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Bond-order wave phase, spin solitons and thermodynamics of a frustrated linear
spin-1/2 Heisenberg antiferromagnet
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The linear spin-1/2 Heisenberg antiferromagnet with exchanges J1, J2 between first and sec-
ond neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at
J2/J1 = 0.2411 and is particularly simple at J2/J1 = 1/2. The BOW phase has a doubly degen-
erate singlet ground state, broken inversion symmetry and a finite energy gap Em to the lowest
triplet state. The interval 0.4 < J2/J1 < 1.0 has large Em and small finite size corrections. Exact
solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for
thermodynamics up to N = 18. The elementary excitations of the BOW phase with large Em are
topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins.
The molar spin susceptibility χM (T ) is exponentially small for T ≪ Em and increases nearly linearly
with T to a broad maximum. J1, J2 spin chains approximate the magnetic properties of the BOW
phase of Hubbard-type models and provide a starting point for modeling alkali-TCNQ salts.
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I. INTRODUCTION

The extended Hubbard model (EHM) has competing
on-site repulsion U > 0, intersite interaction V > 0 and
electron transfer t between neighbors in one dimension
(1D) with evenly spaced sites. The half-filled case with
one electron per site has several phases: a charge den-
sity wave (CDW) at V > U/2 with broken electron-hole
symmetry and occupation numbers n > 1 on one sublat-
tice, n < 1 on the other; a spin fluid phase at V = 0 as
known from Hubbard models; and as proposed by Naka-
mura, [1] a bond-order wave (BOW) phase with broken
inversion symmetry between the CDW and the spin fluid
phases when t/U is sufficiently large for a continuous
CDW transition. The BOW phase has long-range order
and a finite magnetic gap Em to the lowest triplet excited
state. Multiple theoretical approaches,[2–5] primarily at
U ≤ 2t and U = 4t, have confirmed a narrow BOW phase
in the EHM. Other spin-independent potentials also sup-
port a BOW phase when the CDW transition is continu-
ous [6]. The narrow BOW phase of Hubbard-type models
presents major computational difficulties.

In this paper, we consider the BOW phase of a fa-
miliar spin-1/2 chain with frustrated antiferromagnetic
(AF) exchange [7]. The BOW phase becomes numeri-
cally accessible and can be demonstrated in finite sys-
tems. Although charge fluctuations are strictly excluded
in spin chains, the BOW phase again illustrates broken
inversion symmetry at sites, long-range order and finite
Em. The spin chain has AF exchange between first and

second neighbors,

H(x) = J
∑

n

((1− x)~sn.~sn+1 + x~sn.~sn+2) (1)

We consider the interval 0 ≤ x ≤ 1 and set the total
exchange J = 1 as the unit of energy. The x = 0
limit is a linear Heisenberg antiferromagnet (HAF).
Second-neighbor exchange J2 = xJ for x > 0 opposes
short-range antiferromagnet (AF) order and eventually
induces a fluid-dimer phase transition that has been the
focus of recent studies [8–13]. The x = 1 limit gives
two HAFs on the even and odd sublattice, respectively.
White and Affleck [14] considered J2/J1 > 1 using field
theory and the density matrix renormalization group
(DMRG).

Okamoto and Nomura [8] located the transition at
xc = x1/(1 − x1) = 0.2411, or x1 = 0.1943 in our no-
tation, where a magnetic gap Em opens. The “dimer”
phase refers to the earlier observation of Majumdar and
Ghosh (MG) [7] that, for an even number N of spins and
periodic boundary conditions (PBC), the exact ground
state (gs) at xMG = 1/3 (J2 = J1/2) has singlet-paired
spins on adjacent sites, just as in the Kekulé diagrams
shown in Fig. 1,

|K1〉 = (1, 2)(3, 4)...(N − 1, N)

|K2〉 = (2, 3)(4, 5)...(N, 1) (2)

Kekulé diagrams are particularly simple BOWs. They
illustrate broken inversion symmetry, long-range order,
double degeneracy and finite excitation energies [10] at
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FIG. 1: Lines indicate singlet-paired spin on adjecent sites.

the MG point. Since these are the defining features of a
BOW phase, that is what we will call the “dimer” phase.
The notation H(x) is convenient for the x = 1 limit
of HAFs on the even and odd sublattices. Now x < 1
describes interchain exchange that is frustrated because
each spin is coupled to two neighbors of the other
sublattice. With constant total exchange, the gs en-
ergy is highest when the spin chain is the most frustrated.

For open boundary conditions (OBC), |K1〉 is the ex-
act nondegenerate gs of H(1/3). The chemical analogy is
now to partial double and single bonds in linear polyenes
or in polyacetylene. The BOW associated with |K1〉 is
well understood in dimerized arrays whose elementary
excitations are the topological solitons of the uncorre-
lated Su-Schrieffer-Heeger (SSH) model [15, 16]. Similar
conclusions hold in correlated models of conjugated
polymers [17] or ion-radical stacks [18]. Spin solitons
in BOW systems at finite temperature separate |K1〉
and |K2〉 regions in infinite regular chains. The Peierls
instability of Hubbard or spin chains is a separate topic
that requires electron-phonon or spin-phonon coupling.
Our discussion of H(x) is limited to regular arrays with
PBC or OBC.

