
Abstract

The active stiffening and active compensation analyses are carried out to present the influence of active
stiffness on the dynamic behaviour of piezo-hygro-thermo-elastic laminates. A coupled piezoelectric finite
element formulation involving a hygrothermal strain field is derived using the virtual work principle and is
employed in a nine-noded field consistent Lagrangian element. The closed-loop system is modelled with
elastic stiffness, active stiffness introduced byisotropic actuator lamina and geometric stiffness due to
stresses developed byhygrothermal strain. Through a parametric study, the influence of active stiffening
and active compensation effects on the dynamics of cross-ply and angle-ply laminated plates and shells are
highlighted. The active stiffening on thin shells is significantlyinfluenced byboundaryeffects and thethe
actuator efficiencyfurther decreases with increase in curvature. The reduction in natural frequencies of
cross-plylaminates due to hygrothermal strain is activelycompensated byactive stiffening; however, it is
observed that the actuator performance reduces significantlywith increase in curvature particularlyinin
angle-plylaminates, which demands the use of directional actuators. The active stiffening and active
compensation effects are low in moderatelythick piezo-hygro-thermo-elastic plates and shells, which are
less influenced byboundaryconditions.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural performance can be enhanced through active effects byapplying smart concepts and

this can provide controlled or desired responses within the flight spectrum of aerospace vehicles.
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Active materials make conventional composite structures smart or adaptive by addin g multifunctional capabilities to output the necessary information about the change in structural

characteristics during the operational conditions. The multifunctional piezoelectric materials
employed in the vibration control applications respond to multifields such as electrical, thermal
and mechanical.

Tzou and Ye [1], Lee and Saravanos [2] and Raja et al. [3] evaluated the thermal effect on
piezoelectric coupling to show the importance of temperature-developed sensor voltage
through thermal strain effect and electrothermal coupling. Influence of thermal strain was
observed to be more significant than the electrothermal coupling on direct piezoelectric effect.
Jonnalagadda et al. [4] and Blandford et al. [5] considered the thermal and electrical effects on
elastic media as initial fields and developed the finite element (FE) procedures using first order
shear deformation theoryto analyze plates and beams. Chandrashekhara and Kolli [6] studied the
thermomechanical dynamic response control of piezo-thermo-elastic composite shells by active
effect. Lee and Saravanos [7] captured the sensorybehaviour of piezo-thermo-elastic shell
structures using FE analysis to show the electrothermal and electromechanical influence on sensor
voltage.

Zhou et al. [8] developed a coupled thermo-piezoelectric-mechanical model using higher
order laminate theoryand higher order thermal field to studythe response of composite
plates. A significant difference was reported between the coupled and uncoupled models in
predicting the piezo-thermo-elastic behaviour. Ishihara and Noda [9] obtained the analytical
solutions considering shear deformation effect to predict the frequencies of piezo-thermo-elastic
plates.

The thermal field influence on piezoelectric coupling has also received much attention from the
control point of view in recent years. Tzou and Zhou [10] and Bao et al. [11] studied the static and
dynamic control of laminated piezo-thermo-elastic beams, plates and shells with non-linear
mathematical models. Oh et al. [12,13] investigated the post-buckling and vibration behaviour of
piezoelectric laminated plates subjected to large thermal deflections. Shen and Kuang [14]
proposed an analytical solution to solve the vibration control of simply supported piezo-thermo-
elastic plate with velocityfeedback.

The piezoelectric lamina as an actuator has the potential to modifythe strain energy

(active stiffening:
displacement control) and damping (active damping: velocitycontrol)of the structural system in a feedback control environment. The performance of the

piezoelectric actuator system such as monolithic piezowafer (3–1, 3–2 actuation),
piezofibre composite (PFC; 3–1 actuation) and active fibre composite (AFC; 3–3
actuation) may be influenced by hygrothermal strain. The hygral effect will be significant
in AFC and PFC because the piezofibres are embedded in a polymer matrix. Therefore,
a systematic assessment of active stiffening effect in controlling the vibration of piezo-hygro-
thermo-elastic composite plates and shells is attempted to evaluate the performance of the
piezoelectric lamina.

