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Pre-incubation of cells of S m c h v e s  cerevishe with 2 Methanol led to decreased rates of 
L-alanine uptake, H+ eBux and fermentation rate. However, these responses were modified in 
yeast cells with altered phospholipid composition. Using L-alanine transport and H+ ef3ux as 
indices of ethanol tolerance, it was observed that cells enriched with phosphatidylserine had 
greater tolerance to ethanol. This resulted from altered charge of membrane phospholipids 
rather than changes in membrane fluidity. It is suggested that the anion :zwitterion ratio of 
phospholipids may be one of the important determinants of ethanol tolerance in S. ceretlr'isiae. 

INTRODUCTION 

It is now established that ethanol accumulation is primarily responsible for inhibiting 
fermentation. Ethanol at concentrations above 12% is toxic to yeast (Rose, 1980) and 
cunse~uenzly growth ceases at about this concentration. The inhibition by ethanol of growth of 
Smckmmyces cerevisiae is preceded by the effects of ethanol on cell viability (Thomas et al., 
1978; Beavan et al., 1982), accumulation of various nutrients (Thomas & Rose, 1979; Loureiro- 
Dias & Peinado, 1982; JAo & van Uden, 1982, l983,1984a), H+ fluxes ( L e b  & van Uden, 
1984b; Cartwright et al., 1986; Juroszek et al., 1986) and on fermentation rate (Casey & 
Ingledew, 1986). Similar effects of ethanol are also known in other organisms (Fried & Novick, 
1973; Ingram & Buttke, 1984; Ingram, 1986). 
The plasma membrane is eonsidered to be the prim0 target of ethanol action in yeast (Ingram 

& Buttke, 1984). It seems that both the structure and function ofthe yeast plasma membrane are 
affected (Ingram & Buttke, 1984; Ingram, 1986). Amongst various membrane components, 
lipids are the chief targets of ethanol toxicity (Thomas et al., 1978; Thomas & Rose, 1979). 
Alterations in phospholipid and fatty acyl residue composition in the presence of ethanol is 
known to be due to an adaptive response to the physiochemical interaction of ethanol with the 
plasma membrane (Ingram, 1977, 1986). Unsaturated fatty acyl residues and ergosterol are 
considered to be important determinants of ethanol tolerance in yeast (Thomas et d., 1978; 
Thomas & Rose, 1979; Beavan et af., 1982). However, the precise role of phospholipid head 
groups in resistance to ethanol has not been ascertained. Since ethanol can modify the hydration 
state of polar head groups (Rigomier et al., 1980) and is equally important in interfacial 
regulation of lipid-protein interactions ( S a n h -  1978), it was of interest to study the effect 
of ethanol on the yeast plasma membrane after phospholipid head group modification. 

Availability of a yeast lipid auxotroph (clrol) and of hydroxylamine chloride, a specific 
inhibitor of phosphatidylserine decarboxylase (EC 4.1 . 1 .65), have provided an opportunity to 
enrich yeast plasma membrane with specific phospholipids (Trivedi et al., 1982,1983). In the 
present study, using amino acid transport and H+ fluxes as indices of membrane function, the 
role of phspholipids in ethanol tolerance has been investigated. 

~~~ ~ 

Abreu-: DPH, 1 ,6-diphenyEl,3,5-hexatriene; PC, phosphstidykbhe; PE, p w b W k -  =; 
PS, phosphatidylserine. 
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METHODS 

Strum und culrure conditions. S.  cereukiue a d e 5  and its mutant derivative KAlOl (chol) were maintained on 
YEPD slants and enriched with different phospholipid bases as described previously (Trivedi et al., 1982, 1983). 
Cells were harvested and washed three times with sodium citrate buffer (10 m ~ ,  pH 4.5) before use for further 
studies. 

Measwement of rate of amino acid uptokc. The transport assay procedure was similar to that described previously 
(Rao et al., 1986; Mishra & Prasad, 1987). The rate of L-alanine uptake was determined from plots of the time- 
course of uptake up to 195 s using linear regression analysis. To examine the effcct of ethanol on amino acid 
uptake, 2 rma-cthanol was added to cell suspensions. After preincubation at 30 "C for 5 min, the reaction was 
started by the addition of ~-I~*CUanine (37 kBq pnol-'). m e  final concentration of L-alanine was two to four 
times higher than its KT value. At the indicated time intervals samples were removed and immediately diluted in 
5 ml icooold citrate bde r  (10 m ~ ,  pH 4-5) containing unlabelled L-alanine at the concentration included in the 
cell suspension. The diluted suspension was rapidly filtered through 0.45 pm pore diameter, Maxflow filter discs. 
Filters were then washed twice with the same buffer containing unlabelled L-alanine and the radioactivity retained 
was counted in a Beckman Ls-1801 Beta liquid scintillation counter using a toluene-based scintillation fluid. 