To introduce the principal features ofH(x), we show in
Fig. 2 the gs energy per site, ǫ0(x), for intermediate N ≈
20 and PBC. Bonner and Fisher [19] found that ǫ0(0) of
the HAF converges as ≈ N−2 to the exact value, −ln2+
1/4, due to Hulthen [20] and denoted by arrows at x = 0
and 1. Convergence at x = 1 is for two HAFs of N/2
sites, from below when N/2 is even and from above [21]
when N/2 is odd. The shape of ǫ0(x) indicates different
frustration at small x for exchange J2 in one HAF and at
large x for exchange J1 between two HAFs. Frustration is
greatest at the ǫ0(x) maximum. The Hellmann-Feynman
theorem gives

∂ǫ0(x)

∂x
=

1

N
〈ψ0(x)|

∂H

∂x
|ψ0(x)〉

=
1

N

∑

n

〈(~sn.~sn+2 − ~sn.~sn+1)〉 (3)

The bond orders or spin correlation functions are equal
at ∂ǫ0/∂x = 0 when there is equal choice for pairing with
a first or second neighbor. The slope ∂ǫ0/∂x is steeper
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FIG. 2: Ground state energy per site, ǫ0(x), of the spin chain
H(x) in Eq. 1 for N sites with periodic boundary conditions
(PBC). The BOW phase starts at the fluid-dimer transition at
x1; x2 is the excited state crossover discussed in the text. The
energy of |K1〉 or |K2〉 in Eq. 2 is exact at xMG = 1/3 and
approximate for x < 1/2; the energy of a product of Kekulé
diagrams |KA〉|KB〉 is approximate for x > 1/2. Arrows at
x = 0 and 1 mark ǫ0 of the infinite chain.

at x = 0 than at x = 1. First and second neighbor spin
correlation functions are known [22] exactly at x = 0
and they add in Eq. 3. The slope at x = 1 is just the
first-neighbor correlation function.

The solid lines in Fig. 2 are the energy of |K1〉 or
|K2〉 for x < 1/2, exact at xMG = 1/3, and of a product
of Kekulé diagrams of two HAFs for x > 1/2. The BOW
phase that we characterize below starts at x1. We found
x2 ≈ 2/3 using the Okamoto-Nomura [8] treatment of
x1. The gap Em is exponentially small but finite for
x > x2, and the BOW phase extends to x = 1 according
to White and Affleck [14].

The order parameter B(x) is the gs amplitude of the
BOW,

B(x) =
1

N

∑

n

(−1)n〈~sn.~sn+1〉 (4)

The two gs have ±B(x). It follows immediately that
B(1/3) = 3/8 for |K1〉 or |K2〉 in Eq. 2. As shown
below, large B(x) and Em(x) between x = 1/3 and
x ≈ 1/2 make possible our detailed finite-N study of the
BOW phase.

The complete basis of H(x) has dimension 2N , since
each spin-1/2 has two orientations, and the total spin
0 ≤ S ≤ N/2 is conserved. Reflection σ through sites
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corresponds to inversion symmetry Ci at sites in the infi-
nite chain. Valence bond (VB) methods [23–26] are well
suited for finite models that conserve S. A few states
with any S and σ can be found exactly up to N ≈ 30.
The full spectrum is needed for thermodynamics and has
been obtained [27] to N = 16, which we increase to
N = 18. DMRG extends [28] thermodynamics to N =
64. The spin chain H(x) benefits from the smaller basis
compared to 4N in Hubbard models with charge degrees
of freedom. An even greater advantage may be the exact
gs at the MG point for finite N . In contrast to the nu-
merically difficult BOW phase of Hubbard-type models,
the BOW phase of H(x) is accessible to direct finite-N
modeling between x ≈ 1/3 and x ≈ 1/2.
We characterize the gs properties of the BOW phase

and its elementary excitations in Section II, including the
magnetic gap Em(x), the order parameter B(x), excited
states at the MG point, and the bond-order domain walls
of spin solitons. The temperature dependence of the mo-
lar spin susceptibility χM (T ) and specific heat C(T ) are
found in Second III. Following an activated regime that
depends of Em, χM (T ) increases almost linearly with T
in the BOW phase, quite differently from an HAF or an
EHM with t≪ (U − V ). The Discussion relates H(x) to
the EHM and to π-radical salts with χM (T ) nearly linear
in T .