In the present paper, the influence of active stiffening on the frequencycontrol ofof
piezo-hygro-thermo-elastic laminated plates and shells are presented for various elastic
modes. Active stiffening through actuation (piezoelectric) and active compensation through
actuation (piezo-thermo-elastic and piezo-hygro-elastic) are studied on cross-ply and angle-ply
laminates.
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2. Basic equations and weak formulation

The constitutive equations of a piezo-hygro-thermo-elastic lamina can be expressed as

6ij = cijklekl - dk1jEk -
a.ij T

- flijx,

Dj = djklekl + KjkEk + PjT,

(1)

(2)

where a
ij,

Dj,
Ekl,

Ek, T and x are the incremental stress, electric displacement, strain field,
electric field, temperature and moisture, respectively. In the above equations, c~jkl~ dkij, Kjk
and Pj are the elastic, piezoelectric, dielectric and pyroelectric constants, respectively
and

,ij
= c~jkl~kl is the thermoelastic constant and

Aij
= cijkl/3kl is the hygroelastic

constant.
The final state of stress in the piezo-hygro-thermo-elastic system can be expressed as
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In Eq. (3),
6ij

are the incremental stresses and
6eij

are the stresses induced due to temperature
and moisture. Note that the normal stress a

z
is assumed to be negligible.

The strain energy density in the piezo-hygro-thermo-elastic system can be expressed as

UPE =
1

26ijEij + ~
e

ii ij~

	

(4)

The non-linear strain–displacement relations are defined, following Lee and Yen [15], as

Eij = E l ij + ~nl ii ~

	

~5~

where el ij = {Exx, Eyy, Yxy, Yxz , Yyz}T are the linear strains and
Enl

~ ~~
nl

~ yy~nl~ ~nl xy~ ~nl~ yxz~nl ~T are theij

	

xx
non-linear strains.

After substituting Eq. (5) into Eq. (4) and neglecting the higher order terms in displacement
gradients ~12~ij~~l~~ we obtain

UPE = 126ije l ij ~ ~eI
ij ilij

	

a~e
ijenlij ~

The incremental potential energyin the system is obtained, following Lee and Yen [15], as

DUPE - UPE -ae

ij ~
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ij ~
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e
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.~eij ~
nl

ij ~

(6)
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The stress equation of motion is given by

t fij~i ~ fbj = p .uj.

	

(8)

The virtual work done is thus derived for a piezo-hygro-thermo-elastic actuator, using Eqs. (7)
and (8) and with the help of natural boundarycondition uijni = fsj, as

Z Z

~Ua = v (p
.uj8uj + cij~el ij

	

'8eij~~nlij ~ dv -
v

(fbj6uj dv)Z

	

v

Af

fsj8uj dA),

	

(9)
A

where p, fbj and
fsj, are density, body force and surface traction, respectively. The virtual work

done is obtained for a piezo-hygro-thermo-elastic sensor, using the equation of electrostatics and
with the help of natural boundarycondition Dini = q, as

ZZ~Us =
v

(Dj 1)
~j ~ dv -

s

(q8O) ds,

	

(10)
s

where
0

and q are scalar electric potential and surface charge per unit area, respectively.
The generalized weak form of coupled piezo-hygro-thermo-elastic problem is then derived using

Eqs. (1), (2), (9) and (10) as
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where the bodyforce is not considered in the present formulation.