values for L-alanine uptake were derived from reciprocal plots of velocities of 
L-alanine uptake against inmasing concentrations of ethanol (0.5 to 2-0 M) at two fixed substrate concentrations 
(Dixon, 1953). 

Measurement of rates of proton flux. Glucose-stimulated proton ef€Iux was measured by the addition of glucose 
( 1 0 0 ~ )  to a suspension (1OOmg wet wt d - l )  of cells enriched with dserent phospholipids. A constant 
temperature of 30 "C was maintained by circulating water through a water-jacketted chamber. The cell suspension 
in the chamber was constantly stirred. Changes in pH of the suspension were recorded by using a REC 80 
Servograph with REA 105 pH/mV unit (Radiometer). The effcct of ethanol on glucoscinduced H+ emux was 
measured by supplementing the cell suspension with ethanol after adjusting its pH value to 4.0 prior to the addition 
of glucose (100 a). Proton flux was then followed over a 5 min period (Cartwright et ul., 1986). The pH range was 
6x4 in order to avoid denaturation of the cellular components of energized organisms (Juroszek et al., 1986). 

Fluorejcenee measuremmts. A 2 m  solution of 1,6 diphenyl-l,3,5-hexatriene (DPH) was prepared in 
tetrahydrafuran and 100 pl was added to 50 ml of rapidly stirred potassium phosphate buffer (10 m ~ ,  pH 6.8). 
Excess tetrahydrofuran was removed by flushing with nitrogen. Spheroplasts of normal as well as of phospholipid- 
enriched cells wen prepared as described previously (Jayakumar et d., 1981). These spheroplasts were washed 
with phosphate buffer (20 m ~ ,  pH 64) containing 10 ~ M - M ~ S O ,  and 0.6 M-sorbitol and incubatad with 2 p ~ -  
DPH for 60 min at 30 "C. Fluorescence polarization was measured by excitation with monochromatic light at 
360 nm which was vertically polarized, and emission intensity was detected at 426 nm through an analyser 
oriented either parallel or perpendicular to the direction of polarized excitation light. The degree of fluorescence 
polarization (p) and anisotropy (r) were calculated according to Haggerty et al. (1976). 

MeasIltement of fennentatwn rates. The ability of S. cereukkze to ferment glucose was determined with a Gilson 
singlevalve difkrential mpirometer. Cdls (1OOmg wet wt ml-l) were suspended in citrate buffer ( 5 O m ~ ;  
pH 4.5). Glucosc (300 m ~ )  placed in the side arm of the Warburg flasks was mixed with the cell suspension after 
equilibration for 10 min at 30 "C. Prior to the addition of glucose, flasks were shaken (95 oscillations min-l) and 
the system was continuously flushed with nitrogen gas passed through a trap containing pyrogallol solution. The 
supply of nitrogen gas was cut off before addition of glucose solution to the buffered cell suspension. Evolution of 
C02 was then followed over a period of 5 min (Cartwright et al., 1986). 

Chemicals. Ethadamine, choline chloride, hydroxylamine, DPH, tetrahydrofuran, L-alanine and standard 
phospholipids were purchased from Sigma. ~-('*C]Alanine was purchased from BARC, India. All other 
chemicals were of analytical grade. 

Inhibition constant 

RESULTS AND DISCUSSION 

Phosphofipid heud group md@catwn m S. cereukiae 

The S. cerevisiae auxotrophic mutant chol uses the CDP choline pathway (Atkinson et al., 
1980) for the synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and 
requires phospholipid bases (chdine or ethanolamine) for its growth. We have earlier shown 
that supplementation of this mutant with choline (1 m ~ )  or ethanolamine (1 m ~ )  resulted in the 
enrichment of PC (18OB or PE (32yJ, respectively (Trivedi et uf., 1982). The addition of 20 m- 
hydroxylamine to exponentially growing cells led to a 3-5-fold increase in phosphatidylserine 
(PS) content because hydroxylamine blocks PS decarboxylase and prevents further conversion 
of PS to other phospholipids (Trivedi et uf., 1983). The phospholipid composition of the mutant 
and of other strains has been published previously (Trivedi et af., 1982, 1983). 
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Table 1. Efect of ethanol on L-alanine uptake in S. cereviiiae 

Cells were grown in the presence of choline, ethanolamine or hydroxylamiae as described in Methods. 
Velocities were calculated from the linear segment of the timecourse of L-alanine uptake up to 195 s 
using linear regression analysis (Mishra & Prasad, 1987). To examine the effect of ethanol on L-alanine 
uptake, cells were incubated in the presence of ethanol (2 H) for 10 min before the start of transport 
measurements. Each value is the mean of three experiments. 

