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Abstract. We present here a theoretical approach to compute the molecular magnetic anisotropy  
parameters, DM and EM for single molecule magnets in any given spin eigenstate of exchange spin Hami-
ltonian. We first describe a hybrid constant MS-valence bond (VB) technique of solving spin Hamilto-
nians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the 
exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we 
compute the DM and EM values for various eigenstates of the exchange Hamiltonian. Since, the dipolar 
contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from 
the single-ion anisotropies of the metal centers. We have studied the variation of DM and EM by rotating 
the single-ion anisotropies in the case of Mn12Ac and Fe8 SMMs in ground and few low-lying excited 
states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes 
drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM DM values depend 
strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe8 SMM. 
We also find that the DM value is almost insensitive to the orientation of the anisotropy of the core 
Mn(IV) ions. The dependence of DM on the energy gap between the ground and the excited states in both 
the systems has also been studied by using different sets of exchange constants. 
 
Keywords. Single molecule magnets; single-ion anisotropy; anisotropy parameters. 

1. Introduction 

There has been a widespread interest to develop 

molecule-based systems with magnetic ground state 

called single molecule magnets (SMMs). Following 

the synthesis of Mn12Ac and Fe8 clusters with high-

spin ground state, exotic properties like Quantum 

Resonant Tunneling (QRT) and quantum coherence 

were unveiled.1–4 SMMs are characterized by a high 

spin ground state and large negative magnetic ani-

sotropy (DM) which creates an energy barrier between 

the states corresponding to positive and negative MS 

values (figure 1).
5
 In this case, the magnetic anisot-

ropy is said to be uniaxial and the ground state of 

the molecule would correspond to the highest possi-

ble magnetization with total spin SGS. The second 

order transverse or rhombic anisotropy mixes vari-

ous states with total spin SGS that differ in their MS 

value by two. Thus, in SGS = 10 ground state, the 

MS = +10 and MS = −10 states are connected through 

the EM term in the tenth order. EM will be non-zero 

only if the S
2
X − S

2
Y term remains invariant under the 

symmetry of the molecule. However, fourth order 

anisotropy terms need to be included in the anisot-

ropy Hamiltonian for Mn12Ac in which the molecu-

lar symmetry prohibits a non-zero EM but still QRT 

 

 
 

Figure 1. Schematic of the double potential well for the 
SGS = 10 ground state when DM is negative. 
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is observed. The requirement of large negative value 

of DM and a large non-zero ground state spin are 

stringent requirements for a molecule to behave as a 

SMM. Modelling magnetic anisotropy in these sys-

tems becomes necessary for developing new SMMs 

with desired properties. 

 Magnetic anisotropy of SMMs is computed by 

treating the anisotropy Hamiltonian as a perturbation 

over the Heisenberg exchange Hamiltonian, since 

the magnitude of anisotropy constants are very small 

compared to the exchange constants. SMMs contain 

many spin centers with equal or unequal magnitude 

of site spins and in most cases the magnetic ex-

change is frustrated. The Fock space of the Hamilto-

nian for even the well known SMMs are generally 

very large (hundred million in case of Mn12Ac
6
 and 

more than two billion in the case of Fe12 wheel
7
) and 

obtaining even a few low-lying states of the Hamil-

tonian could pose a serious computational challenge. 

Since the exchange Hamiltonian conserves both  

total spin and z-component of total spin (MS), the 

problem can be simplified by specializing the basis. 

 Hamiltonian could be block diagonalized in spin-

adapted or constant MS basis, so that one can work 

with a basis set with a particular total spin or MS 

value. This can be further simplified by exploiting 

spatial symmetries of the model. An ideal situation 

would correspond to one in which all the spin and 

spatial symmetries are utilized to construct a fully 

symmetrized basis to minimize the size of the Ham-

iltonian matrix that needs to be diagonalized.  

Besides the computational efficiency, this method of 

solving the model Hamiltonian enables us to label 

the states by the irreducible representation which 

they belong to. In the succeeding sections of this  

paper, we present the technique of solving spin 

Hamiltonians using spin and spacial symmetry adap-

tation. Then we discuss a theoretical approach to 

compute molecular magnetic anisotropy in SMMs. 

2. Solving exchange Hamiltonian 

The constant MS basis can be trivially constructed 

from the Fock space by choosing those states whose 

total MS value corresponds to the desired value. It is 

also quite straightforward to set up the Hamiltonian 

matrix in this basis and solve for a few low-lying 

states in cases where the Hilbert space is spanned by 

a few hundred million states.8 It is computationally 

difficult to solve systems with magnetic frustration. 

In such systems, the ground state spin is often not 

predictable and one needs to obtain the lowest state 

in each total spin subspace to fix the spin of the 

ground state. Besides, it is also numerically difficult 

to achieve convergence to nearly degenerate eigen-

states with different spin values, unless they can be 

dispersed into orthogonal Hilbert spaces. We can 

partially alleviate this problem by employing the 

parity symmetry of the exchange Hamiltonian. This 

symmetry can break the MS = 0 space into even and 

odd total spin subspaces.
9
 Since in most cases, the 

lowest excited state usually has a spin which is one 

different from that of the ground state, this symme-

try makes it easy to obtain the spin gaps accurately. 

 Construction of spin adapted configuration state 

functions (CSFs) has been a long standing problem 

of interest. The CSFs are simultaneous eigenstates 

of total S2
t ot and S

z
tot and setting up the Hamiltonian 

matrix in this basis leads to matrices of smaller size 

besides allowing automatic labelling of the states by 

the total spin. Furthermore, the eigenvalue spectrum 

is enriched, since we can obtain several low-lying 

states in each total spin sector. This is in contrast to 

obtaining several low-lying states in a given total MS 

sector as the latter would have states with total spin 

Stot ≥ MS. There are many ways of achieving CSFs.
10
 

The methods which have been in extensive study are 

(i) the graphical unitary group approach (GUGA), 

(ii) symmetry group graphical approach (SGGA) 

and (iii) valence–bond (VB) approach. Complete 

factorization of the Hilbert space of the Hamiltonian 

using both spin and spatial symmetries has been the 

focus of many studies.9 However, exploitation of 

spatial and spin symmetries has been possible only 

for Abelian point groups. Here we present a general 

technique which is a hybrid method based on  

Valence–bond basis and the basis of z-component of 

the total spin, which is applicable to all types of 

point groups and is easy to implement on computer. 

But, before that we will briefly discuss a previous 

attempt to symmetrize VB basis11 and associated 

difficulties. 