3. Lamina constitutive equation

The lamina is assumed as elasticallyorthotropic and piezoelectricallyorthorhombic crystal
class mm2. The constitutive relation of an active lamina with respect to X–Y–Z co-ordinate
system is given by

( ) ( )
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~Ey ~ Ey
~
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In the above equation, the transformed elastic part is well known. Therefore, onlythe

piezoelectric, pyroelectric and hygro-thermo-elastic parts are given below:

ex = e1m
2

+ e2n
2

, ey = e1n
2

+ e2m
2

, exy = (e1 - e2)mn,

Ex =P1T, %% Ey = P2T, %E
z

= P3T,

QPE31 = QPE31m2 + QPE32n2, %% QPE32 = QPE31n 2 + QPE32m2

~QPE36= (QPE31 - QPE32)mn, %% QPE14 = (QPE15 + QPE24)mn,
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2

,

QPE15 - QPE15m2 - QPE24n
2

, m - cos 0, n - sin 0,%

QPE31 ~ d31 ~ C13d33C33 ; QPE32 ~ d32 ~ C23d33,
QPE31 = d31 -

C33

	

; PE32= d32 -
C33

	

QPE24 - d24; QPE15 - d15;

QDE11 - K11; QDE22 - K22; QDE33 - K33 + d33d33;

C33
	 ;

e1 = a1T + /31x;
e2 = a2T + a2x;

P1 ~ P1T; E2 - P2 T; %E3 - P3T.

Note that subscripts PE and DE denote piezoelectric and dielectric, respectively.
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where [
%
Q] = [T]T[Q][T], T is the transformation matrix and
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4. FE formulation

A doublycurved shell element is is shown in in Fig. 1 with co-ordinates x, y along the
in-plane direction and z along the thickness direction. The linear displacement relations are
given by

u(x , y, z, t) = u0(x, y, t) + zOy (x, y, t),

v(x, y, z, t) = v0(x, y, t) - zOx(x, y, t),

w(x, y, z, t) = w(x, y, t),

	

(14)

where u0, v0,and w are the mid-plane displacements and 0
x

and Oy are the rotations of the cross-
sections in the YZ and XZ planes, respectively.

Two multifunctional layers are considered in the formulation and they can be placed
anywhere along the thickness direction of the laminate (kth layer, see Fig. 1). The active
layers can be used either as actuators or as sensors in the distributed active control. The
total electric potential in each active layer (subscript a denotes actuator and s denotes sensor) is
given by

,~,

	

,~,

	

~z ~ hk~1~
4'a~x~ y~ z~ ~

4'0a~x~ y~ ~
(hk - hk_1)

O 1a (x' y ),

,I,

	

~z ~ hk~1~4's~x~ y~ z~ ~ ~
0s

~x~ y~ ~
(hk - hk- 1~ O1s(x'y)'

where 00 is the mean electric potential defined at the mid-plane of the active layer and 0
1

is the
difference of potential between top and bottom surfaces of the active layer. It is assumed that the
electric potential variation across the thickness is linear.

•r

4
Z

n
k+1

21

T
u
, ~u

Tb, %b

Fig. 1. Doublycurved laminated shell element with active layers.
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The linear gradient relations are described for mechanical field as follows:

{e

l
} _ {em } + z{eb};

a ~8@uo >
>

@x ~ w>8 9>

	

)ax
+

Rx>

{E,u } = em

	

>> > > ~

	

~x<
= <

@vo +
em ~ ~e

m

~

@y
~ wy

> > > Ry: ; >>
g

m ~

	

~>>xy

	

>@uo>:
@y

	 ~ @vo

@x

E

	

C

8 9@yy

	

> >> > 8

	

>9 >
> >@x> >e

b

>

	

> >
>>

	

> > ~ ~ >x<
= < =~

@yx
;~eb~~eb~y>>>

>@y>>>>:;>>~

	

~ ~

	

~gb>>>>xy~

	

~
@vo> >@yy>>@y

~

@yx

~
C2

1Ry
~

1

@x
~

@uo
:

;@xRx@y

	

~

1

	

a u o

ay - ax -
C2

( - Rx) (~ ax ay
~

	

~@w@x ~ yy ~ C1

uo

Rx

CC9x+9y-C,R )
/x

~

	

~>gyz@w>>@y y
x C1

vo

	

:
Ry

yyL

	

Caw - ex - C,
v

ay

	

Ry

where Rx and Ry; are the two radii of curvature of the shell element and C1 and C2 are the shell
theorytracers bywhich the analysis can be reduced to that of Sander’s, Love’s and Donnell’s
theories.

