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Evaluation of low-energy effective Hamiltonian techniques for coupled
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Motivated by recent work on Heisenberg antiferromagnetic spin systems on various
lattices made up of triangles, we examine the low-energy properties of a chain of anti-
ferromagnetically coupled triangles of half-odd-integer spins. We derive the low-energy
effective Hamiltonian to second order in the ratio of the coupling J2 between triangles
to the coupling J1 within each triangle. The effective Hamiltonian contains four states
for each triangle which are given by the products of spin-1/2 states with the states of a
pseudospin-1/2. We compare the results obtained by exact diagonalization of the effective
Hamiltonian with those obtained for the full Hamiltonian using exact diagonalization and
the density-matrix renormalization group method. It is found that the effective Hamil-
tonian is accurate only for the ground state for rather low values of the ratio J2/J1 and
that too for the spin-1/2 case with linear topology. The chain of spin-1/2 triangles shows
interesting properties like spontaneous dimerization and several singlet and triplet excited
states lying close to the ground state.
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I. INTRODUCTION

Low-dimensional quantum spin systems with frustration (i.e., competing antiferromagnetic interac-
tions) have been studied extensively in recent years. A particularly interesting class of such systems have
lattice structures built out of triangles of spins. Many such systems have been realized experimentally in
one and two dimensions, such as the sawtooth chain1 and the Kagome lattice2. A variety of theoretical
techniques, both analytical and numerical, are available to study the relevant models3–6. Due to large
quantum fluctuations, such systems often have several unusual properties. For instance, there may be a
gap between a singlet ground state and the nonsinglet excited states; this leads to a magnetic suscep-
tibility which vanishes exponentially at low temperatures. Secondly, the two-spin correlation function
may decay rapidly with distance indicating that the magnetic correlation length is not much bigger than
the lattice spacing. Finally, there is sometimes no gap to a large number of singlet excited states; this
produces an interesting structure for the specific heat at low temperature. The absence of a singlet exci-
tation gap also suggests that there may be a nonmagnetic long-range order, but the nature of this order
is not well-understood.

Classically, these systems often have an enormous ground state degeneracy arising from local degrees
of freedom which cost no energy; this leads to an extensive entropy at zero temperature. Quantum
mechanically, this degeneracy is lifted, but one might still expect a remnant of the classical degeneracy
in the form of a large number of low-energy excitations. It is therefore useful to develop simple ways of
understanding the low-energy quantum excitations. In this paper, we will critically examine one such way
which is to consider the system as being made out of triangles which are weakly coupled to each other7–9.
We first find the ground states of a single triangle assuming all the three couplings to be antiferromagnetic
with a strength J1. We then use degenerate perturbation theory to study what happens when different
triangles are coupled to each other with antiferromagnetic bonds of strength J2, where J2 ≪ J1. Since
experimental systems typically have J2 = J1, we must finally study how accurate the perturbation theory
is when the ratio J2/J1 approaches 1.

In Sec. II, we discuss the low-energy states of a single triangle of equal spins coupled antiferromag-
netically to each other. If the spin at each site is an integer, then there is a unique ground state for the
triangle and the problem is not very interesting. But if the site spin S is a half-odd-integer, then the
ground state has a four-fold degeneracy. This is because the ground state has total spin-1/2, and there
is an additional factor of two which can be interpreted as the chirality. The chirality can be expressed as
the eigenvalue of a pseudospin operator which also has spin-1/2. We then discuss the low-energy effective
Hamiltonian (LEH) for a system in which each pair of triangles is coupled to each other by not more
than one antiferromagnetic bond. To first order in J2/J1, the spins and pseudospins of two triangles
get coupled to each other. To second order, up to three triangles can get coupled to each other. We
have obtained the first order LEH (LEH1) for all values of S, and the second order LEH (LEH2) for S
equal to 1/2 and 3/2. We have not gone beyond second order because the LEHs rapidly becomes more
complicated and longer range as we go to higher orders. For small systems, we numerically diagonalize
the LEH1 and LEH2 to obtain the energies of the ground state and the first excited state as functions of
J2/J1.