2.1 Symmetrized VB approach 

Its is non-trivial to get simultaneous eigenstates of 

total spin and its z-component, since eigenstates of 

the S
z
tot operator expressed as a product of the eigen-

states of all the S
z
i
 
operators are not simultaneously 

eigenstates of the S
2
t ot operator. The situation is fur-

ther
 
complicated by the fact that in a molecular 

magnet, often the spins of all the constituent
 
mag-
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netic centers, si are not the same. In such a case, the 

easiest way of constructing the
 
spin adapted func-

tions is the diagrammatic valence bond (VB) method 

based on modified Rumer–Pauling rules.
12–15

 In this 

method, a magnetic site with a given spin ‘si’ is
 
re-

placed by 2si spin-half objects. To obtain a state 

with total spin S from N such spin-1/2
 
objects from 

all the magnetic centers, (N – 2S) of these spin-1/2 

objects are singlet spin paired explicitly, subject to 

the following restrictions: (1) there should be no 

singlet pairing of any two spin-half objects belong-

ing to the same magnetic center (this ensures that 

the 2si objects are in a totally symmetric combina-

tion
16
), (2) a total of 2S spin-half objects are left  

unpaired, (3) when all the spin-half objects are ar-

ranged at the vertices of a regular polygon with 

number of vertices equal to number of spin-half  

objects, N, and straight lines are drawn between spin 

paired vertices, there should be no intersecting lines 

in the resulting diagram and (4) when all the spin-

half objects are arranged on a straight line and lines 

are drawn between spin paired objects, these lines 

should not enclose any unpaired spin-1/2 object. 

These rules follow from the generalization of the 

Rumer–Pauling rules to objects with spin greater 

than 1/2 and total spin greater than zero. The set of 

diagrams which obey these rules would hence forth 

be called ‘legal’ VB diagrams. Some legal VB dia-

grams are shown in figure 2. 

 A line in the VB diagram between two spin –1/2 

objects i and j corresponds to the state (αiβj–βiαj)/√2 
where we choose α to correspond to |↑〉 and β to |↓〉 
orientations of the spin. The phase convention  

assumed is that the ordinal number ‘i’ is less than 

the ordinal number ‘j’. The 2S spin-1/2 objects k1 k2  

 
 

 
 

Figure 2. The top VB diagram shows spin pairings to 
yield a total spin Stot = 0 state from ten spin-1/2 objects, 
constituent elementary spins of two spin 1 and two spin 
3/2. Its bit representation corresponds to unique integer 
I = 856. The bottom VB diagram shows a Stot = 1 state, 
the corresponding unique integer is I = 888. 

k3 ⋅⋅⋅ k2S which are left unpaired can be taken to  

represent the state with MS = S given by 

1 2 3 2S

... .

k k k k
α α α α  VB states corresponding to other 

MS value for this state with spin S, can be obtained 

by operating the Stot operator on the state by the re-

quired number of times. The VB state corresponding 

to a given diagram is a product of the states repre-

senting the constituent parts of the diagram. On a 

computer, a ‘legal’ VB diagram of any spin can be 

uniquely represented by an integer of N bits with a 

bit state ‘1’ at a site representing the beginning of a 

singlet line and a state ‘0’ the ending of a singlet 

line. The unpaired spins are also represented as one-

bits. Figure 2 also shows bit representation of typi-

cal VB diagrams. 

 To spatially symmetrize a VB basis, it is neces-

sary to know the result of a symmetry operator oper-

ating on a legal VB diagram. Unfortunately this leads 

to ‘illegal’ VB diagrams, decomposing them into 

‘legal’ ones is computationally demanding. An  

example of this is shown in figure 3.11 In practice, 

the VB space is broken down into smaller invariant 

subspaces by the actions of group operations and 

then disjoint invariant subspaces are identified. 

Within each disjoint invariant space, a symmetrized 

linear combination of the VB basis is constructed by 

the application of projection operator. However, the 

structure of the invariant spaces is very complex and 

constructing disjoint invariant spaces is not simple.11 

While the number of linearly independent symmetry 

combinations of a given representation is known a 

priori, the actual linear combinations are obtained by 

carrying out Gram–Schmidt orthonormalization of 

the projected states. However, since the VB diagrams 

are not orthogonal the orthonormalization process is 

both computationally involved and time consuming. 

Furthermore, in case of molecular magnets contain-

ing magnetic ions with spin greater than half, the 

exchange operator between such high spin centers 

also generates ‘illegal’ VB diagrams as it involves 

non-nearest neighbour exchange interactions between 

constituent elementary spins.
9,14,15

 

 In view of these difficulties, a fully symmetrized 

VB approach to solving Heisenberg exchange Ham-

iltonian particularly in the context of molecular 

magnets is not feasible. 

2.2 Hybrid method based on VB basis and  

constant MS basis 

In the constant MS basis, a basis state of an ensemble 

of spins s1, s2, … , sN, is represented by a direct



S Ramasesha et al 

 

826 

 
 

Figure 3. The effect of operation by the C1

3 symmetry operator about the (1, 8) axis. Top left 
shows the initial and final VB diagrams with spin couplings between vertices of the cube 
shown as dark lines. Bottom left shows the same states as spin couplings between vertices of a 
regular octagon. The resultant is an ‘illegal’ diagram. Decomposing the resultant to ‘legal’ VB 
diagrams yields a sum of five VB diagrams shown on the right, with spin couplings between 
vertices on a cube. 

 

product of the ms states of each spin such that the 

total MS = ∑mi. By construction the states are  

orthonormal. A VB diagram with p singlet lines can 

be broken up into a linear combination of 2p basis 

states in the constant MS basis. In conversion of VB 

diagrams to constant MS basis, each singlet line 

gives two states; in one, the site at which a singlet 

line begins is replaced by an α spin and the site at 

which the line ends is replaced by a β spin with 

phase factor +1 and in the other state, spins are  

reversed with an associated phase of –1. However, 

there is a normalization constant wi, which follows 

from Clebsch–Gordan coefficients, given by, 
 

 

1/ 2

(2 )!
,

( )!( )!
i

i

i i i i

s

w

s m s m

−

⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

 (1) 

 

for a site with composite spin si in state mi, given 

by, mi = (ni↑ – ni↓)/2. Here, ni↑ is the number of 

m = +1/2 and ni↓ is the number of m = −1/2 constitu-

ent spins at the ith site.16 Without loss of generality, 

we can assume that the MS value of the VB diagram 

is also S. It is computationally straightforward to 

express a state in the VB basis as a linear combina-

tion of states in the constant MS basis. We initialize 

the coefficients in the constant MS basis to zero. We 

then decompose, sequentially, each VB diagram into 

constant MS states and update the coefficient of the 

basis state of corresponding MS by adding to it the 

VB coefficient times the product of Clebsch–Gordan 

factors with appropriate phases. The matrix relating 

the VB basis states to constant MS basis states, C, is 

a V × M matrix, where V is the dimensionality of the 

VB space and M that of the constant MS space. 