The linear gradient relations for the electric field are defined by

{E} i = { Ex Ey Ez }
T

;
~ @f i

	

@fi

	

~T

	

~17~@x

	

@y

	

@z ;

where i = a; s; a is the actuator and s is the sensor.
The elemental mechanical and electrical degrees of freedom fields are isoparametrically

interpolated using linear shape functions (Ni ):
X

~u
efe }T

= L Ni{%u %f~T ,

	

18)
i ; i=1;9

where {%u} = {u0 v0 w qx qy }
T

and {
%
f} = {f1a f1s}T are the nodal vectors of mechanical and

electrical degrees of freedom, respectively.
Upon substituting Eqs. (14), (15) and (18) into gradient relations, we get

X X
{e} ~ [J]-1[Bu]i{%u}i and {E} =

	

[J]-1[Bf]i{%f}i;

	

(19)
i=1;9 i=1;

where [J] is a Jacobian matrix and [Bu ] and [Bf] are the shape function derivative matrices of the
elastic and electric fields, respectively.

) < >
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= gxz _

	

(16);
>>>
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Using Eqs. (18) and (19), together with the material constitutive relations, the energyequation(11) is minimized for a stationaryvalue to derive the governing FE equations in terms of nodal

displacements and nodal voltages:

~M
uu

~~~~u~ + [K
uu

]{uu} - ~K
e

G
~~~u~ + [K

u
O]{

%0} _ {F
m

} + {FHT},

	

(20)

[K
qu

]{uu} + [Kqq ]{4} _ {Ft}F
el{Ft} + {FET},

	

(21)

where K
e
G is the geometric stiffness matrix due to induced stresses bytemperature

and

moisture, Fm is the applied mechanical load, {Fht} is the hygrothermal load vector and {Fet}

is the electrothermal load vector. In Eq. (21), the applied charge {Fel} is zero for sensor
application.

And the element matrices are calculated as follows:
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The integration is carried out with limits -1 to +1. The material constitutive matrices are
given by
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The shear correction factor (SCF) is taken as 5/6 in the present analysis. The [%p] is the mass
propertymatrix and is defined by

In 0 0 0

0 In 0 0

0 0 In 0

0 0 0 Ir

0 0 0 0

3
0

7
0 7

	 n

	

zk

0 ~ ~In ~ Ir ~ ~

	

~k~1~ z

2

~ dz~

	

~23~

0

	

k~1 `k

Ir

4.1. Hygrothermal load vector and element initial stress stiffness matrix

The element load vector due to hygro-thermo-elastic forces and moments is given by

FHT
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T
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e
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and T0 and T1 are the mean and difference of temperatures, respectively. The hygroelastic forces
and moments can be expressed as
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and x0
and

x1, are the mean and difference of moisture concentrations, respectively. It may be
noted that %~ and % ~ are the transformed thermo- and hygroelastic constants, respectively. The
non-linear strains of the doublycurved element are expressed, following Lee and Yen [15], as
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where w is assumed to be constant across the thickness (z direction). The non-linear strains in
Eq. (27) are expressed in matrix form as

nl ln o
Tl 1~nl
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Eq. (30) maybe modified as
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where {6
e

} is arranged in matrix form as follows:
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(33)

The matrix [S] is evaluated using the stress resultants (N
e

, Me) due to hygrothermal
loads (Eqs. (24)–(26)). The geometric stiffness matrix [K e

G
] is obtained with the 3 x 3 Gauss

quadrature.