II. GROUND AND LOW-ENERGY STATES

We use valence bond (VB) methods [25, 26] to solve
H(x) exactly for finite N and either periodic or open
boundary conditions in exact subspaces with fixed total
S and reflection σ = ±1 at sites. The gs is a singlet,
S = 0, with either σ = 1 or -1 depending on N and x.
The linear combinations |K1〉± |K2〉 in Eq. 2 transform
as σ = ±1, even or odd under inversion in the infinite
chain. The gs for other x is a symmetry adapted linear
combination of singlet VB diagrams |k〉. We define Eσ(x)
as the excitation energy to the lowest singlet with oppo-
site σ symmetry. Figure 3 compares Eσ(x) for N = 24
and PBC to the gap Em(x) to the lowest triplet. Finite-
size effects are large at x = 0 for an HAF of 24 sites
and about twice as large at x = 1 for two HAFs of 12
sites, as expected when excitations energies go as ≈ 1/N .
We obtained similar graphs of Eσ(x) and Em(x) up to
N = 28. There is no difference at small x aside from
1/N effects. The excitations are qualitatively different
at x ≈ 1, however, when N/2 is even or odd. Even N/2
is required for proper comparison at x = 0 and 1. When
N/2 is odd, the x = 1 limit corresponds to two HAFs
with an odd number of spins and a doublet gs. Since the
radical also has two-fold orbital degeneracy [21], there
are several gapless excitations in the x = 1 limit of no
interchain exchange.

Okamoto and Nomura [8] identified the quantum
transition at x1 by finding Eσ(x1) = Em(x1) from N
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FIG. 3: Finite-size effects on excitation energies of H(x) for
N = 24 with PBC. Em is the excitation to the lowest triplet
and Eσ to the lowest singlet with opposite inversion symme-
try. The crossovers x1(24) and x2(24) are listed in Table I.

= 10 to 24. They argued that an excitation crossover
at finite N is more accurate than extrapolation to find
Em(x1) = 0. The slow variation of x1(N) and extrapola-
tions made possible their accurate determination of x1.
Our results for x1(N) in Table 1 to N = 24 agree with
ref. 8. Previous work [8–13] focused on the fluid-dimer
transition at x1, while we are interested in the BOW
phase with x > x1. The same method yields Em = Eσ

at x2(N) in Table I for even and odd N/2. Finite-size
effects are stronger because the chains are effectively
half as long. A joint 1/N extrapolation of the two
sequences returns x2 = 0.67±0.01 (J2/J1 = 2.03±0.03).
The x2 crossover does not signify the termination of
BOW phase, however, which extends [14] to x = 1. We
improved the accuracy of the DMRG algorithm [29] to
look at x > x2 and find small but finite Em(x) and B(x)
up to x = 0.8 (J2/J1 = 4.0), beyond which even more
accurate DMRG is required. We do not understand
the different implication of x1 and x2 crossovers, but
note that H(x) also has a spiral phase [30] starting at
xMG = 1/3 whose order parameter is twist angle. In
the present work we focus on the BOW phase with large
B(x) and Em(x).

The BOW phase of the extended system has degener-
ate gs in the σ = ±1 sectors and hence Eσ(x) = 0. Finite-
size effects are extraordinarily small for 0.3 < x < 0.5
where E0 is close to −N/4. The difference in total en-
ergy, E0(x, 1)−E0(x,−1), for σ = ±1 is shown in Fig. 4
up to N = 30. The absolute gs for x < 1/3 is E0(−1) for
N = 4p and E0(1) for N = 4p+2. The E0(x,±1) curves
are degenerate at x = 1/3 without crossing. They cross
for x > 1/3 and the number of crossings depends on N .
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TABLE I: Crossing points x1(N) and x2(N) where Em(x) =
Eσ(x) for N sites and PBC.

N x1 x2 (N/2 odd ) x2 (N/2 even)
18 0.1949 0.5669
20 0.1947 0.6262
22 0.1947 0.5784
24 0.1946 0.6368
26 0.1946 0.5885
28 0.1944 0.6421
∞ 0.1943 a 0.68 0.66

a ref.8
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FIG. 4: Finite-size effects on the energy the lowest singlets of
H(x) with opposite inversion symmetry in the BOW phase.
The energies are equal at x = 1/3 without crossing. Crossings
at x > 1/3 are governed by the ground-state symmetry at
x = 0 and 1 as discussed in the text.

When N = 4p and p is even, the gs at x = 1 also trans-
forms as σ = −1; there is an even number of crossings
for N = 24 or 16. The Eσ bump in Fig. 3 at x = 0.5 is
due to two crossings. For N = 4p and odd p, the x = 1
gs has σ = 1 symmetry that requires an odd number of
crossings for N = 28 or 20. The gs for N = 4p + 2 has
σ = 1 symmetry for x < 1/3. There is an even number
of crossings up to x = 0.60 for N = 26 or 18 (even p) and
an odd number for N = 30 or 22 (odd p). Degeneracy
without crossing at the MG point and subsequent sym-
metry crossovers for finite N are the principal reasons for
remarkably small Eσ(x) in this interval.
Since Eσ(N) > 0 is due to finite-size effects in the

BOW phase, extrapolation of Em(N) − Eσ(N) yields
Em(x). As seen in Fig. 5, Em(N) − Eσ(N) converges
well to Em(x) on the x1 side and less well on the x2 side
where even and odd N/2 appear for x2(N) in Table I.
The largest magnetic gap is 0.29J at x = 0.40, close to
the ǫ0(x) peak in Fig. 2 and clearly beyond xMG = 1/3.
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FIG. 5: Excitation energy Em(x) to the lowest triplet of
H(x) for finite N and PBC in the BOW phase. The infinite
chain has Eσ(x) = 0 and a doubly degenerate ground state.