 In the constant MS basis, we can get the matrix 

representation of a symmetry operator, Rˆ  of the 

point group in the chosen MS space by operating 

with ˆR  on each state and searching for the resulting 

state in the list of MS basis states. Each basis state in 

this representation is carried over to another basis 

state by a symmetry operation of the point group. 

Thus, the matrix RM though an M × M matrix con-

tains only one non-zero element in each row; this 

makes manipulations with this matrix computation-

ally fast. The knowledge of the C and the RM matri-

ces give the effect of operating by the symmetry 

operator ˆR  on a VB state as a linear combination of 

the constant MS basis states via the matrix BR = 

CRM. 

 The projection operator for projecting out the  

basis states on to a chosen irreducible representation 

of the point group Γ is given by, 
 

 irr

ˆ

ˆ ˆ( ) ,
R

P R RχΓ Γ=∑  (2) 

 

where irr ˆ( )RχΓ  is the character under the symmetry 

operation ˆR  in the character table of the point group 

of the system.
17
 In our approach, one can easily get 

the effect of projection operator on VB states,  

expressed in constant MS basis. The matrix represen-

tation of PΓ, obtained in the mixed VB and constant 

MS basis is given by, 
 

 
irr ( ) ,

R

R

Q R Bχ
Γ Γ
=∑  (3) 

 

where, QΓ is a V × M matrix. However, the rows of 

the matrix QΓ are not all linearly independent. The 
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exact dimension, VΓ, of the Hilbert space spanned by 

the system in the irreducible representation Γ can be 
known a priori, which is given by, 
 

 irr

ˆ

ˆ ˆ( / ) ( ) ( ),
R

V d h R Rχ χΓ Γ Γ= ∑  (4) 

 

where dΓ is the dimensionality of the irreducible rep-

resentation Γ, h is the number of elements in the 
point group and ˆ( )Rχ  is the reducible character for 

the operation ˆR . The VΓ × M projection matrix, PΓ 

of rank VΓ is obtained by Gram–Schmidt orthonor-

malization of the rows of the matrix QΓ until VΓ  

orthonormal rows are obtained. The M × M Hamil-

tonian matrix, HM is constructed in the constant MS 

basis which is described elsewhere.
8
 The projected 

VΓ × VΓ Hamiltonian matrix in the fully symmetrized 

basis is given by, 
 

 †( ) ,
M

H P H P
Γ Γ Γ
=  (5) 

 

and one could use any of the well-known full diago-

nalization routines to obtain the full eigenspectrum 

or use the Davidson algorithm to get a few low-lying 

states of the symmetrized block Hamiltonian in the 

chosen spin and symmetry subspace. 

 We can further reduce dimensions of the blocks of 

Hamiltonian corresponding to E, T or higher order 

representations, which give degenerate eigenvalues. 

In such cases, it is advantageous to work with bases 

that transform according to one of the components 

of the irreducible representation. This will lead to 

unique eigenvalues. To achieve this, we choose an 

axis of quantization and project out bases states of 

the irreducible representation which are diagonal 

about a rotation about the chosen axes. For example, 

in the case of the irreducible representation that 

transforms as T, we can choose one of the C3 axes as 

a quantization axis and project the basis states of the 

irreducible representation using (I + C1
3 + C

–
3
1
) as the 

projection operator. This operator projects states that 

transform as the Y
0
1 component of the three fold de-

generate irreducible tensor operator. Similarly, for 

the E representation, we could use any of the C2 axis 

as a quantization axis and use the projection opera-

tor (I + C1
2) to project out basis states that transform 

as one of its components. 

 

2.2a Discussion on hybrid method: Computa-

tionally, this hybrid method involves few more steps 

than that of only constant MS method.
9
 Firstly, we 

need to construct the C matrix, whose ith row con-

tains the coefficients of the constant MS functions 

appearing in the ith VB basis function. This is a 

pretty fast step as the constant MS states are an  

ordered sequence of integers and a VB state with n 

lines is a linear combination of 2n constant MS func-

tions. Secondly, in the hybrid approach, the compu-

tation of the Q matrix involves the matrix 

multiplication,  
 

 irr ( ) .M M

R

C R R CRχΓ

⎛ ⎞
′=⎜ ⎟

⎝ ⎠
∑  

 

The number of arithmetic operations involved is 

however very small, since both C and R ′M are sparse 
matrices. Gram–Schmidt orthonormalization for ob-

taining the projection matrix PΓ from the Q matrix 

in the hybrid approach and from R ′M matrix in con-
stant MS approach – both involve similar computa-

tional effort. The advantage of fewer orthonormal 

rows being sought for PΓ in the hybrid approach 

compared to the projection matrix in the constant MS 

approach is compensated by the loss of sparseness 

of Q matrix in the hybrid approach. Computation  

of the eigenvalues in the constant MS approach is 

slower than in the hybrid approach, since 

( ( ) ( ))
S

M S
D DΓ > Γ for most S, where D(ΓS) is the 

dimensionality of the space of the irreducible repre-

sentation Γ with spin S and ( )
S

M
D Γ  is similarly the 

dimension of the space Γ with constant MS. The 

memory required for the hybrid approach is not very 

different from that of constant MS approach since the 

matrices though smaller in the hybrid approach, are 

slightly denser. The only additional array required  

to be stored in the hybrid approach is the sparse C 

matrix. 

 The major advantage of the hybrid approach is 

that we can obtain a far richer spectrum, since we 

are targeting each spin sector separately, unlike in 

the constant MS approach. Thus, if we can obtain, 

say 10 states in each S sector of the 2n spin-1/2 

problem, we would have 10(n + 1) unique states 

compared to the constant MS technique where many 

of these spin states would be repeated in different 

MS sectors. This approach is applicable not only to 

spin systems, it can be easily extended to electronic 

systems as well. Indeed, in table 1, we show the 

break-up of the many body states of a π-system, 

made up of sp2
 carbon atoms placed at the vertices 

of an icosahedron, into various subspaces of Irmh for 

different total spin values. 
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Table 1. Dimensionalities of various subspaces of half-filled icosahedral 
electronic system. 