In Sec. III, we use both exact diagonalization for small systems and the density-matrix renormalization
group method (DMRG) for larger systems to obtain the low-lying energies for the complete Hamiltonian.
The DMRG is currently the most accurate numerical method known for obtaining the low-energy prop-
erties of quantum systems in one-dimension10. We briefly describe the DMRG procedure for our system,
and then compare the energies obtained from the LEHs and DMRG. Depending on the quantities of
interest, we find that the results from the LEHs start deviating significantly from the DMRG values once
J2/J1 exceeds 0.2 − 0.4. This is true even for the LEH2 which is significantly more accurate than the
LEH1 for small values of J2/J1.

We also examine a simple system of five triangles coupled to each other in such a way as to form a
small fragment of the two-dimensional Kagome lattice; we find that the LEHs starts deviating from the
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exact results at even smaller values of J2/J1. Thus the LEH approach becomes less accurate the more
two-dimensional the geometry is, i.e., the larger the coordination number is for each triangle.

II. LOW-ENERGY HAMILTONIANS FOR A CHAIN OF TRIANGLES

We are interested in the system of spins shown in Fig. 1. The sites are labeled as (n, a), where n labels
the triangle and a = 1, 2, 3 labels the three sites of a triangle as indicated. The spin at each site has the
value S, and all the couplings are antiferromagnetic. The Hamiltonian is

Ĥ =
∑

n

[

J1 ( Ŝn,1 · Ŝn,2 + Ŝn,2 · Ŝn,3 + Ŝn,3 · Ŝn,1 ) + J2 Ŝn,2 · Ŝn+1,3 ] . (1)

It is convenient to set J1 = 1 and consider only the parameter J2.

Let us first examine a single triangle and drop the label n. The Hamiltonian ĥ∆ is proportional to the
square of the total spin operator, ignoring a shift in the zero of energy,

ĥ∆ = Ŝ1 · Ŝ2 + Ŝ2 · S3 + Ŝ3 · Ŝ1 =
1

2
( Ŝ1 + Ŝ2 + Ŝ3 )2 − 3

2
S(S + 1) . (2)

If S is an integer (1, 2, ...), then the ground state of this triangle is unique and is a singlet. Thus the
low-energy sector of the entire system consists of only one state when different triangles are coupled to
each other. The situation is much more interesting if S is a half-odd-integer, i.e., 1/2, 3/2, ... . Then the
ground state of each triangle is four-fold degenerate because it must have total spin 1/2 and there are
two ways of obtaining total spin-1/2 by combining three equal spins. For instance, sites 2 and 3 can first
combine to give total spin S23 equal to either S + 1/2 or S − 1/2; S23 can then combine with the first

spin to produce a total spin-1/2. Since the total spin operator Ŝ = Ŝ1 + Ŝ2 + Ŝ3 commutes with all the
six permutations of the three spins, it is clear that the two ground states of the Hamiltonian in (2) (with
a given value of the total spin component Sz = ±1/2) must form a two-dimensional representation of the
permutation group. This representation can be made explicit by introducing pseudospin-1/2 operators τ̂
as follows.

We will assume henceforth that all the site spins are identical and have the half-odd-integer value S.
To obtain a total spin-1/2 for a triangle of three spins, the total spin of any two sites should be one of the
integers S±1/2. Under an exchange of the two spins 2 and 3, a state with their total spin S23 transforms
by the phase (−1)S23+1; thus it is symmetric or antisymmetric depending on whether S23 is odd or even.
Let us define the pseudospin operator τ̂x such that the symmetric states have the eigenvalue of τ̂x = 1,
while the antisymmetric states have the eigenvalue of τ̂x = −1. Similarly, we can introduce an operator
τ̂y such that states which are symmetric (antisymmetric) with respect to exchange of spins 1 and 2 have

eigenvalues of (−τ̂x +
√

3τ̂y)/2 equal to 1 (−1). For spins 1 and 3, the operator (−τ̂x −
√

3τ̂y)/2 will have
the same property. We define the third pseudospin operator τ̂z = −(i/2)[τ̂x, τ̂y]. From these statements,
it follows that within the space of the four ground states of a triangle, we have the operator identities

Ŝ2 · Ŝ3 = A − (−1)S+1/2

4
(2S + 1) τ̂x ,

Ŝ3 · Ŝ1 = A − (−1)S+1/2

4
(2S + 1)