The Em maximum and position agree well with DMRG
in Fig. 5 of ref. 14. Since Fig. 4 shows Eσ(x) to be very
small between x = 0.3 and 0.5, large Em in this inter-
val is consistent with small finite-size corrections. More
accurate DMRG is needed [29] for Em(x) at x > 0.5.
To obtain the BOW amplitude B(x), we break inver-

sion symmetry according to

H(x, δ) = H(x) + δ
∑

n

(−1)n~sn.~sn+1 (5)

At the MG point, |K1〉 is the gs for δ = 0+ and
|K2〉 for δ = 0−. The gs energy per site, ǫ0(x, δ),
gives B(x) = −(∂ǫ0/∂δ)0. The inset of Fig. 6 shows
−(ǫ(1/3, δ) − ǫ(1/3, 0))/δ for N = 20 as a function of
δ. The intercept is B(1/3) = 3/8 while the slope is
χd/2, the harmonic electronic force constant per site for
dimerization that will be needed in a later study of lat-
tice vibrations. Fig. 6 shows B(x) in the BOW phase.
B(1/3) = 3/8 follows directly from −〈~sn.~sn+1〉 = 3/4 or
0 for paired and unpaired neighbors, respectively. The N
dependence of B(x) is negligible near the MG point up to
x ≈ 0.45, but it becomes significant around x ≈ 0.5 where
the location of the gs crossings in Fig. 4 depend on N .
Finite-size effects also appear near x1 and x2 where B(x)
becomes small but does not vanish. Since ψ0(x

′,±) with
σ = ±1 are degenerate at crossings x′, the linear combi-
nations (ψ0(x

′,+)±ψ0(x
′,−))/

√
2 are broken-symmetry

states whose expectation value in Eq. 4 leads to

B(x′) = |〈ψ0(x
′,+)|

∑

n

(−1)n~sn.~sn+1|ψ0(x
′,−)〉|/N (6)
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FIG. 6: Amplitude B(x) in Eq. 4 of the BOW of H(x) for
finite N and PBC in the BOW phase. B(1/3) = 3/8 is exact
for either |K1〉 or |K2〉 in Eq. 2. Finite-size effects around
x ≈ 1/2 are due to reversals of the ground states inversion
symmetry. The inset shows −[ǫ0(1/3, δ) − ǫ0(1/3)]/δ vs δ at
N = 20 for the symmetry-breaking perturbation in Eq. 5.

The matrix element agrees quantitatively with B(x′) =
−(∂ǫ0(x

′, δ)/∂δ)0, as it must. The two determinations of
B(x) are the same within our numerical accuracy when
Eσ < 0.01J .
To our surprise, B(0.35) is slightly but distinctly

larger than 3/8, the amplitude at the MG point for |K1〉
or |K2〉. A Kekulé diagram has perfect AF correlation
with one neighbor, which seems to be the limiting case
of a BOW. While the AF correlation or bond order
decreases slightly in systems with B(x) > 3/8, there is
now small F correlation or negative bond order with the
other neighbor. Direct solution of systems with OBC
and B(x) > 3/8 yields large positive and small negative
bond orders that alternate along the chain. We recall
that the second-neighbor bond orders, −〈~sn.~sn+2〉, are
negative for x < 1/3, vanish at x = 1/3, and are positive
for x > 1/3. The BOW phase for x > 1/3 has AF
correlations for second neighbors and alternating strong
AF and weak F correlations for first neighbors. We also
note that B(x) and Em(x) are not simply proportional
to each other. The B(x) maximum in Fig. 6 is at
decisively lower x than the Em(x) maximum in Fig. 5.
White and Affleck [14] were also surprised that d = 2B
could exceed 3/4 at J2/J1 > 1/2 and interpreted the
result as ferromagnetic correlation; Fig. 8 of ref. 14
agrees quantitatively with Fig. 6 for 0.3 < x < 0.5.

We consider next the excited states of H(x) and
present results at xMG = 1/3 that are representative
for the interval 0.3 < x < 0.5 in which B(x) and Em(x)
are large. The gs energy per site at the MG point is

TABLE II: Excitation energies E(Sr) of H(1/3), in units of
J , for N sites and PBC.