Stot → 

Γ↓ 0 1 2 3 4 5 6 
 

Ag 2040 3128 1684 382 38 3 1 
T1g 16602 28821 14625 3261 309 6 0 
T2g 16602 28821 14625 3261 309 6 0 
Gg 30272 50932 26236 5880 568 16 0 
Hg 47940 79305 41255 9220 900 40 0 
Au 1852 3188 1644 348 40 0 0 
T1u 17080 28686 14700 3372 294 18 0 
T2u 17080 28686 14700 3372 294 18 0 
G2u 30160 50992 26176 5888 560 16 0 
Hu 46880 79680 40980  

Tot Dim→226512 382239 196625 44044 4212 143 1 

 

 
 

Figure 4. Schematic of Cu6Fe8 cluster. Filled and open 
circles correspond to Fe and Cu (both spin-1/2) sites res-
pectively. Lines represent the exchange coupling between 
various spin sites. 

 

 

 In this approach, we have demonstrated, how by 

combining the ease of spin symmetry adaptation of 

the VB method with the spatial symmetry exploita-

tion of the constant MS methods, we can devise a 

scheme which is fully spin and spatial symmetry 

adapted. This has been possible because of the ease 

of transformation of the VB basis to the constant MS 

basis. The method described here can easily be ex-

tended to fermionic systems and should provide a 

significant improvement for obtaining exact eigen-

states of spin conserving model Hamiltonians. In the 

next section, we have demonstrated the power of the 

method by applying it to the exchange Hamiltonian 

of the molecular magnet Cu6Fe8 which has cubic 

symmetry. 

 

2.2b Application to Cu6Fe8: We have applied the 

above method to model the susceptibility behaviour 

of the molecule [(Tp)8(H2O)6Cu6
IIFe8

III(CN)24] 

(ClO4)4⋅12H2O⋅2Et2O,
18
 where Tp stands for hydro-

tris (pyrazolyl) borate (figure 4). In this molecule, 

both CuII and Fe
III
 ions are in spin-1/2 state. The 

eight Fe
III
 ions are at cube corners and the six Cu

II
 

ions are on the outward perpendicular to the face 

centers of the cube. Each CuII ion is connected to the 

four nearest Fe
III
 ions via ferromagnetic exchange 

interactions. There are no Fe–Fe or Cu–Cu interac-

tions. This system has a very high symmetry of the 

cube and incorporates all the complexities that can 

be encountered in the application of our technique. 

From the susceptibility data, the strength of the  

exchange interaction J, was estimated to be 30 cm
–1
.
18
 

The dimensions of the various subspaces are given 

in table 2. Using the hybrid method, we have broken 

down the space in each total spin sector into basis 

states that transform as different irreducible repre-

sentations of the cubic point group. 

 The dimensionalities of the various subspaces are 

shown in table 3. The subspaces transforming as the 

E or T representations are further broken down as 

we discussed before. We have setup the Hamiltonian 

matrix in each of the subspaces and obtained all the 

eigenvalues. We have also used a constant MS basis 

and using the full cubic symmetry, factored the 

space into various irreducible representations and 

obtained all the eigenvalues in each subspace. From 

the eigenvectors, we have computed the total spin of
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Table 2. Dimensionalities of the total spin spaces of a system of 14 spin-1/2 
objects. D(S) is the dimensionality of the constant S basis and D(MS) is the 
dimensionality of the constant MS basis. 

S/MS 0 1 2 3 4 5 6 7 
 

D(S)  429 1001 1001  637 273 77 13 1 
D(MS) 3432 3003 2002 1001 364 91 14 1 

 
 

Table 3. Dimensionalities of various subspaces of the Cu6
II
Fe8

III
 cluster for irre-

ducible representation. 

Stot → 
Γ↓ 0 1 2 3 4 5 6 7 
 

A1g   6  32  24  24  9  5 1 1 
A2g  13  15  19   8  5  0 0 0 
Eg  34  90  90  60 26 10 2 0 
T1g  78 165 171  99 39  6 0 0 
T2g  66 216 186 138 54 21 3 0 
A1u   5  19  13  11  2  0 0 0 
A2u  17  20  27  15 10  2 1 0 
Eu  36  78  84  48 20  6 0 0 
T1u 105 180 219 123 66 15 6 0 
T2u  69 186 168 111 42 12 0 0 

 

 

the state. We find a one to one correspondence to 

numerical accuracy, between the two sets of calcula-

tions. We have also fitted the χT vs T experimental 

plot by using the full spectrum of the Heisenberg 

Hamiltonian and computing19 

 

 
23 ( , )

8 1 ( , )/
B

g F J T
T

zJ F J T k T
χ

⎡ ⎤
= ⎢ ⎥′−⎣ ⎦

, (6) 

 

where we have taken the g factor to be 2⋅1, the fer-
romagnetic exchange constant J to be 27⋅2 cm–1

. 

Here, χT is in units of NμB. The function F(J, T) is 

given by, 
 

  

2
0

,

0

,

exp[ ( , )/ ]

( , )

exp[ ( , )/ ]

S

S

S S B

S M

S B

S M

M E S M k T

F J T
E S M k T

−

=

−

∑

∑
, (7) 

 

with E0(S, MS) being the eigenvalue of the sum of 

exchange Hamiltonian and the magnetic anisotropy 

term DS2
Z and zJ′ is the intermolecular exchange  

interaction. Here we have assumed that the molecu-

lar anisotropy is along the global z-axis, and this 

term is treated as a perturbation to the exchange 

Hamiltonian in (1). In figure 5, we show the fit of 

the experimental data to the model. 

 
 

Figure 5. Fit of the χT vs T plot for the Cu6
II
Fe8

III
  

cluster. The best fit parameters are, J = 27⋅2 cm–1
 (ferro-

magnetic), zJ′ = –0⋅008 cm–1
 (antiferromagnetic), D = 

–0⋅15 cm–1
 and g = 2⋅1. 