4.2. Solution process

The global dynamic equation with feedback force is given by

~M
uu

~~ .%u~ + [ Kuu]{%u} - [K
e

G
]{%u} _ {F

m
} + {FHT} -

{Ffeed},

	

(34)

where
{Ffeed}

_ [Kuq]{4'a},4ais the actuator voltage.
The dynamic analysis of piezo-hygro-thermo-elastic laminate is carried out, solving the

following equation:

([Kuu] -
[KeG]

+ [Ka] - A[Muu]){%u} = 0.

	

(35)

The active stiffness matrix [Ka ] is formulated in the FE analysis, employing the coupled
piezoelectric matrices (Ku

o, Koo) as follows:

[Kal = [Kuq][Fd][KOO]-1 [Kou],

	

(36)

where Fd is the displacement control gain and a unit gain is assumed in the present analysis.
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The matrix [S
e
] is defined by

x2a

6 Nexy N
e

6 Ney6
06 0 Nex66
06 0 N

e

xy Ne
y

66
0 0 0 0 Ne6 x6
06 0 0 0 N

e

6 yN
e

xy

0 0 -M
e

~M
e

xy 0 0
N

e

x
h

2

x 12

0 0 -M
e

xy ~M
e

y
0 0 N

e

xy
h

2
N

e

y
h

2

Y
12 12

Me M
e

xy 0 0 0 0 0 0
N

x

e
h

2

x 12
[S

e
] =

M
e

xy M
e

y
0 0 0 0 0 0

N
e

xy
h

2
N

e

y
h

2

12 12

0 0 M
e 0 0

N
y

e
h

2

Qex _Qe
y xy M

y

e
-hQ

e

x hQ
e

y 12R
2

y

Qex Qey 0 0 -Me x -M
e

xy 0 0 hQ
e

x hQ
e

y
N

e

xy
h

2

N
e

x
h

2

12R
x
R

y
12R

2

x

0 0 0 0 ~N

e

x Ne
xy 0 0 0 0

_
M

e
xy Mex N

x

e

0

Na

0

Na
y

0

Na
y

0

Ny

Rx

~N

e

xy
Ry

0

Rx

N
y

e

R
y

0

0

-May

0

~My

0

M
e

0

Ma
y

Rx Ry

-M
e

y

R
2

x

M
e

xy

R
2

x

N
e

xy
h

2
N

y

e

R
y

2

0
Na Ny

R
y

2

~Q
e

RxRy

Qex

12R
x
R

y

0
R

x
R

x
Ry Ry Ry R

y
R

x
R

x
R

y
R

x zx
R~zR

y



The stress stiffening effect due to piezoelectric actuation is included in the present analysis using
the actuator and sensor matrices to studythe influence of active stiffening on the closed loop
system frequencies. However, the actuation effect may also be considered through the geometric
stiffness matrix, derived from piezoelectric stress resultants byapplying specified actuator voltagein the uncoupled analysis.

5. Numerical studies

5.1. Validation problems

The developed FE procedures are coded in MATLAB
s

and the element is thoroughlyvalidated
for its performance to solve the dynamic problems of laminated plates/shells with stress stiffening
and piezoelectric effects. The element is made field consistent byadopting a a selective integration

technique (3 x 3 for membrane and bending; 3 x 2, 2 x 3 for shear).

5.1.1. Free vibration analysis
The symmetric and un-symmetric simply supported laminated cylindrical (Rx = R) and

spherical (Rx = Ry = R) shells are considered with different a/h and R/a ratios. The following
material properties are used in the analysis:

E1 = 25E2, G23 = 0.2E2, G13 = G12 = 0.5E2, v12 = 0.25.