[

− 1

2
τ̂x −

√
3

2
τ̂y

]

,

Ŝ1 · Ŝ2 = A − (−1)S+1/2

4
(2S + 1)

[

− 1

2
τ̂x +

√
3

2
τ̂y

]

, (3)

where A = −S2/2 − S/2 + 1/8. On taking the commutator of any two of the equations in (3), we find
that the three-spin chirality operator is given by
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Ŝ1 · Ŝ2 × Ŝ3 =

√
3

4
( S +

1

2
)2 τ̂z . (4)

Before proceeding further, we should mention that the pseudospin operators have been discussed earlier
in Refs. 7 and 8 for the spin-1/2 case. In those papers, the two ground states (with a given value of
Sz) are written in terms of a spin wave running around the triangle with momenta ±2π/3; these are
called right and left moving respectively, and they are eigenstates of the operator τ̂z . We have instead
chosen to describe the states in terms of two of the spins forming total spin S + 1/2 or S − 1/2. The two
descriptions are clearly related to each other by an unitary transformation.

To continue, the Wigner-Eckart theorem says that the matrix elements of any of the site spin operators
Ŝa (where a = 1, 2, 3) between the four ground states of a triangle must be proportional to the matrix
elements of the total spin operator ŝ. The proportionality factors must be independent of the spin
component (i.e., x, y or z), but they will involve the pseudospin operators. Let us introduce the operators

τ̂a = cos
2π

3
(1 − a) τ̂x + sin

2π

3
(1 − a) τ̂y , (5)

where a can take the values 1, 2, 3. Using the spin wave functions, we can then show that the matrix
elements of Ŝa and ŝ are related as

〈σ, τ |Ŝa|σ′, τ ′〉 =
1

3
〈σ|ŝ|σ′〉

[

δτ,τ ′ + (−1)S+1/2 (2S + 1) 〈τ |τ̂a|τ ′〉
]

, (6)

where σ, σ′ are the eigenstates of σ̂z and τ, τ ′ are the eigenstates of τ̂z .

We can now derive the LEHs when two or more triangles are coupled together as in Eq. (1). We

write that Hamiltonian as Ĥ = Ĥ0 + V̂ , where Ĥ0 consists of the interactions within the triangles as in
Eq. (2), while V̂ consists of the interactions between triangles and is proportional to J2. The LEH is a
perturbative expansion in the parameter J2. For J2 = 0, the low-energy sector for N triangles contains
4N states, all of which have the same energy E0 = Ne0, where

e0 =
3

8
− 3

2
S(S + 1) . (7)

is the ground state energy of (2). Following Ref. 9, let us denote the different low-energy states of the
system as pi and the high-energy states of the system as qα (these are states in which at least one of the
triangles is in a state with total spin ≥ 3/2). The high-energy states have energies Eα according to the

exactly solvable Hamiltonian Ĥ0. Then the LEH1 is given by degenerate perturbation theory,

Ĥ
(1)
eff =

∑

ij

|pi〉 〈pi|V̂ |pj〉 〈pj | . (8)

The LEH2 is given by

Ĥ
(2)
eff =

∑

ij

∑

α

|pi〉
〈pi|V̂ |qα〉 〈qα|V̂ |pj〉

E0 − Eα
〈pj | . (9)

The total effective Hamiltonian to this order is given by

ĤLEH2 = E0 + Ĥ
(1)
eff + Ĥ

(2)
eff . (10)

The LEH1 can now be directly read off from Eq. (6) after adding the triangle label n; thus the total
spin operator of triangle n is denoted as ŝn and the pseudospin operator as τ̂n. In general, if site number
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a of triangle l is connected to site number b of triangle m by a bond of strength J2 (see Fig. 2), the
contribution of that bond to the LEH1 is given by

ĥ
(1)
eff =

J2

9
ŝl · ŝm

[

1 + (−1)S+1/2 (2S + 1) τ̂a
l

] [

1 + (−1)S+1/2 (2S + 1) τ̂b
m

]

. (11)

For the particular form of couplings shown in Fig. 1, the total LEH1 takes the form

ĤLEH1 = − Ne0 +
J2

9

∑

n

ŝn · ŝn+1

[

1 + (−1)S+1/2 (2S + 1) τ̂2
n

] [

1 + (−1)S+1/2 (2S + 1) τ̂3
n+1

]

.