3. Computing magnetic anisotropy in SMMS 

The magnetic anisotropy is given by the general 

Hamiltonian, 
 

 ( ).ˆ ˆˆ . ,M

D M M
H S D S=  (8) 
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where ˆ

M
S  corresponds to the spin operator for the 

total spin of the molecule and D
(M)
 is the magnetic 

anisotropy tensor of the molecule. In practice, this 

D(M)
 tensor is diagonalized and the eigenvalues of 

the tensor give magnetic anisotropy in three mutu-

ally perpendicular principal directions while the  

eigenvectors corresponds to the direction of orienta-

tion of the principal axes with respect to the molecu-

lar frame. If, DM
XX, D

M
Y Y and D

M
ZZ are the molecular 

anisotropies along the three principal directions such 

that DM
XX + D

M
Y Y + D

M
ZZ = 0, we can define two para-

meters, DM and EM such that, 
 

 
1
( )

2
M M M

M ZZ XX YY
D D D D= − +  

 

 
1
( ),

2
M M

M XX YY
E D D= −  (9) 

 

where DM and EM are called the axial and rhombic 

anisotropies respectively. Using these two parame-

ters, the Hamiltonian in (8) can be rewritten as, 
 

 2 2 2ˆ ˆ ˆ( ( 1)) ( ).
M M Z M X Y

H D S S S E S S= − + + −  (10) 

 

The magnetic anisotropy could be of relativistic or 

dipolar origin. In systems like conjugated polymers, 

the anisotropy arises due to the dipolar interactions, 

whereas in SMMs containing transition metal ions, 

relativistic effects dominate and the dipolar contri-

bution to anisotropy is two to three orders of magni-

tude smaller. There have been several theoretical 

methods to compute the molecular magnetic anisot-

ropy in molecular magnets. The first method in-

volves computing the DM and EM values by tensoral 

summation of the anisotropies of the constituent 

transition metal centers.20–22 However, this leads to 

molecular anisotropy values which are independent 

of the total spin state of the molecule. The next 

method involves computation of D
(M)
 tensor using 

the effective mean-field potential ϕ (r) obtained 

from density functional theory (DFT) with desired 

S t
Z
otal
 of the cluster. Treating spin orbit (SO) opera-

tor, ˆ ˆ.[ ˆ ( )]S p r×∇Φ

�

 as a perturbation, the D
(M)
 tensor 

is obtained.
23–27

. However, DFT methods do not con-

serve either the total spin or the site spins. Thus, it is 

not possible to obtain a pure spin eigenstate. More-

over, mean-field theories do not give correct values 

of spin–spin correlations. There have been methods 

to obtain the single-ion anisotropy values using re-

stricted configuration interaction approach.
28
 Bencini 

and Gatteschi developed a perturbative technique to 

obtain the anisotropy values of bi-nuclear systems. 

This method is analytical and cannot be employed 

for larger systems like Mn12Ac and Fe8 clusters. 

 Here, we present a general method to compute 

magnetic anisotropy of large cluster of ions with  

arbitrary spins in any given total spin state. We use a 

spin-exchange Hamiltonian to describe the cluster, 

unlike the all electron Hamiltonian that is employed 

in DFT studies. We obtain desired exact eigenstates 

of the exchange Hamiltonian by methods described 

above and using the magnetic anisotropic interac-

tions as a perturbation to compute the molecular ani-

sotropy constants in the desired eigenstates, in first 

order in perturbation. The input parameters required 

in our study are the local single ion anisotropies and 

the exchange constants of the exchange Hamilto-

nian. Our study can yield the anisotropy values for 

different total spin states as well as for different 

states with the same total spin. In the next section 

we describe the method in detail. In the following 

section we present the results of our studies on the 

two SMMs, Mn12Ac and Fe8 and finally we summa-

rize our studies. 

3.1 Methodology 

We treat the exchange Hamiltonian between mag-

netic centers in the SMMs as the unperturbed Ham-

iltonian, 
 

 
0

ˆ ˆˆ . ,
ij i j

ij

H J S S

〈 〉

=∑  (11) 

 

where 〈ji〉 runs over all pairs of centers in the model 

for which the exchange constant is non-zero, ˆ
i

S  is 

the spin on the ith
 
magnetic center. In SMMs such as 

Mn12Ac the spins at all the magnetic centers are not 

the same and the exchange interactions are shown in 

figure 6. H0 can be solved exactly for a few low-

lying states in a chosen spin sector by using methods 

that have been described above.
9
 

 The general anisotropic Hamiltonian for a collec-

tion of magnetic centers 
1
ˆH ′  is given by, 

 

 
1 ,

, , ,

1 ˆ ˆˆ ,
2 ij i j

i j

H D S S
βα

αβ

α β

′ = ∑  (12) 

 

where the indices i and j run over all the magnetic 

centers and α and β run over x, y and z directions of 

the ion. The contributions to inter-center anisotropy 
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constant arise due to dipolar interaction between the 

spins on the two centers as well as due to relativistic 

effects. In the former, Dij,αβ is given by, 
 

 
2

, ,2 2
, 5

31

2

ij ij ij

ij B

ij

R R
D g

R

αβ α β

αβ

δ
μ

ℜ −
= , (13) 

 

where ( )
ij ij
Rℜ  is the vector (distance) between the 

magnetic centers i and j, g is the gyromagnetic ratio 

and μB is the electronic Bohr magneton; the expecta-

tion value in (13) is obtained by integration over 

spatial coordinates.29 Approximating the expectation 

values of the distances by the equilibrium distances, 

the Dij,αβ in (13) and by computing the necessary 

spin–spin correlation functions, we can obtain the 

molecular Dαβ
(M)

 tensor.
30
 The eigenvalues of this 

matrix give the principal anisotropy values and  

imposing the condition of zero trace of the matrix 

yields molecular magnetic anisotropy constants due 

to spin–spin interactions. The magnetic anisotropies 

computed assuming only spin dipolar interactions 

yielded negligibly small values in comparison to the 

experimentally observed DM = –0⋅7 K and –0⋅28 K 

for Mn12Ac and Fe8 SMMs respectively, in the 

S = 10 ground state.
31,32

 Thus, we need to compute 

the magnetic anisotropy of SMMs from the single-

ion anisotropies of the constituent magnetic centers 

since, in SMMs relativistic effects dominate due to 

the presence of transition metal ions. The relativistic 

 
 

 
 

Figure 6. Schematic of possible exchange interactions 
in Mn12Ac SMM. The peripheral Mn(III) ions represented 
by blue circles correspond to spin-2 sites and those repre-
sented by yellow circles are the core Mn(IV) ions each of 
spin-3/2. Js are the strength of superexchange interaction 
with J1 = 215 K, J2 = J3 = 85⋅6 K, J4 = –64⋅5 K.

6
 

interactions are short-ranged, they fall off as r
–3
. 