The free vibration frequencies of laminated plates and shells are presented in Tables 1 and 2.
The predicted natural frequencies bythe present element are in good agreement with those
reported byReddy [16]. The close correlation shows the capabilityof present element to model the
dynamics of thin and moderately thick composite plates and shells. As another validation
problem for the dynamics of moderately thick laminates, simply supported cross-ply laminated
plate (a/h = 10) is considered. The analysis is carried out, taking the material data as given in
Ref. [13]. The free vibration frequencies estimated bythe present element (FSDT) are compared

Table 1
Non-dimensional fundamental frequency ~w ~ ~ a2

p

~~E2~h~ versus radius to side length ratio of spherical shell
(alb = 1)
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R/a

	

0°/90° 0°/90°/0° 0°/90°/90°/0°

a/h=100 a/h=10 a/h=100 a /h=10 a/h=100 a/h=10

w w ~

	

w w ww * w w ww* w w ww * w w ww * w w ww *

1

	

125.956 125.930 14.454 14.481 126.016 125.990 16.087 16.115 126.349 126.330 16.148 16.172
2

	

67.376 67.361 10.744 10.749 68.088 68.075 13.376 13.382 68.307 68.294 13.441 13.447
3

	

46.011 46.002

	

9.781 9.761 47.274 47.265 12.729 12.731 47.424 47.415 12.794 12.795
4

	

35.235 35.228

	

9.410 9.410 36.978 36.971 12.487 12.487 37.089 37.082 12.552 12.552

5

	

28.831 28.825

	

9.231 9.231 30.999 30.993 12.372 12.372 31.084 31.079 12.437 12.437

10

	

16.708 16.706

	

8.985 8.984 20.349 20.347 12.216 12.215 20.383 20.380 12.281 12.280
10E30

	

9.688 9.687

	

8.900 8.900 15.184 15.183 12.163 12.162 15.185 15.184 12.228 12.226

w~ Ref. [16]; 6 present element.
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with those results predicted byother theories (TSDPT, LWPT, PLWPT, CLPT) and exact
solution (refer Table 3). A close correlation of results shows that the present element maybe used
to analyze the moderately thick laminates.

5.1.2. Thermoelastic and hygroelastic validation
Since the stress stiffening effect byhygrothermal strain is introduced in the FE formulation, a

thorough analysis is carried out to qualify the present element. Firstly a thermal buckling problem
is solved for both isotropic and piezolaminated composite plates. The dimension, material data
and boundaryconditions are taken as defined in Refs. [12,13]. The buckling temperatures
predicted bythe present element are presented along with those reported results [12,13] in Tables
4(a) and (b) and 5. A good comparison is observed for the buckling temperature and the analysis
reveals that the geometric stiffness matrix is correctlymodelled in the present FE formulation.
Next, a validation problem for piezo-thermo-elastic coupling is presented. The piezolaminated
plate dimension and material data are considered as given in Ref. [7]. The applied uniform

Table 2
Non-dimensional fundamental frequency ~w ~ ~a2

p

~~E2~h~ versus radius to side length ratio of cylindrical shell
(alb = 1)

Table 3
Comparison of non-dimensional natural frequencies for simplysupported [0/90/0] laminated square plate ( a/h = 10:
v3 = whO(p/E2))

a
Selective integration.

R/a

	

0°/90° 0°/90°/0° 0°/90°/90°/0°

a/h = 100

	

a/h = 10 a/h = 100 a/h = 10 a/h = 100 a/h = 10

w w
~

	

w w ww* w w ww* w w ww* w w ww* w w ww*

1

	

65.508 65.474 10.038 9.999 66.608 66.583 13.187 13.172 66.737 66.704 13.145 13.128
2

	

34.932 34.914 9.164 9.148 36.782 36.770 12.443 12.438 36.874 36.858 12.477 12.471
3

	

24.528 24.516 8.993 8.983 27.123 27.116 12.290 12.287 27.183 27.173 12.340 12.337
4

	

19.518 19.509 8.937 8.930 22.714 22.709 12.235 12.233 22.756 22.749 12.291 12.289
5

	

16.674 16.668 8.913 8.909 20.337 20.332 12.209 12.207 20.367 20.361 12.269 12.267
10

	

11.834 11.831 8.891 8.888 16.626 16.625 12.175 12.173 16.636 16.634 12.238 12.236
10E30

	

9.688 9.687 8.901 8.900 15.184 15.183 12.163 12.162 15.185 15.184 12.228 12.226

w~ Ref. [16]; w present element.

