 92 | | | | | | | | | | | | | R. tigrina tadpole | 22 | ad lib | T. tubifex | 9.6 | 93 | No T effect | Marian and Pandian | |-----------------------------------|--------|--------|--------------|------|----|--------------------|--------------------| | | 27 | ad lib | T. tubifex | 9.6 | 92 | | (1985) | | | 32 | ad lib | T. tubifex | 9.6 | 94 | | | | | 37 | ad lib | T. tubifex | 9.6 | 96 | | | | R. tigrina tadpole | 27 | 10-100 | T. tubifex | 9.6 | 98 | No R effect | Marian (1982) | | R. tigrina | | | | | | | | | (1-16 tadpoles/aquarium) | 27 | ad lib | T. tubifex | 9.6 | 8 | No density effect | Marian (1982) | | R. tigrina tadpole | 27 | ad lib | Cabbage | 9.6 | 8 | No aquarium depth | Pandian and Marian | | (aquarium depth) | | | | | , | effect | (1985e) | | Rana cyanophlyctis tadpole 0.56 g | 26 | ad lib | T. tubifex | 9.6 | 94 | | Present study | | R. cyanophlyctis 0.2-1 g | 26 | ad lib | Hydrilla sp. | 4.8 | 73 | | Present study | | | 26 | ad lib | Wolffia | 4.3 | 74 | | | | R. tigrina tadpole | | ad lib | mixed diet | 5.2 | 99 | | Hota (1984) | | Bufo melanostictus tadpole | 29 | ad lib | carrot tuber | 9.0 | 54 | | Present study | | | | | sweet potato | 1.3 | 51 | | ` | | | | | beetroot | 2.2 | 29 | | | | | | | moringa leaf | 4.4 | 71 | | | | B. melanostictus tadpole | | ad lib | mixed diet | 5.2 | 70 | | Hota (1984) | | B. terrestris adult 5-100 g | 20, 25 | ad lib | cricket | 6.2* | 74 | No T and Wt effect | Smith (1976) | | Rana tigrina adult 2-25 gW | 28 | 3–100 | T. tubifex | 9.6 | 94 | | Marian (1982) | | | | ad lib | earthworm | 9·1 | 68 | | | | | | ad lib | insect | 6.3 | 74 | | | | | | ad lib | slug | 8.0 | 8 | | | T, temperature; r, ration; Wt, body weight. "Values from Campbell (1970), Nicol (1969) or estimation done in our laboratory. publications. From a survey, about 50 publications were considered. Of them only 12 publications were finally selected; the others were not selected for following reasons: (i) lack of information of N content of the food (Altig and McDearman 1975) and (ii) reporting desired information for amphibians reared under stress conditions such as exposure to pesticide (Marian et al 1983). We have chosen publications reporting reliable information on total Ae (in terms of dry weight or energy) of amphibians fed on natural food under normal, healthy, experimental conditions. In some cases, it has been possible for us to secure nitrogen content of the food from other publications (e.g. Enchytraeus: Nicol 1969) or from our own estimation (e.g. Drosophila). We have made a definite effort to give due representation to herbivorous and carnivorous amphibians so that a wide range of food spectrum would be represented. Information thus obtained has been analysed under the following headings (table 1): (i) species, body weight and sex (ii) temperature, (iii) ration, (iv) food, (v) nitrogen content of the food and (vi) Ae: Ae (%) = $$\frac{\text{Food absorbed}}{\text{Food consumed}} \times 100$$, where food absorbed is = I - E, I = food consumed, E = feces egested (in terms of total dry weight or energy). #### 3. Results Table 1 presents information on Ae of the tested amphibians inhabiting temperate and tropical regions. Of 11 species, for which reliable information is available, 6 are caudates and 5 are anurans; most of these caudates are adult animals and were tested on animal diet alone; the next 3 species are anuran tadpoles and were tested on a range of feeds from the nitrogen-poor sweet potato tuber to animal diet; the remaining data pertain to 2 adult anurans. The body weight of these amphibians ranged from 0.09 (Plethoden cinereus; Crump 1979) to 100 g (B. melanostictus; Smith 1976) and the nitrogen content of food from 0.6 (sweet potato tuber) to 9.6% (T. tubifex). Some were given different rations (3–100% of ad libitum) and subjected to experiments at temperature as low as 5°C and as high as 37°C. Thus, it has been possible to summarize data on the Ae