(12)

The derivation of the LEH2 in (9) requires a much longer calculation since we have to first compute

matrix elements of the form 〈qα|Ŝa|pi〉 for all the states within each triangle, and we then have to take
products of these to obtain the matrix elements of ŝn,2 · ŝn+1,3. The second-order terms in the LEH can
arise from either (i) a single bond connecting site a of triangle l to site b of triangle m, or (ii) a bond
connecting site a of triangle l to site b of triangle m and another bond connecting site c of triangle m to
site d of triangle n, where a, b, c, d take values from 1, 2, 3 (here b may or may not be equal to c). The
notation for these two types is shown in Fig. 2.

Let us first consider the simplest situation in which all the site spins are equal to S = 1/2. The
contribution of type (i) to the LEH2 is then given by

ĥ
(2)
eff,(i) = − J2

2

54

[

(1 − τ̂l,aτ̂m,b) (3 + 4ŝl · ŝm) + (1 + τ̂l,a)(1 + τ̂m,b)
]

, (13)

where we have used the notation of Eq. (5). The contribution of type (ii) is

ĥ
(2)
eff,(ii) = − 4J2

2

243
(1 − 2τ̂l,a)(1 − 2τ̂n,d)

[ (

cos
2π

3
(b − c) + τ̂m,−b−c

)

ŝl · ŝn

+ sin
2π

3
(b − c) τ̂z

m ŝl · ŝm × ŝn

]

. (14)

Putting all this together for the system in Fig. 1, we find that for S = 1/2, the total LEH2 is given by

ĤLEH2 = −3N

4
+

J2

9

∑

n

ŝn · ŝn+1 (1 − 2τ̂n,2) (1 − 2τ̂n+1,3)

−J2
2

54

∑

n

[

(1 − τ̂n,2τ̂n+1,3) (3 + 4ŝn · ŝn+1) + (1 + τ̂n,2) (1 + τ̂n+1,3)
]

−4J2
2

243

∑

n

(1 − 2τ̂n,2) (1 − 2τ̂n+1,3)
[

(−1

2
+ τ̂n+1,1) ŝn · ŝn+2 −

√
3

2
τ̂z
n+1 ŝn · ŝn+1 × ŝn+2

]

.

(15)

If the site spins are equal to S = 3/2, the contribution of type (i) to the LEH2 is given by

ĥ
(2)
eff,(i) = − J2

2

27

[

56 + 42ŝl · ŝm + (τ̂l,a + τ̂m,b) (−1 + 8ŝl · ŝm)

−τ̂l,aτ̂m,b(4 + 8ŝl · ŝm) . (16)

The contribution of type (ii) is
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ĥ
(2)
eff,(ii) = − 4J2

2

243
(1 + 4τ̂l,a)(1 + 4τ̂n,d)

[ (

7 cos
2π

3
(b − c) − 2 τ̂m,−b−c

)

ŝl · ŝn

+ 4 sin
2π

3
(b − c) τ̂z

m ŝl · ŝm × ŝn

]

. (17)

For the system in Fig. 1, the total LEH2 for S = 3/2 is therefore

ĤLEH2 = −21N

4
+

J2

9

∑

n

ŝn · ŝn+1 (1 + 4τ̂n,2) (1 + 4τ̂n+1,3)

−J2
2

27

∑

n

[

56 + 42ŝn · ŝn+1 + (τ̂n,2 + τ̂n+1,3)(−1 + 8ŝn · ŝn+1) − τ̂n,2τ̂n+1,3(4 + 8ŝn · ŝn+1)
]

−4J2
2

243

∑

n

(1 + 4τ̂n,2) (1 + 4τ̂n+1,3)
[

(−7

2
+ τ̂n+1,1) ŝn · ŝn+2 − 2

√
3 τ̂z

n+1 ŝn · ŝn+1 × ŝn+2

]

.

(18)

We have carried out exact diagonalization studies of the LEH1 and LEH2 for systems up to 10 triangles
for both the spin-1/2 and spin-3/2 cases.