Hence in (12), we can ignore inter-site terms and  

replace 
1
ˆH ′  by 

1
ˆH  given by, 

 

 
1 ,

, ,

ˆ ˆˆ .
i i i

i

H D S S
βα

α

α β

= ∑  (14) 

 

Since, the local anisotropies of the individual ions 

can have their own set of principal axes, we need to 

project out the components of anisotropy on to the 

laboratory axes. This modifies the (14) to 

 

 
1 , , ,

, , , ,

ˆ ˆˆ ,
i l i m i i i

i l m

H C C D S S
βα

α β αβ

α β

= ∑  (15) 

 

where, Ci,lα  is the direction cosines of αth coordi-

nate of the local axis of the ith magnetic center with 

the lth coordinate of the laboratory frame. Since, the 

Hamiltonians in (8) and (15) are equivalent, we can 

equate the matrix elements 
1
ˆ, , | | , ,

M M
n S S H n S S ′〈 〉  

and ˆ, | | ,
M D M

S S H S S ′〈 〉  and for any pair of eigen-

states of the exchange Hamiltonian in (11); M and 

M′ are z-component of total spin in a state n with 

spin SM in which we are interested. Calculating these 

matrix elements for ˆ

D
H  is straightforward from the 

algebra of spin operators. However, evaluation of 

the matrix elements of 
1
ˆH  between eigenstates of 

0
ˆH , requires a knowledge of the matrix elements of 

different products of site spin operators (such as 
ˆ ˆ

yx
i jS S ). For this we need eigenstate of 

0
ˆH , 

| , , ,n S M 〉  for different M values and these are ob-

tained by using the ladder operators corresponding 

to spin S. 

 Given a S value, the above condition would give 

rise to (2S + 1)
2
 equations, while the tensor D

(M)
, has 

only nine unknowns corresponding to the nine com-

ponents of the second rank tensor. Thus, for the 

Mn12Ac system, with ground state spin of 10, there 

would be 441 equations and we have more equations 

than unknowns. However, we could take any nine 

equations and solve for the components of the tensor 

D
(M)
 and we would get unique values of the compo-

nents. This is guaranteed by the Wigner–Eckart 

theorem and we have also verified this by solving 

for the D(M)
 tensor from several arbitrarily different 

selections of the nine equations. 

3.2 Results and discussion 

We have computed DM and EM values for both 

Mn12Ac and Fe8 systems by systematically rotating 

the local anisotropies of the spin centers. We have 
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used the single-ion anisotropy values quoted in the 

literature for the magnetic ions in similar ligand en-

vironments.33–36 The local ion axis referred to as x, y 

and z and the laboratory axis denoted by X, Y and Z 

are shown in figure 7. The laboratory frame can be 

arbitrarily chosen since, while computing the mole-

cular anisotropy, we diagonalize the anisotropy ten-

sor and obtain the anisotropy values along the three 

principal directions. The principal axis of the mole-

cule is unique and it does not depend on the orienta-

tion of the laboratory axis. 

 In order to obtain the molecular anisotropy as a 

function of the angle θ which the z-axis of the ion 

makes with the laboratory Z-axis, we rotate the single-

ion orientation with respect to the laboratory frame. 

The orientation of z-component of the single-ion 

anisotropy at every site is shown in figures 8, 9  

and 10 (schemes 1, 2 and 3) for Mn12Ac and in fig-

ures 14, 15 and 16 (schemes 4, 5 and 6) for Fe8 sys-

tems respectively. First the z-axis ( )z
�

 of the ion is 

fixed and then x
�

 is obtained by Gram-Schmidt or-

thogonalization procedure. Though the choice of this 

vector is arbitrary in a plane perpendicular to z-axis, 

we have fixed the direction of x
�

 such as to have 

maximum projection along a M–O (M = Mn, Fe) 

bond in Mn12Ac as well as in Fe8 (figures 7 and 16). 

If O
�

 is the vector connecting a M site and  

a neighbouring O ion, then we obtain x
�

 using the 

relation, 

 

 
 

 
 

Figure 7. Schematic of local (x, y, z) and laboratory  
(X, Y, Z) coordinate axes in Mn12Ac. The blue, green and 
red spheres correspond to Mn(III) (spin-2), Mn(IV) (spin-
3/2) and oxygen ions respectively. The arrows indicate 
the Mn–O bonds on which the chosen local x-axis has 
maximum projection. 

 ( . )x O O z z= −

� �

� � �

. (16) 

 

Finally, the y-axis of the ion is obtained using the  

relation, .y z x= ×

� ��

 These three mutually orthogonal 

vectors are then normalized to obtain the orthonor-

mal set of coordinate axes x, y and z of the ion cen-

ter. These single-ion axes of a given site i can be 

projected on to the laboratory frame through the  

direction cosines, Ci,αβ, where, α = X, Y, Z and β = x, 

y, z (17). 
 
 x = Ci,XxX + Ci,YxY + Ci,ZxZ 

 

 y = Ci,XyX + Ci,YyY + Ci,ZyZ 

 
 z = Ci,XzX + Ci,YzY + Ci,ZzZ. (17) 

 

3.2a Magnetic anisotropy in Mn12Ac SMM: We 

have first obtained the ground state and few excited 

states of the Mn12Ac system by exactly solving the 

 

 
 

Figure 8. Schematic diagram showing the directions of 
local anisotropy in Mn12Ac. The single-ion anisotropies 
of all the Mn ions are directed along the laboratory Z axis 
(scheme 1). 

 

 
 

Figure 9. Schematic diagram showing the directions of 
local anisotropy in Mn12Ac. The z-component of the  
single-ion anisotropies of all the Mn(III) ions are inclined 
at an angle θ to the laboratory Z and while that of the 
Mn(IV) ions are kept fixed at ~48° (scheme 2). 
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unperturbed Hamiltonian given in (11), using the 

exchange interactions shown in figure 6.
6
 The 

ground state of the system corresponds to total spin 

10 with a total spin 9 first excited state at 35⋅1 K 

from the ground state and a S = 8 second excited 

state at 60⋅4 K from the ground state. The molecular 

magnetic anisotropy is computed using the single-

ion anisotropy values of –5⋅35 K and 1⋅226 K  

respectively for Mn(III) and Mn(IV) ions, obtained 

from the literature. We have also introduced trans-

verse anisotropy of 0⋅022 K and 0⋅043 K for Mn(III) 

and Mn(IV) ions respectively. We have studied the 

variation of molecular anisotropy as a function of 

orientation of the local anisotropies by rotating the 

local D tensor around the molecular Z-axis (refer 

figures 8–10). In scheme 1, all the single–ion z axes 

are pointed parallel to the laboratory Z direction 

while in scheme 2 the orientation of the local aniso-

tropies of the core Mn(IV) ions are along the line 

joining the ion and the molecular center (~48° from 

the laboratory Z-axis), while that of the Mn(III) ions 

is kept fixed at an angle θ from the Z axis. The ori-

entation of the local anisotropy of Mn(III) ions for 

which we get the best agreement with experiments 

corresponds to θ ~ 17°. In scheme 3, we have fixed 

the orientation of single-ion anisotropy along the 

laboratory X – Y plane. We have studied the varia-

tion in the molecular anisotropies in these schemes 

for ground and excited eigenstates and presented the 

 
 