of a number of amphibians studied under a wide range of feeding regimes and experimental conditions. Figure 1 illustrates the relationship between nitrogen content of food and Ae of the tested amphibians. Tadpoles of B. melanostictus fed on tuber containing 0.6% N exhibited 51% efficiency; from this low value, the efficiency rapidly increased to over 90% in several amphibians fed on diet containing > 9% nitrogen. Hence the efficiency of amphibians is positively related to the nitrogen content of food. To test whether the observed relationship is statistically significant, regression analysis is made considering nitrogen (independent variable) against Ae (dependent variable). The nitrogen content of food is positively correlated (r=0.950) to the Ae of the amphibians (figure 1); the regression obtained (Ae=49.615+4.596 N) is highly significant (F(1), 39=354; p<0.0005). To describe the precision of the prediction, standard error of the estimate is computed following Zar (1974), which accounts 3.748 of the total estimate. If this relationship is generally applicable, the efficiency of amphibians can reliably and precisely be predicted from the nitrogen content of food. Figure 1. Relationship between the nitrogen content of food and Ae of amphibians. #### 4. Discussion The conclusion that food N can precisely predict Ae of amphibians based on 41 values estimated for 11 species. Although it is based on a very few estimations of Ae, the fact that a similar relation has been observed to hold good for fishes, polychaetes, aquatic insects, lepidopterans and reptiles (Pandian and Marian 1985a,b,c,d; Pandian T J and Marian M P, unpublished results) goes to support the conclusion. The laborious and time-consuming processes of feces recovery and quantification as well as the scope for introducing errors in the gravimetric procedure for absorption efficiency have led several investigators to defy attempts on the estimation of the efficiency of amphibians (Seale 1985). Although several direct and indirect methods (table 2) are available and frequently followed by fish biologists for estimation of Ae, amphibian biologists appear to be not aware of them. Although the rediotracer method was described by Calow and Fletcher (1972), which is relatively easier, and is based on the more sound principle, Bobka et al (1981) have chosen a different ¹⁴C technique for the estimation of absorption efficiency using a complicated procedure. Incidentally, among the indirect procedures thus far described, the food nitrogen index method, described by Pandian and Marian (1985a), requires no quantitative recovery of feces and yet is widely applicable (Pandian and Marian 1985b,c,d; Pandian T J and Marian M P, unpublished results). Factors such as ration and body size do not significantly influence Ae of the tested amphibian. However, there are reports for and against temperature effect on the efficiency; the efficiency of the caudates *Plethodon* spp is inversely related to temperature (Merchant 1970; Boka et al 1981). On the other hand, a number of workers have reported that irrespective of changes in temperature, the efficiency remains unaffected in the caudate *Eurycea bislineata* (Fitzpatrick 1973a), the toad *Bufo terrestris* (Smith 1976) and the tadpole of *R. tigrina* (Marian and Pandian 1985). An important point to be noted here is that the efficiency was estimated in these animals under a wide range of aquatic, semi-aquatic and terrestrial situations; for instance, Table 2. Available methods for the estimation of absorption efficiency in aquatic animals. | | Required estimates | stimates | Nature of | | Whether used | | |---|-------------------------------|--|--|--|----------------|-------------------------------------| | Method | Food | Feces | method | Applicability | for amphibians | Example | | 1. Gravimetric | Consumption estimate required | Recovery and quantification required | Time consuming and laborious | Can be widely used | Often used | Fitzpatrick (1972a, b) | | Artificial markers Chromic oxide Dedicteror | Analysis required | Recovery not required