Spin and State, Sr N=28 N=26 N=24
Triplet, T1 0.1691 0.1705 0.1727
Singlet, S3 0.1757 0.1793 0.1839
T2, T3 0.1833 0.1873 0.1921
S4, S5 0.1898 0.1953 0.2022
T4 0.2089 0.2155 0.2242

Quintet, Q1 0.4200 0.4324 0.4499

ǫ0(1/3) = −1/4 for either PBC or OBC. Table II list ex-
citations with increasing energy for N = 24, 26 and 28.
Sparse matrix methods [25, 26] are used for a few states
in each symmetry subspace. It becomes progressively
more difficult numerically to go beyond 3 or 4 states for
large N . The notation Sr indicates total spin S and state
index, r = 1, 2, 3.... States are doubly degenerate with
wavevector ±k except for k = 0(σ = +1) and π(σ = −1).
The lowest triplet atEm and singlet atE3 decrease slowly
with N and are known rigorously to be finite in the in-
finite chain [10]. Finite-size effects are more pronounced
with increasing r. The gap E3 − Em decreases with N .
We expect it to vanish in the extended system whose el-
ementary excitation are spin solitons, each with s = 1/2,
with paired or parallel spins. There are additional sin-
glets and triplets below the lowest quintet at EQ(N).

Since all sites of H(x) are equivalent for PBC, it is
difficult to discern solitons even with exact eigenstates
in hand. Fortunately, the gs energy per site for OBC
and even N is again ǫ0 = −1/4, and the gs |K1〉 in
Fig. 1 has alternating bond orders of 3/4 and 0 along
the chain. We consider H(1/3) with OBC and odd N ,
either N = 4p + 1 or N = 4p − 1. The gs is a doublet,
S = Sz = 1/2, with spin density ρn = 2〈Sz

n〉 at site n.
With central site at n = 0, the terminal sites are ±2p
when N = 4p + 1 and ±2(p − 1) when N = 4p − 1.
Linear polyenes or VB diagrams rationalize two distinct
series when N is finite. The pentyl radical (N = 5)
has ρ0 > 0 and partial single bonds at the center, while
the allyl radical (N = 3) has ρ0 < 0 and partial double
bonds at the center. Soliton spin densities of H(1/3) for
N = 25 and 23 are shown in Fig. 7. Sites with ρ < 0
indicate electronic correlation [31] and correspond to
nodes in uncorrelated Hückel or tight-binding theory.

The gs bond orders of H(1/3) for odd N are close
to 3/4 at the end and reverse in between. The (N −
1)/2 bond orders are symmetric about the center, n =
0. Fig. 8 displays −〈~sn.~sn+1〉 for different values of N .
Bond orders oscillate with increasing n and grow from
the center. As expected, the central bond order is slightly
larger for the 4p−1 series than for the 4p+1 series. Both
spin densities and bond orders are typical of spin-1/2
solitons that for H(1/3) connect |K1〉 and |K2〉 regions.
In a BOW phase, broken inversion symmetry and solitons
are found in regular arrays. Of course, the soliton width
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2ξ depends on models and parameters; 2ξ increases with
decreasing dimerization in the SSH model [15] and it also
depends on correlations. The results in Figs. 7 and 8
suggest that spin solitons at the MG point have 2ξ ≈ 15.
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FIG. 7: Spin densities ρn = 2〈Sz
n〉 in the doublet ground state

of H(1/3) with OBC and N = 23 and 25. The central site
at n = 0 has large positive ρ0 for N = 25 and small negative
ρ0 for N = 23, as discussed in the text. The spin soliton is
delocalized over the central part in either case.

The energy 2EW of two domain walls is found by com-
paring the gs energy of even and odd systems with OBC
and equal length,

2EW (x,N) = 2E0(x,N)− E0(x,N − 1)− E0(x,N + 1)(7)

At the MG point, we find 2EW= 0.1701, 0.1684 and
0.1669 for N =23, 25 and 27, respectively, slightly less
than the Em values in Table II for even N . 2EW (1/3, N)
has weaker N dependence than Em(1/3, N), and a joint
extrapolation returns 2EW = Em = 0.151 for the infinite
chain. Finite-size effects are larger for E3(1/3, N) in
Table II and even larger for EQ(1/3, N).

Direct solution up to N ≈ 30 indicates that the ele-
mentary excitations ofH(1/3) are spin-1/2 solitions with
2Ew = Em = E3 = EQ/2 in the infinite chain. Finite N
results suffice for 0.3 < x < 0.5 when B(x) and Em(x) are
large. Longer chains can be studied using DMRG meth-
ods that will be needed for the BOW phase of Hubbard-
type models. Since 1D systems at T > 0 cannot have
long-range order, topological solitons are generic features
of systems with a BOW phase. The present discussion
is limited to a rigid lattice with purely electronic domain
walls, but solitons are also expected in deformable lat-
tices with linear electron- or spin-phonon coupling.
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FIG. 8: Ground-state bond orders, −〈~sn.~sn+1〉 of H(1/3),
for odd N and open boundary conditions (OBC). The bond
orders are symmetric about the center, n = 0, and increase
to almost 3/4 at the ends.