 
 

Figure 10. Schematic diagram showing the directions 
of local anisotropy in Mn12Ac. The z-component of the 
single-ion anisotropies of all the Mn ions are directed 
along the plane perpendicular to the laboratory Z axis 
(scheme 3). 

results in table 4. We note that when the local ani-

sotropies are systematically varied, there is a very 

large variation in the molecular anisotropy as a func-

tion of the local orientation (figure 11). The varia-

tion of DM with θ follows the equation DM(S) = D
0
M 

(S)(3cos2θ − 1). We find this in all the eigenstates of 

Mn12Ac that we have studied. The molecular aniso-

tropy values are different in different spin eigen-

states. This may be rationalized from the fact that 

the energy gaps between the ground and the excited 

states are large as a consequence of which the spin 

correlations in these states are very different. From 

the eigenvectors of the D(M)
 matrix, we find that the 

choice of our laboratory frame we have chosen  

is very close to the principal axis of the molecular 

system in all cases. 

 We have also studied the role of magnetic orienta-

tions of the core Mn(IV) ions (s = 3/2) and the 

crown Mn(III) ions (s = 2) in determining the mole-

cular anisotropies by fixing the single ion anisotropy 

directions of the crown Mn(III) ions fixed at 0° and 

rotating only the orientation of the anisotropy direc- 

 

 

 
 

Figure 11. Variation of DM as a function of θ, the angle 
the z-component of local anisotropy of Mn(III) ions 
makes with the laboratory Z-axis in eigenstates with total 
spin 10, 9 and 8. The orientation of Mn(IV) ions is kept 
fixed at ~48° from the molecular Z-axis. The curve with 
filled circles correspond to the variation of DM, when the 
local anisotropies of the core Mn(IV) ions only are  
rotated and those of Mn(III) ions are fixed along the  
Z-axis. The variation of DM with θ follows the equation 
DM(S) = D

0

M(S)(3cos
2
θ − 1), with all D

0

M(10) = –0⋅40,  
D

0

M(9) = –0⋅34, D
0

M(8) = –0⋅25. Schemes 1, 2 and 3 corre-
spond to θ = 0°, 17° and 90°. Best fit for the experimental 
DM value in the Stotal = 10 state corresponds to θ ~ 17°. 
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Table 4. DM values of ground and excited states of Mn12Ac under various schemes 
in K. For scheme 2, we have presented the DM values only for θ ~ 17° for which the 
DM value of the ground state matches with the experimentally observed value. 

 DM (K) 
 

State Scheme 1 Scheme 2 Scheme 3 
 

Ground state (S = 10) –0⋅8138 –0⋅7083 0⋅4075 
First excited state (S = 9) Eg = 35⋅1 K –0⋅6722 –0⋅6105 0⋅3449 
Second excited state (S = 8) Eg = 60⋅4 K –0⋅5009 –0⋅4264 0⋅2464 

 
 

Table 5. Energy gaps (Δ) and D0 values for the S = 10 ground state corre-
sponding to different sets of parameter values in Mn12Ac. 

S. No. J1 (K) J2 (K) J3 (K) J4 (K) Δ (K) D0 (K) 
 

1 215 85 85 –64⋅5 35⋅1 –0⋅40 
2 215 85 85 –85 67⋅0 –0⋅43 
3 215 85 64⋅5 –64⋅5 72⋅7 –0⋅46 
4 215 85 45 –45 80⋅0 –0⋅49 
5 215 85 –85 –45 224 –0⋅58 

 

 

 
 

Figure 12. Variation of |D
0

M| as a function of energy gap 
(Δ in K) for the S

total
 = 10 ground state of Mn12Ac for  

parameters listed in table 5, DM(θ) is given by –|D
0

M| 
(3cos

2
θ − 1). 

 

 

tions of the core Mn(IV) ions systematically. The 

variation of DM for the S = 10 ground state as a func-

tion of rotation of the local anisotropies of the core 

Mn(IV) ions is shown in figure 11. We observe that 

the molecular anisotropy is insensitive to the orien-

tations of the core Mn(IV) ions while the orientation 

of the crown Mn(III) ions control the variation of 

the molecular magnetic anisotropy in Mn12Ac. In 

Mn12Ac, the S
2
X − S

2
Y term of the anisotropy Hamilto-

nian does not commute with the D2d molecular point 

group symmetry and hence EM is zero. To investi-

gate the variation of D
0
M with the exchange parame-

ters of the unperturbed Hamiltonian, we have 

computed the magnetic anisotropy of Mn12Ac in the 

ground state using five different sets of exchange 

constants.
6
 In each case, the ground state has spin 

Stotal = 10 and the first excited state corresponds to 

S = 9; but the gap to the lowest excited spin state 

varies (table 5). We see that there is a steady  

increase in |D 0
M| with increasing gap (see figure 12). 

 

3.2b Magnetic anisotropy in Fe8 SMM: We have 

also computed the values of molecular anisotropy 

for the Fe8 SMM. First we solve the unperturbed 

Hamiltonian in (11) by using exchange parameters, 

J1 = 150 K, J2 = 25 K, J3 = 30 K, J4 = 50 K (figure 

13).
6
 The ground state of the system corresponds to 

total spin S = 10 with a S = 9 state at 13⋅56 K, a 

S = 9 state at 27⋅28 K and a S = 8 state at 28⋅33 K 

above the ground state. We have computed the mag-

netic anisotropy of Fe8 in three different schemes 

(schemes 4, 5 and 6, figures 14, 15 and 16) similar 

to Mn12Ac, taking the single ion axial and rhombic 

anisotropy values for Fe(III) centers to be 1⋅96 K 

and 0⋅008 K respectively. We have studied the 

variation in the molecular anisotropies as a function 

of orientation of local anisotropy in these schemes 

for ground and the excited eigenstates (figure 17). 
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We have presented the DM values for the ground and 

the excited spin states under various schemes in  

table 6. We note that the molecular anisotropy 

changes significantly when the local anisotropies are 

systematically varied (figure 17), in all the eigen-

states that we have studied. We also note that given 

the orientations of local anisotropies, the actual mo-

lecular anisotropy values are not very different in 

different spin eigenstates, since the energy gaps  

between the ground and the excited states are small 

which in turn imply that the spin correlations in 

these states are not significantly different. The ori- 

 

 

 
 

Figure 13. Schematic of exchange interactions in Fe8 
SMM. Js are the strength of superexchange interaction 
with J1 = 150 K, J2 = 25 K, J3 = 30 K, J4 = 50 K.