but analysis required | Requires even distribution of Cr_3O_3 in food | Applicable for
dry pelleted
diet only | N _o | Austreng (1978) | | a) ¹⁴ C | Analysis required | Recovery not required but analysis required | Requires even distribution of ¹⁴ C in food | Limited applicability, reliability is onestionable | Rarely used | Bobka et al (1981) | | b) ⁵¹ Cr | Analysis required | Recovery not required
but analysis required | Requires even distribution of ⁵¹ Cr in food | Limited applicability | Š | Calow and Fletcher
(1972) | | Natural markers Lignin | Analysis required | Recovery not required but analysis required | Time consuming | Restricted to herbivores alone | N _o | Klump and Nichols (1983) | | ii) Ash | Analysis required | Recovery not required but analysis | Quickly done | Applicable to animals; reliability is questionable | Š | Bowen (1981) | | iii) Nitrogen | Analysis required | Neither recovery nor
analysis required | Quickly done | Applicable to all animals | °Z | Pandian and Marian (1985a, b, c, d) | Marian and Pandian (1985) estimated the efficiency of R. tigrina tadpoles kept in aquarium. Bobka et al (1981) made the estimate of Plethodon maintained in moist terrarium. It is apparent that when the efficiency of an amphibian is estimated in an aquarium, temperature fails to affect the efficiency but when it is estimated in a terrarium, the reverse is true. Therefore, water appears to have a modifying effect on the simple linear relationship observed between food-N and Ae. It is known that the simple linear relation between food-N and Ae is secondarily modified by water content of food in lepidopterans and other arthropods (Pandian T J and Marian M P, unpublished results). In general, terrestrial animals acquire water mainly from food, and gain or lose water through the body surface (Tracy 1976) and hence are forced to acquire more water by accelerating the alimentation process; such an acceleration will lower the efficiency (Ae). Pandian and Marian (unpublished results) have shown that the nitrogen is more important in the prediction of Ae, and water can serve as co-predictor to improve the accuracy of prediction of Ae from food-N. Basic data on the effect of water on Ae are urgently required for more amphibians, before it could be considered as a co-predictor. However, food-N, can precisely predict Ae of aquatic amphibians, in which feces recovery and quantification are difficult. In figure 2, a comparison of the trends obtained for food-N and Ae relation in fishes (Pandian and Marian 1985a), amphibians and reptiles (Pandian and Marian 1985b) are made; a positive and significant correlation observed between food-N and Ae of these animal groups renders it possible to predict Ae from food-N with more than 90% accuracy. It may be noted that the given diet is more efficiently digested and absorbed by amphibians than by fishes and reptiles; for instance, fed on food containing 6% N, the efficiency is 78% for amphibians in comparison to 57 and 63% for fishes and reptiles, respectively. The reason for this dissimilarity in the efficiency among these animal groups are not clear at present; further work and analysis are in progress to know the underlining physiological processes that is responsible for the differences. Figure 2. Comparison of the trends obtained for food-N and absorption/assimilation efficiency relation in fishes, amphibians and reptiles. For fishes ($\log Ae = 1.3706 + 0.5807 \log N$) and reptiles (Ase = 14.424 + 8.210 N). Values are taken from Pandian and Marian (1985a, b). ## Acknowledgements We thank Mr U Neeraichandran, for providing computer facilities. MPM is grateful to UGC, New Delhi for financial support. #### References Altig R and McDearman W 1975 Per cent estimation and clearance times of five anuran tadpoles; Herpetologica 31 67-69 Avery R A 1971 The ecology of new tadpoles: food consumption, assimilation efficiency and growth; Freshwater Biol. 1 129-134 Austreng E 1978 Digestibility determination in fish using chromic oxide making and analysis of contents from different segments of gastro-intestinal tract; Aquaculture 18 145–156 Bobka M S, Jaeger R G and McNaught D C 1981 Temperature dependent assimilation efficiencies of two species of terrestrial salamanders: Copeia 1981 417-421 Bowen S H 1981 Digestion and assimilation of periphytic detrital aggregate by *Tilapia mossambica; Trans.