Velocity of L-alanine uptake 
[PWl (q dry Wt)" s"1 

r \ 

Percentage 
Supplement Without With inhibition by 

Strain to medium ethanol 2 M C t h a I l d  2 M-Cthanol 

a d e 5  None 6-5 2.5 61 
C h o l  choline (1 mM) 5.7 1.3 77 
chol Ethandamine (1 m) 2.3 0.8 65 
a d e 5  Hydroxylamine (20 m ~ )  7.0 5.0 28 

Table 2. Inhibition constants (K&,H)) for L-alanine uptake in S.  cerevisiae 

K,,,,, values were derived from Dixon plots. Velocity of talaninc uptake was calculated as described 
in Methods using linear regression anaIysis. Values arc means of three experiments f SD values. 

Supplement Cells enriched Type of x k;@toH) 
Strain to medium with: inhibition (MI 

aude5 None No enrichment Non-compctitive 50.0 f 2.0 
C h o l  Choline (I m ~ )  PC Nm-compctitive 12.5 & 0-6 
C h o l  Ethanolamine (1 m ~ )  PE Noncompetitive 259 f 1.1 
a d e 5  Hydroxylamine (20 m ~ )  PS Noncompetitive 75.0 f 2.5 

Efect of ethanol on amino acid uptake in S. cerevisiae 

Cells enriched with specific phospholipids were tested for their ability to tolerate ethanol. 
Amino acid uptake was used as an index of membrane function (Thomas & Rose, 1979; Prasad 
& Rose, 1986). When wild-type (a ade5) and cells enriched with PC, PE or PS were incubated 
with 2 Methanol for 10 min, the rate of L-alanine uptake was reduced in the following order: PC 
(77%) > PE (65 %) > a ade5 (61 %) > PS (28 "/d) (Table 1). The extent of inhibition of L-alanine 
uptake in the presence of ethanol was minimal in PS-enriched cells. Thus, it is possible that PS 
enrichment of yeast plasma membrane confers greater tolerance to ethanoi in comparison to 
enrichment with other phospholipids. 

To gain further insight into the inhibition by ethanol of L-alanine uptake, the inhibitory 
constant was determined at two different concentrations of L-alanine with increasing 
concentrations of ethanol (0.5 to 2.0 M). A nonlcompetitive inhibition by ethanol of L-alanine 
uptake was evident from Dixon plots (not shown), which confinned earlier observations (L&o 
& van Uden, 19&, 6; Cartwright et ul., 1987). KiEmm values (TaMe 2) further indicated that 
the inhibitory effect of ethanol was in the order PC > PE > aude.5 > PSenriched cells. 
Maximum value in PS-enriched cells indicated minimal inhibitory effect of ethanol on 
L-alanine uptake (Table 2). 

Efect of ethanol on H+ e8u.x in S.  cerevisiae 
Earlier studies by Rose and co-workers demonstrated that the addition of glucose (100 m ~ )  to 

yeast cell suspensions results in a rapid acidification of the external medium (Cartwright et d., 
1986), due to net proton efhx caused by Mg2+dependent proton translocating ATPase 
(Willsky, 1979; Malpartida & Serrano, 1981). Addition of increasing concentrations of ethanol 
results in an increase in extracellular pH by decreasing the proton efflux (Cartwright et d., 
1986). 
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Fig. 1. Effect of ethanol (at the concentration indicated) on the ability of energized S. cereur;Fiae cells to 
acidify the external medium. The lines are direct tracings of a typical experiment. The initial pH of the 
cell suspension was adjusted to pH 4.0. Other details were similar to those described in Methods. The 
four panels of tracings represent experiments done with nonenriched a ude5 or a ude5 cells enriched 
with PC, PE or PS. 

Table 3. Eflect of ethanol on fermentative activity of S.  cerevisiae 

Cells were suspended in citrate buffer (pH 4.5, 50 m) and fermentation rates were measured as 
described in Methods. The percentage inhibition values were calculated from the mean of three sets of 
observations; the extent of variation was within 5%. 

Percentage inhibition 
of fermentative 

Strain Cells enriched with : activity by 2 Methanol 

a ade5 No enrichment 
chol Phosphat id ylcholine 
c h l  Phosphatidylethanolamine 
a a d d  Phosphatidylserine 

66 
69 
57 
54 

Our data indicated that ethanol-induced reversal of H+ efflux is affected by modification of 
the phospholipid head group. Rapid acidification of a normal cell suspension was prevented by 
ethanol in a concentrationdependent manner (Fig. 1). The inhibition of H+ efflux at various 
concentrations of ethanol was evident from the increase in extracellular pH. Similar to L-alanine 
uptake, H+ efflux was least affected in PS-enriched cells. 