9
 

 

 
 

Figure 14. Schematic diagram showing the directions 
of local anisotropy in Fe8. The single-ion anisotropies  
of all the Fe(III) ions are directed along the laboratory  
Z-axis (scheme 4). 

entation of the local anisotropy centers for which we 

get the best agreement with experiments (DM = 

–0⋅28 K) corresponds to θ ~ 82°.
35,36

 As with Mn12Ac, 

we find that the laboratory frame we have chosen is 

very close to molecular axis in all the cases. In case 

of Fe8 cluster, the D2 symmetry commutes with the 

Hamiltonian in (10) and allows for a non-zero EM 

term. The variation of EM as a function of θ is shown 

in figure 18, the value of EM for which DM has the 

best fit is 0⋅017 K compared to the experimental es-

timate of 0⋅046 K obtained from High-frequency 

EPR measurements.
32
 In this case also, we have  

explored the variation of D
0
M with the exchange con-

stants in the unperturbed Hamiltonian (11).
6
 Unlike 

 

 
 

Figure 15. Schematic diagram showing the directions 
of local anisotropy in Fe8. The z-component of the single-
ion anisotropies of all the Fe(III) ions are inclined at an 
angle θ to the laboratory Z-axis (scheme 5). 

 

 
 

Figure 16. Schematic diagram showing the directions 
of local anisotropy in Fe8. The z-component of the single-
ion anisotropies of all the Fe(III) ions are directed along 
the plane perpendicular to the laboratory Z-axis (scheme 
6). The arrows indicate the Fe–O bonds on which the 
chosen local x-axis has maximum projection. 
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Table 6. DM values of ground and excited states of Fe8 under schemes 4, 5 and 6 in K. For 
scheme 5, we have presented the DM values only for θ = 82⋅2° for which the DM value of the 
ground state matches with the experimentally observed value. Experimental DM values are 
given in parenthesis and the corresponding references in square brackets. 

 DM (K) 
 

State Scheme 4 Scheme 5 Scheme 6 
 

Ground state (S = 10) 0⋅6030 –0⋅2867 (0⋅28)
32
 –0⋅3033 

First excited state (S = 9) Eg = 13⋅56 K 0⋅5821 –0⋅2763 (–0⋅27)
37
 –0⋅2923 

Second excited state (S = 9) Eg = 27⋅28 K 0⋅5877 –0⋅2790 (–0⋅27)
37
 –0⋅2952 

Third excited state (S = 8) Eg = 28⋅33 K 0⋅5503 –0⋅2607 –0⋅2758 

 
 
 

Table 7. Energy gaps (Δ) and D0 values for the S = 10 ground state corre-
sponding to different sets of parameter values in Fe8. 

S. No. J1 (K) J2 (K) J3 (K) J4 (K) Δ (K) D0 (K) 
 

1 180 153 22⋅5 52⋅5 5⋅87 0⋅30 
2 150  25 30 50 13⋅56 0⋅30 
3 195  30 52⋅5 22⋅5 41⋅40 0⋅30 
4 201 36⋅2 58⋅3 26⋅1 42⋅5 0⋅30 

 

 

 
 

Figure 17. Variation of DM in Fe8 cluster as a function 
of θ, the angle the z-component of local anisotropy of 
Fe(III) ions makes with the laboratory Z-axis. All the 
plots can be fitted to D

0

M(S)(3cos
2
θ − 1), with D

0

M(10) = 
0⋅3, D

0

M(9) = 0⋅29, D
0

M(8) = 0⋅275. D
0

M(S) is almost inde-
pendent of S. Best fit for the experimental DM value in the 
Stotal = 10 state corresponds to θ ~ 82°. 

 

 

with Mn12Ac, we find that D
0
M is almost independent 

of the excitation gap of the exchange Hamiltonian 

(table 7). 

 
 

Figure 18. Variation of EM in Fe8 cluster as a function 
of θ, the angle the z-component of local anisotropy of 
Fe(III) ions makes with the laboratory Z-axis for scheme 5. 

4. Conclusions 

In this paper we presented a hybrid technique based 

on constant MS basis and VB basis which adapts 

both spin and spatial symmetry of a general point 

group. This technique can be used to obtain the  

eigenstates of spin and electronic model Hamilto-

nians with any molecular point group symmetry. We 
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also presented general method to calculate the mo-

lecular magnetic anisotropy parameters, DM and EM 

for single molecule magnets in a chosen eigenstate 

of the exchange Hamiltonian. The molecular aniso-

tropies are computed from the single-ion aniso-

tropies, using first order perturbation theory for 

different spin states of the SMMs. We have com-

puted the molecular magnetic anisotropy parameters 

of Mn12Ac and Fe8 SMMs in various eigenstates of 

different total spin. We have also studied the varia-

tion of molecular anisotropy with the orientation of 

the local anisotropy of the metal ions. In Mn12Ac 

and Fe8 clusters, we find that the molecular aniso-

tropy changes drastically with the local anisotropy 

direction. In Mn12Ac, the DM value is different in 

ground and excited states we have computed, owing 

to large difference in spin–spin correlation values. 

The molecular anisotropy of Mn12Ac does not 

change significantly with the orientation of the local 

anisotropy of the core Mn(IV). DM value in Fe8 is 

not very different in ground and excited states 

probably due to small energy gaps which implies 

similar spin–spin correlations which is in consistent 

with the magnetic anisotropies computed for differ-

ent sets of exchange constants. We find that in 

Mn12Ac, the anisotropy constants increase signifi-

cantly with the gap, while in Fe8 they are almost in-

dependent of the gap. In Mn12Ac, the first order 

rhombic anisotropy term is zero due to the D2d 

symmetry of the molecule while it is non-zero in 

Fe8. 
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