*Am. Fish Soc. 110 239-245 Calow P and Fletcher C R 1972 A new radiotracer technique involving ¹⁴C and ⁵¹Cr for estimating the assimilation efficiencies of aquatic primary consumers; Oecologia (Berlin) 9 155-190 Campbell J W 1970 Comparative Biochemistry of nitrogen metabolism; in *The Invertebrates* (ed) Campbell (London, New York: Academic Press) Vol. 1 Crump M L 1979 Intra-population variability in energy parameters of the salamander Plethodon cinereus; Oecologia (Berlin) 38 235-247 Fitzpatrick L C 1973a Influence of seasonal temperatures on the energy budget and metabolic rates of the northern two-lined salamander Eurycea bislineata; Comp. Biochem. Physiol. A45 807-818 Fitzpatrick L C 1973b Energy allocation in the Allegheny mountain salamander Desmognathus ochrophaeus; Ecol. Monogr. 43 43-58 Hota A K 1984 Growth, production and energetics of the tadpoles of Rana tigrina and Bufo melanosticus, Ph.D. thesis, Sambalpur University, Sambalpur Klump D W and Nichols P D 1983 Nutrition of the Southern sea garfish Hyporhampus melanochoir: gut passage rate and daily consumption of two types and assimilation of seagrass components; Mar. Ecol. Prog. Ser. 12 207-216 Lautenschlager K P, Kaushik N K and Kobinson J B 1978 The peritrophic membrane and fecal pellets of Gammarus lacustis Smith; Freshwater Biol. 8 207-211 Marian M P 1982 Ecophysiological studies in frog-culture (Rana tigrina Daud), Ph.D. Thesis, Madurai Kamaraj University, Madurai Marian M P and Pandian T J 1985 Effects of temperature on development, growth and bioenergetics of the bullfrog tadpole Rana tigrina; J. Therm. Biol. (in press) Marian M P, Arul V and Pandian T J 1983 Acute and chronic effects of carbaryl on survival growth and metamorphosis in the bullfrog tadpole Rana tigrina; Arch. Environ. Contam. Toxicol. 12 271-275 Merchant H 1970 Estimated energy budget of the red-backed salamander *Plethodon cinereus*, Ph.D. thesis, Rutgers University, New Jersey, USA Nicol J A C 1969 Biology of marine animals (London: Pitman Paperbacks) p 699 Pandian T J and Marian M P 1985a Nitrogen content of food as an index of absorption efficiency in fishes; Mar. Biol. 85 301-311 Pandian T J and Marian M P 1985b Prediction of assimilation efficiency in reptiles; Nat. Acad. Sci. Lett. 7 351-354 Pandian T J and Marian M P 1985c Estimation of absorption efficiency in polychaetes using nitrogen content of food; J. Exp. Mar. Biol. Ecol. 90 289-295 Pandian T J and Marian M P 1985d An indirect procedures for the estimation of assimilation efficiency of aquatic insects; Freshwater Biol. (in press) Pandian T J and Marian M P 1985e Physiological correlates of surfacing behaviour: Effect of aquarium depth on growth and metamorphosis in the bullfrog Rana tigrina; Physiol. Behav. (in press) Robinson B H and Bailey T G 1981 Sinking rates and dissolution of mid-water fish fecal matter; Mar. Biol. 65 135-142 Seale D B 1985 The Amphibia; in Animal Energetics (eds.) T J Pandian and F J Vernberg (Academic Press) Smith G C 1976 Ecological energetics of three species of ectothermic vertebrates; *Ecology* 57 252-264 Steinwascher K R 1978 The effect of coprophagy on the growth of *Rana catesbeiana* tadpoles; *Copeia* 1978 130-134 Tracy C R 1976 A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment; *Ecol. Monogr.* 46 293–326 Zar J E 1974 Biostatistical analysis (New Jersey: Prentice-Hall) p 620