III. MAGNETIC SUSCEPTIBILITY AND

SPECIFIC HEAT

Static magnetic susceptibility provides by far the most
direct comparison with experiment, as amply illustrated
[32, 33] by Heisenberg and other spin chains and by spin-
Peierls systems. The molar spin susceptibility, χM (T ), is
an absolute comparison for organic radicals with small
spin-orbit coupling and g close to 2.00236, the free-
electron value. Since H(x) conserves S, the energy level
ESr splits into 2S + 1 Zeeman levels in an applied field.
The full energy spectrum of H(x) in zero field is required
to construct the partition function

QN =

N/2
∑

S=0

∑

r

(2S + 1)exp(−ESr/kBT ) (8)

where kB is the Boltzmann constant andESr is excitation
energy from the singlet gs to the rth energy level with
spin S. The molar spin susceptibility of an N -site chain
is [27]

χM (T,N) =
NAg

2µ2
B

3kBTNQN

N/2
∑

S=0

∑

r

S(S + 1)×

(2S + 1)exp(−ESr/kBT ) (9)

where NA is Avogadro’s number and µB is the Bohr mag-
neton. Finite-size effects become severe when kBT is
small compared to Em(N).
Fig. 9 shows χM for N = 16 as a function of kBT/J for

several values of x. The curves converge for T > J/kB
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FIG. 9: Molar spin susceptibility, χM (T,N) in Eq. (10), vs
kBT/J for spin chains with N = 16 and PBC for x = 0, 0.15,
0.25 and 0.40 in Eq. (1). The fluid phase up to x1 = 0.1943
has finite χM (0). The curves become independent of x at high
T .

because the total number of spins is the same and so
is the Weiss constant J/2kB. The number of spins and
Weiss constant are the T−1 and T−2 terms, respectively,
at high T . The χM (T ) maxima are well converged at
N = 16, as can be shown by solving N = 18 or 14.
The situation is different as T → 0, where x < x1 leads
to finite χM (0) in the fluid phase [8] while x > x1 has
χM (0) = 0 due to finite Em. The x = 0 and 0.15 curves
for finite N are dominated by finite-size effects at low
enough T . The x = 0.40 curve is almost quantitative
since Em(0.4) exceeds zero-field effects at N = 16. The
x = 0.25 curve is intermediate since Em is finite but N
dependent.

For reasons given in the Discussion, we are interested
in variable J2 = xJ at constant J1 = J(1 − x). The
χM (T )J1 maxima in Fig. 10 depend weakly on J2 up
to x = 0.40; the curves now cross because the Weiss
constant varies with x. The HAF (x = 0) maximum
broadens and shifts to lower T with increasing J2/J1 =
x/(1− x). Size convergence at low T is shown in Fig. 11
for x = 0.25(J2/J1 = 1/3) and x = 0.40 (J2/J1 = 2/3).
Large Em at x = 0.40 gives convergence at N=16 and
18. Small Em at x = 0.25 limits convergence to the broad
χM (T ) maximum. In either case, finite Em ensures that
χM (0) = 0 and gives a substantial range in which χM (T )
is almost linear in T . The slope of the linear regime
depends weakly on N .

There are many realizations of dimerized HAFs with
x = 0 in Eq. 1 and alternating J(1 ± δ) along the spin
chain [32, 34]. Dimerized chains with δ > 0.3 are well ap-
proximated as N/2 singlet-triplet (ST) pairs with spin-
wave dispersion [34, 35]. An ST approximation also pro-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k

B
T/J

1

0

0.05

0.1

0.15

χ(
T

) 
J 1/

N
A
g2 µ B

2

x=0
x=0.15
x=0.25
Eq.  11
x=0.40
Eq.  11

N=18

FIG. 10: Molar susceptibility, χM (T,N) in Eq. 9, vs kBT/J1,
the nearest-neighbor exchange, for spin chains with N = 18
and PBC. The dashed lines for x = 0.25 and 0.40 are Eq. 11
with parameter shown in Fig. 11.

0 0.05 0.1 0.15 0.2 0.25 0.3
 k

B
T/ J

1

0

0.05

0.1

0.15

0.2

χ(
N

,T
)J

1/N
A
g2 µ B

2

N=14
N=16
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N=18
Eq.11

x=0.25, z
m

=0.10, z
1
=0.78, z

2
=3.64, A=0.293

x=0.40, z
m

=0.32, z
1
=0.66, z

2
=4.95, A=0.311

x=0.25

x=0.40

FIG. 11: Finite-size effects on χM (T,N) in the BOW phase
of H(x) at x = 0.25 and 0.40. Large Em(0.40) gives small
changes for N = 16 and 18, while small Em(0.25) leads to
stronger N dependence. The dashed lines for x = 0.25 and
0.40 are Eq. 11 with the indicated parameters zi and A.

vides insight into the BOW phase. A normalized density
n(E) of two-level systems with ST gap E leads to

χST (T ) =
NAg

2µ2
B

kBT

∫

∞

0

n(E)dE
(

3 + exp(E/kBT )

) (10)
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The integral can be evaluated for any piecewise constant
n(E). We consider n(E) = 0 aside from two intervals;
n(E) = A/(E1−Em) for Em ≤ E ≤ E1 and n(E) = (1−
A)/(E2−E1) for E1 ≤ E ≤ E2. The molar susceptibility
is