III. DENSITY-MATRIX RENORMALIZATION GROUP STUDY OF THE CHAIN OF

TRIANGLES

We have numerically studied the system described by Eq. (1) using exact diagonalization for small
systems and the DMRG method for larger systems. The number of triangles is N and the number of
sites is 3N .

For small systems, we have performed exact diagonalization with periodic boundary conditions. For
larger systems, we have done DMRG calculations (using the infinite system algorithm10) with open
boundary conditions. For exact diagonalization, we have gone up to 30 sites (10 triangles). With DMRG,
we have gone up to 50 triangles and in some cases up to 100 triangles, after checking that the DMRG
and exact results match for 10 triangles for the spin-1/2 system. The number of dominant density matrix
eigenstates, corresponding to the m largest eigenvalues of the density matrix, that we retained at each
DMRG iteration was 64. In fact, we varied the value of m from 64 to 100 and found that m = 64 gives
satisfactory results in terms of agreement with exact diagonalization for small systems and good numerical
convergence for large systems. The system is grown by adding two new triangles at each iteration; we
found that this gives more accurate results than either adding two new sites at each iteration (in which
case we would have obtained the triangle structure only after every third iteration) or adding one triangle
at each iteration.

In Fig. 3, we show the DMRG values of the ground state energy per site versus 1/N for a few
illustrative values of J2 (in units of J1) for the case in which each site has spin-1/2. After extrapolating
to the thermodynamics limit N → ∞, we show the ground state energy per site as a function of J2 in
Fig. 4. In that figure, we also show the numerical results obtained by exact diagonalization of the LEH1
and LEH2 respectively. As expected, the LEH2 is more accurate than the LEH1 up to a larger value of
J2. However, even the LEH2 becomes fairly inaccurate beyond about J2 = 0.4.

A more detailed comparison of the LEH1 and LEH2 with the exact results for chains with up to 10
triangles is given in Table 1. We see that the LEH2 agrees better with the exact results than the LEH1,
although the agreement becomes rather poor for large J2. We also see that the accuracy of the LEHs
is poorer for the gap than it is for the ground state energy. For instance, the LEH2 results for the gap
become relatively inaccurate even for J2 = 0.2.
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Fig. 5 shows the low-lying triplet and singlet gaps above the ground state for the same system at
different values of J2. The figure compares the results obtained from the LEH2 with those obtained after
extrapolating the gaps from exact diagonalization of the full Hamiltonian for different values of N . Both
the triplet (Fig. 5 (a)) and singlet (Fig. 5 (b)) gaps deviate considerably from the ”exact” results beyond
J2 ∼ 0.4. In fact, we see from Fig. 5 (a) that the ground state of the LEH2 switches from a singlet to a
triplet for J2 > 0.7.

In Fig. 6, we show a larger number of S = 0 and S = 1 states which have very small gaps above
the ground state. It is possible that some of these actually become degenerate with the ground state
in the thermodynamic limit. The lowest spin sector with an appreciable gap (which is likely to remain
non-zero in the thermodynamic limit) seems to be S = 2. However it is possible that there are many
more singlet and triplet states lying below the lowest S = 2 state than we have shown in the figure; it is
very difficult to find more than a few low-lying states in each spin sector using the DMRG method. For
the same reason, we cannot rule out the possibility of a finite gap to a higher singlet or a higher triplet
(than what we have targetted) lying below the quintet. Fig. 7 shows an even larger number of low-lying
states for the case J2 = 1.0. The lowest three states with Sz = 0 (including the ground state), the lowest
six states with Sz = 0 and the lowest state with Sz = 2 are shown there. To summarize, we have found
an unexpectedly large number of low-lying (and possibly gapless) singlet and triplet excitations in this
system. We will provide an explanation for some of these states below. We note that the low-energy
spectrum has a resemblance to that found in the Kagome lattice in two dimensions5. However there is
an important difference between the two cases; the gapless band of excitations in the Kagome problem
consists only of singlets, and the first gap is to a triplet state.