From the results of H+ flux and L-alanine uptake experiments, it became apparent that 
phospholipid enrichment offers some protection against ethanol toxicity ; this protection was 
greatest in Phnriched cells. The way in which PS enrichment can affect ethanol toxicity 
is not clear. There are reports suggesting that an increased ratio of anionic :zwitterionic 
phospholipids can affect ethanol tolerance (Clark 8c Beard, 1979; Bohin 8z Lubochinsky, 1982). 
It has also been suggested that the phospholipid head group could modify the effect of ethanol on 
plasma membrane ATPase activity (Stadtlander et al., 1982). Based on H+-flux measurements, 
our data do suggest that in PS-enriched cells, H+-translocating activity of ATPase becomes less 
sensitive to ethanol as compared to wild-type, PC- or PE-enriched cells (Fig. 1). 

Eflect of ethanol on fermentative activity of S.  cerevisiae 

The inhibition of the fermentative ability of an organism in the presence of ethanol is the best 
indicator of the potential of a given strain to produce ethanol (Casey & Ingledew, 1986). This is 



Ethanol tolerance in S .  cerevisiae 3209 

a ode5 

U 

;h a 
e 0-1 - 
9 I I I I ,  

3 0.3 - 
x 

.... ii 
PE 

L1 5 0 . 2 h  \ 
LL 

0.1 - 
I I I I 

- 
I I I I -  

PS - 

Ethanol concn (M) 

Fig. 2. Effect of ethanol on the anisotropic value (r). Spheroplasts were prepared either from non- 
enriched a ude5 or a ~ d e 5  c e h  enriched with PC, PE or PS. Anisotropic measureqmnts were done as 
described in Methods. The four panels represent the anisotropic values of the dflerent cell types. Each 
point is the mean of three separate determinations; the vertical bars represent f SEM. 

because the effect of ethanol on fermentation rate is not influenced by the nutritional conditions 
or the growth status of the cells and its value correlates well with the upper limits of ethanol 
production (Hayashida & Ohta, 1981). 

Among cells enriched with various phospholipids the rate of fermentation was greatest in F6- 
enriched cells and was comparable to that of wild-type cells (data not shown). The percentage 
inhibition of fermentation by 2M-ethanol was least in PS-enriched cells. The fermentative 
abilities of cells of S. cereviskze with altered phospholipid compositions suggest that those 
enriched with PS acquire the greatest resistance to ethanol (Table 3). 

Eflect of ethanol ua membrane fluidity in S. cereoisiae 
Ethanol interacts with and perturbs the organization of lipid bilayers (Paterson et al., 1972; 

Jain & Wu, 1977); in particular it lowers the transition temperature and increases membrane 
fluidity (Jain & Wu, 1977). Since addition of ethanol results in a reduction in dielectric strength 
and thereby leads to altered charge interaction at the phospholipid surface (Fried Bt Novick, 
1973), it was of interest to monitor the effect of ethanol on the fluidity of yeast plasma membrane 
enriched with different phospholipids. We therefore used DPH, a fluorescent probe, to monitor 
changes in membrane fluidity (Van-Blitterswijk et al., 1987). As revealed by the anisotropic 
data, except in PE-enriched cells the alteration in phospholipid head group did not significantly 
alter the membrane fluidity as compared to wild-type cells. However, increasing concentrations 
of ethanol led to decreased anisotropy or increased fluidity (Fig. 2). The decrease in anisotropy 
suggests that the fluidizing effect of ethanol was greater in a d d  cells as compared to cells 
enriched in different phospholipids. 

Since the fluidity (anisotropy) of the membrane was not affected by a change in phospholipid 
head group, the ethanol tolerance of cells enriched in PS must reflect lipid properties other than 
fluidity (Cartwright et al., 1986). In this regard Jones & Greenfield (1987), using passive 
permeability of acetic acid as a criterion of membrane fluidity, showed that optimum membrane 
stability rather than increased membrane fluidity is of greater relevance to ethan61 tolerance in 
yeast. 

Apart from the long-term effect of ethanol on the yeast cell membrane, where adaptation 
results in the alteration of fatty acyl composition (Ingram, 1976), the short-term effects of 
ethanol on membrane functions are equally important. Our results, based on amino acid uptake, 
H+ efflux and fermentative activity suggest that head group composition rather than fluidity 
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renders yeast membranes more resistant to ethanol. The role of membrane fluidity, however, 
cannot be overlooked (Thomas et al., 1978; Thomas & Rose, 1979). Recent results from our 
laboratory further confirm earlier findings of Rose and co-workers (Thomas et al., 1978; 
Thomas & Rose, 1979) that the degree of unsaturation is a decisive factor in ethanol tolerance 
when other membrane components remain unaltered (unpublished observations). 
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