χST (T,N)J1
NAg2µ2

B

=
A

3(z1 − zm)
ln

(

1 + 3exp(−zmJ1kBT )
1 + 3exp(−z1J1kBT )

)

+
1−A

3(z1 − z2)

× ln

(

1 + 3exp(−z1J1kBT )
1 + 3exp(−z2J1kBT )

)

(11)

with zm = EmJ1, z1 = E1J1 and z2 = E2J1. As
expected, the ST gap gives an exponential χST at
sufficiently low T , thereby fixing zm. The width of
n(E) is controlled by z2 and is fixed by the χM (T )
maximum. The shape of χST (T ) can be varied by A
and z1, or by additional parameters when n(E) has
more than two intervals. The dashed lines in Figs. 10
and 11 are χST (T ) with the parameters in Fig 11. The
spin susceptibility in the BOW phase is reasonably well
modeled with a distribution n(E) of ST gaps that is
constant in two intervals.

The molar specific heat of H(x) for N sites is

C(T )

NAkB
=

1

N

(

J

kBT

)2

(〈E(T )2〉 − 〈E(T )〉2) (12)

The thermal averages require the energy spectrum ESr

and degeneracy. The results below are for PBC. Since S
is conserved, separate contributions to 〈E(T )〉 can read-
ily be identified. But the entropy is not additive in S
and there is no unique partitioning of C(T )dT = TdS
into contributions in S. One choice is the temperature
derivative of the S component of 〈E(T )〉. Another choice
is based on fluctuations,

C(T )

NAkB
=

1

NQN

(

J

kBT

)2
∑

Sr

(2S + 1)

×(ESr − 〈E〉)2exp(−ESr/kBT ) (13)

with CS(T ) given by the sum over r for fixed S. The
CS(T ) contributions in Eq. 13 are manifestly positive
and are shown below. We also decomposed C(T ) based
on 〈E(T )〉. The results are similar at low T , the region
of interest.

Fig. 12 shows C(T, x) at x = 0.25 and 0.40 as a
function of kBT/J1 for N = 18. The contributions of
S = 0, 1 and of 2 ≤ S ≤ 9 are indicated with dashed
lines. Large Em at x = 0.40 gives a C(T ) peak due
to S = 0, 1 and a shoulder at higher T for S ≥ 2
contributions that start with EQ ≈ 2Em. Small Em

at x = 0.25 gives a single broad C(T ) peak whose

maximum shifts smoothly to higher kBT/J1 in the fluid
phase with x < x1. Likewise, there is a single C(T ) peak
when Em becomes small for x > 0.5. Finite Em in the
BOW phase shifts the singlet and triplet part of C(T ) to
low energy and separates them from S ≥ 2 contributions.

0 0.2 0.4 0.6 0.8 1
 k

B
T/ J
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0.2

0.3

0.4

C
V

(T
,x
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A
k B
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0.2
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0.28

0.3

N=18
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S=0,1

S=0,1

x=0.25, all S

S=2,3,

N=18
x=0.40

x=0.4, all S

S=2,3 ....

FIG. 12: Molar specific heat C(T ) in Eq. 13 in the BOW
phase of H(x) at x = 0.25 and 0.40 for N = 18 and PBC.
The dotted and dashed lines are contributions in S = 0,1 and
S ≥ 2, respectively, according to Eq. 13. The inset shows the
S = 0,1 contribution for x = 0.40 at N = 16 and 18.

Mütter and Wielath [36] reported C(T ) results for
8 ≤ N ≤ 16 using a different numerical procedure and
without resolving contributions in S. Their C(T ) and
χM (T ) curves are quite similar to ours, but not identi-
cal. In particular, their C(T, 1/3) develops a shallowmin-
imum at N = 16 that we do not see at either N = 16 or
18. Without proposing an explanation for the C(T, 1/3)
maxima, Mütter and Wielath [36] interpreted the dis-
continuity of the C(T, x) maximum at the MG point as
a transition from a “dimer” to a “frustrated” phase that,
moreover, survived in the limit of large N . On the con-
trary, our results indicate a single phase for x > x1 and
we understand the C(T ) curves in Fig. 12 in terms of
S = 0, 1 and S ≥ 2 contributions. We turn next to C(T )
at large N = 2n. The fraction of singlets among the 22n

spin states is

f0(2n) =
(2n)!2−2n

n!(n+ 1)!
≈ (n+ 1)−

3

2

√
π

e

(1 + 1

n )
n

(14)

The second expression follows from Stirling’s approxima-
tion and is accurate to within a few percent for 2n = 16
or 18. The triplet fraction is 9nf0/(n+ 2). Since f0 de-
creases as (2/N)−3/2, the C(T ) contribution from S = 0
and 1 becomes negligible compared to S ≥ 2 in the ther-
modynamic limit. The inset in Fig. 12 compares the
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S = 0, 1 maxima for N = 16 and 18. The N = 18 maxi-
mum is lower as expected for Eq. 14. The DMRG results
of Feiguin and White [28] for C(T, 1/3) at N = 32 and
64 show a small shoulder at low T that they attribute to
finite-size effects.