In Fig. 8 (a), we show the DMRG values of the bond order for the middle two bonds, namely, the
ground state expectation values 〈ŝp,2 · ŝp+1,3〉 for p = N/2−1 and N , as a function of N at J2 = 1.0 for the
spin-1/2 system. In Fig. 8 (b), we plot the bond order alternation (or spontaneous dimerization), defined
to be the magnitude of the difference of the two neighbouring bond orders in Fig. 8 (a) extrapolated to
the limit N → ∞, as a function of J2. We observe that the alternation is quite large for small values of
J2 and that it remains non-zero even at a large value of J2 = J1. Following Mila8, we can qualitatively
understand the dimerization occurring at small values of J2 as follows. Since the spin and pseudospin
degrees of freedom appear very asymmetrically in the LEHs, we perform a mean-field decoupling of these
two. We assume that the pseudospin variables take some fixed values and find the quantum ground state
of the spin variables in that fixed background. For two triangles coupled together by the LEH1 in Eq.
(11), we see that the lowest energy is attained if the pseudospin variables satisfy τl,a = τm,b = −1 (for the
case S = 1/2), and the effective spin-1/2 of the two triangles then form a singlet. In the same way, the
mean-field ground state of the chain is given by the dimerized configuration in which τ2n,2 = τ2n+1,3 = −1
and the effective spin-1/2 of triangles 2n and 2n + 1 form a singlet. Such a dimerized ground state can
also be obtained by translating the above state by one triangle; it is therefore two-fold degenerate as in
a spin-Peierls system.

It is instructive to contrast this system with the antiferromagnetic spin-1/2 chain with a nearest-
neighbor coupling J1 and a next-nearest-neighbor coupling J2

11. For J2/J1 > 0.241..., this is known to
spontaneously dimerize, and there is also a finite gap to excitations in the bulk and a finite correlation
length ξ in the thermodynamic limit. In the dimerized phase, an open chain with an even number of sites
has five ground states corresponding to two singlets and one triplet. One singlet and one triplet arise
from the free spin-1/2 degrees of freedom which reside at the two ends of the chain. The finite correlation
length ξ means that the splitting between these states vanishes exponentially with the size of the system.

Similarly, for our system with a chain of an even number of triangles, we may expect at least some
of the low-energy states to arise from the effective spin-1/2 degrees of freedom residing on the two end
triangles. Due to the presence of the pseudospin-1/2 degrees of freedom in each triangle, we expect that
there will be a total of 42 = 16 low-energy states forming four triplets and four singlets. The number
of low-energy singlets and triplets that we actually find is more than this; this implies that there are
some additional low-energy degrees of freedom (probably associated with the bulk) which we do not yet
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understand.

In Table 2, we show the ground state energy per site versus J2 for the case in which each site has spin-
3/2. The numerical results obtained by exact diagonalization of the LEH1 and LEH2 are also shown.
A comparison with Table 1 for the spin-1/2 case shows that the LEH2 starts deviating from the exact
results for smaller values of J2 as the site spin is increased.

Finally, in Fig. 9, we show the ground state energy per site versus J2 for a group of five triangles
forming a sub-system of a two-dimensional Kagome lattice. The reason for studying this system is to
test how well the LEHs do as the coordination number of the triangles is increased from two, thereby
making the system more two-dimensional. We find that the LEH2 fails even faster with increasing J2

than it does for the chains studied above.

IV. SUMMARY AND OUTLOOK

We have studied a chain of coupled triangles of half-odd-integer spins using both the DMRG method
and the LEH approaches. We find that the LEH approach is accurate for the ground state energy only
for small values of the ratio of the coupling between triangles and the coupling within each triangle; the
accuracy for the low-energy gaps is less than that for the ground state energy. The range of accuracy
of the LEHs is also smaller for larger values of the site spin as well as for a larger number of neighbors
coupled to each triangle. We therefore conclude that the LEH approaches may not be very reliable for
the low-energy properties of the currently existing experimental systems in which all couplings are of the
same order and the geometry is two-dimensional8.
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Ground State First Excited State

J2 N LEH1 LEH2 Exact LEH1 LEH2 Exact

4 -3.15843 -3.16139 -3.16135 -3.14912 -3.15131 -3.15130
0.1 6 -4.73740 -4.73772 -4.73768 -4.72959 -4.73334 -4.73331