IV. DISCUSSION

We have characterized the BOW phase of the linear
spin-1/2 chain, H(x) in Eq. 1, with frustrated Heisen-
berg AF exchange J1 = J(1 − x) between neighbors
and J2 = Jx between second neighbors. Exact VB
methods yield the energies and eigenstates of finite
systems with periodic or open boundary conditions.
The BOW phase for x > x1 = 0.1943 has a broken
Ci symmetry and finite magnetic gap Em(x). Our
results are most accurate for 0.3 < x < 0.5 where large
Em(x) ensures small finite-size corrections. Larger N ,
DMRG or other methods will be needed to character-
ize the BOW phase with small Em(x) or B(x) at x > 0.5.

The BOW phase is particularly simple at x = 1/3,
the MG point, where the exact gs for PBC is either
Kekulé diagram |K1〉 or |K2〉 in Fig. 1, and |K1〉 for
OBC. The BOW amplitude is B(x) in Eq. 4, with
B(1/3) = 3/8 and a broad maximum in Fig. 6 at lower
x than the Em(x) maximum in Fig. 5. Topological
spin-1/2 solitons that reverse the bond order are the
elementary excitations of the BOW phase, as shown in
Fig. 7 and 8 at x = 1/3 for odd N and OBC. The energy
2EW of two solitons corresponds for finite N to Em for
parallel spins or to E3 for paired spins. We have also
found the consequences of finite Em(x) on the molar
spin susceptibility χM (T ) and specific heat C(T ).

The magnetic properties of the EHM with parameters
U , V and t are closely related to H(x) when t≫ (U−V ).
Van Dongen [37] mapped the EHM in the spin sector to
H(x) with

J(1 − x) ≡ J1 =
4t2

U − V
+ 4J2

xJ ≡ J2 =
4t4

(U − V )3
(15)

The HAF is the familiar limit t ≪ (U − V ) leading to
x = 0. Increasing V at constant t and U amounts to
increasing J2/J1 = x/(1 − x). The CDW transition of
the EHM is close to V = U/2. Since a continuous CDW
transition [3, 4] requires t > U/7, the t ≪ (U − V ) ap-
proximation fails at the BOW boundary of the EHM. The
next term goes as t6 and in addition to J1, J2 contribu-
tions, it adds [38] a four-spin contribution that requires
going beyond H(x). Charge degrees of freedom cannot
be neglected in the BOW phase of the EHM or of related
models with Coulomb interactions.

It is nevertheless attractive to approximate magnetic
properties of Hubbard-type BOWs with H(x), much as
HAFs have been used for Hubbard models. Finite Em

implies an exponentially small χM (T ) at low T followed
by a roughly linear increase up to 0.15 in reduced units.
As seen Figs. 10 and 11, the χM maximum depends
weakly on J2. Linear χM (T ) vs T behavior is distinctly
different from an HAF [35] or a Hubbard model [39] with
Em = 0 and finite χM (0) that exceeds 60% of the χM

maximum. Linear χM (T ) following an onset has been ob-
served [40] in several alkali-TCNQ salts up to T ≈ 450K,
the limit of their thermal stability. In our opinion, such
χM (T ) in regular arrays are signatures of BOW phases
with Em > 0 in Hubbard-type models as well as in H(x).

There are several reasons for considering 1:1 alkali-
TCNQ salts as possible BOW systems. The strongest
case [41] is for Rb-TCNQ(II): its 100K structure has
regular stacks of TCNQ− at inversion centers, negligible
χM (T ) us to 150K and infrared spectra that indicate
broken electronic inversion symmetry. Hubbard-type
models have long been used for the magnetic, optical
and electrical properties of quasi-1D organic ion-radical
crystals [17, 34]. The singly occupied MOs of TCNQ−

form a half-filled band. The BOW phase of Hubbard-
type models is narrow, close to the CDW transition.
1:1 alkali-TCNQ crystals are close [42] to the CDW
transition based on their electrostatic (Madelung)
energy and the electronic structure of TCNQ−. The
spin susceptibility of H(x) is encouraging for a BOW
interpretation. More quantitative modeling will require
values for t, U , V and other microscopic parameters.

In summary, we have characterized the BOW phase
of the linear spin-1/2 chain H(x) with frustrated first
and second neighbor exchange. We exploited the exact
gs at x = 1/3 for finite N to obtain the BOW ampli-
tude B(1/3) = 3/8, the magnetic gap Em, the spectrum
of low-energy excitations, and topological spin solitons
between BOWs with opposite phases. The spin chain
makes possible a detailed examination of a BOW phase.
While quantitative results are limited toH(x), the conse-
quences of broken inversion symmetry, gs degeneracy and
finite Em hold for BOW phases in general. The spin sus-
ceptibility of H(x) is consistent with the unusual χM (T )
of alkali-TCNQ salts with regular stacks and provides ad-
ditional support for the hypothesis [41] that these salts
are physical realizations of BOW phases.
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