8 -6.30976 -6.31541 -6.31536 -6.30795 -6.31319 -6.31315

4 -3.31686 -3.32892 -3.32864 -3.29825 -3.30728 -3.30713
0.2 6 -4.96681 -4.98455 -4.98417 -4.95918 -4.97455 -4.97427

8 -6.61952 -6.64278 -6.64229 -6.61590 -6.63740 -6.63699

4 -3.79215 -3.87213 -3.86669 -3.74562 -3.80782 -3.80463
0.5 6 -5.66702 -5.78669 -5.77885 -5.64794 -5.75145 -5.74604

8 -7.54881 -7.70679 -7.69665 -7.53975 -7.68454 -7.67639

4 -4.58430 -4.93506 -4.88000 -4.49125 -4.78367 -4.74638
1.0 6 -6.83404 -7.02622 -7.28614 -6.79589 -7.26277 -7.20489

8 -9.09761 -9.81245 -9.70079 -9.07950 -9.73152 -9.64368

Table 1. Ground state and first excited state energies in units of J1 obtained for the spin-1/2 system
using exact diagonalization of the full Hamiltonian and the LEH1 and LEH2.

N=3 N=4

J2 LEH1 LEH2 Exact LEH1 LEH2 Exact

0.1 -16.0462 -16.1044 -16.1071 -21.4577 -21.5211 -21.5224
0.2 -16.3424 -16.5793 -16.5692 -21.9154 -22.1775 -22.1611
0.3 -16.6386 -17.1799 -17.1132 -22.3731 -22.9829 -22.8961
0.4 -16.9348 -17.9107 -17.7212 -22.8308 -23.9508 -23.7107
0.5 -17.2309 -18.7747 -18.3807 -23.2884 -25.0933 -24.5916
0.6 -17.5271 -19.7746 -19.0834 -23.7461 -26.4200 -25.5294
0.7 -17.8233 -20.9118 -19.8233 -24.2038 -27.9539 -26.5170
0.8 -18.1195 -22.1878 -20.5966 -24.6615 -29.7650 -27.5488
0.9 -18.4157 -23.6032 -21.4006 -25.1192 -31.8070 -28.6206
1.0 -18.7119 -25.1586 -22.2325 -25.5769 -34.0823 -29.7285

Table 2. Ground state energies obtained for the spin-3/2 system using exact diagonalization of the full
Hamiltonian and the LEH1 and LEH2 for 3 and 4 triangles.
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Figure Captions

1. The chain of triangles showing the labeling of the vertices of each triangle and the antiferromagnetic
couplings J1 = 1 and J2.

2. The triangle and site labels used in deriving the LEHs.

3. The ground state energy/site in units of J1 vs 1/N , for a few values of J2 with spin-1/2 at each site.

4. The ground state energy/site in units of J1, for values of J2 = 0.1 to 1.0. The three sets of points
show the results using DMRG for the full Hamiltonian and the results from the LEH1 and LEH2.

5. The energy gaps from the ground state in units of J1, for values of J2 = 0.1 to 1.0 for the spin-1/2
system. (a) shows the triplet gap and (b) shows the singlet gap. The two sets of points show the results
obtained from the LEH2 and DMRG.

6. Some low-lying energy gaps for J2 = 0.0 to 1.0 for the spin-1/2 system obtained by DMRG. The two
lowest Sz = 0 states (including the ground state at the bottom of the figure), the two lowest Sz = 1
states and the lowest Sz = 2 state are shown.

7. A larger number of low-lying energy gaps for J2 = 1.0 for the spin-1/2 system obtained by DMRG.
The two lowest Sz = 0 states (including the ground state at the bottom), the six lowest Sz = 1 states
and the lowest Sz = 2 state are shown.

8. The spin bond orders for the spin-1/2 system obtained by DMRG. (a) shows the bond orders for two
neighbouring bonds in the middle of the chain as a function of N for J2 = 1.0. (b) shows the difference
of the two bond orders (called the bond alternation or dimerization) for various values of J2.

9. The ground state energy in units of J1 = 1, for values of J2 = 0.1 to 1.0 for spin-1/2 at each site of
a system of five triangles as shown in the inset. The two sets of points show the results from the exact
diagonalization of the LEH2 and of the full Hamiltonian.
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