Theory v3 1 M2 M3 M4

Nosier et al. [21] (Exact) 0.06715 0.12811 0.17217 0.20798
Nosier et al. [21] (TSDPT) 0.06839 0.13010 0.17921 0.21526
Nosier et al. [21] (FSDPT) 0.06931 0.12886 0.18674 0.22055
Nosier et al. [21] (CLPT) 0.07769 0.15185 0.26599 0.31077
Carrera [20] (LWPT) 0.06758 — — 0.21100
Present 9 node elementa (FSDT) 0.06839 0.12832 0.18775 0.22069
Oh et al. [13] (PLWPT) 0.06629 0.12862 0.17364 0.20913
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Table 4
Verification of critical buckling temperature for isotropic square plates (a=h = 100; a = 2 x 10-6 ; n = 0:3)

Sl no

	

Temperature distribution

	

Present FE

	

Analytical

	

Thangaratnam et al.

	

Oh et al.
[22]

	

[12]

(a) Simply supported (S–S–S–S)
1

	

Uniform temperature rise

	

63.215

	

63.27

	

63.33

	

62.51
2

	

Linearlyvarying 126.43

	

126.54

	

126.00 —
temperature in x direction

3

	

Linearlyvarying 252.86

	

252.00

	

250.65 —
temperature in x and y
directions.

(b) Clamped (C–C–C–C)
1

	

Uniform temperature rise

	

169.09

	

168.71

	

167.70

	

167.72
2

	

Linearlyvarying 338.19

	

337.42

	

332.50 —
temperature in x direction

3

	

Linearlyvarying 667.47

	

674.84

	

657.84 —
temperature in x and y
directions

Table 5
Comparison of Euler buckling temperature of simplysupported piezolaminated composite plates ( a=h = 100)
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temperature develops the electric potential due to the presence of direct piezoelectric coupling.
The thermallyinduced sensorydeflection pattern is plotted along with those results of Lee and
Saravanos [7] in Fig. 2. The transverse deflections predicted bythe present element are seen closely
correlating with the shell element results of Lee and Saravanos [7].

A simplysupported laminated plate (CFRP) subjected to uniform temperature and moisture is
considered as another validation problem for stress stiffening effect. The material data considered
for the analysis are given in Table 6. The estimated free vibration frequencies are presented in
Table 7 along with Ritz solutions [19]. The dynamic analysis results reflect that the stress stiffening
effect due to expansion strain is correctlycaptured bythe present element.

5.1.3. Piezoelectric validation
The coupled piezoelectric matrices will be used in the active stiffness estimation; thus, a

validation problem for piezoelectric coupling is presented. A simplysupported, laminated plate

TheoryEuler

	

( °C)buckling temperature

Present element 50.590
Oh et al. [13] (SF) 50.241
Present element 52.075
Oh et al. [13] (EF) 52.632
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0. 0

-0 .1 -

*
w

-0 .2 -

-0 .3 -

-0 .4
0.0

-Present Element

- - - - Lee et al. (Continuum, 2000)

Lee et al.(Shell, 2000)

0.2 0.4
x/a

0.6 0.8 1.0

(CFRP*) is considered with PVDF layers at top and bottom. The material properties used in the
analysis are presented in Table 6. The piezoelectricallyinduced displacements and stresses are

estimated (see Table 8) and are found to be in good comparison with exact and FE results [17,18].

Fig. 2. Verification of thermallyinduced sensorydisplacement of a clamped piezolaminated plate (0 8/PZT).

Table 6
Material data used in the present analysis

Material properties CFRP PZT CFRP* PVDF

Elastic moduli (GPa)

E1 130 63.0 172.37 2.0

E2, E3 9.5 63.0 6.9 2.0

G12, G13 6.0 24.6 3.45 0.775

G23 3.0 24.6 1.38 0.775

V12, V13, V23 0.3 0.28 0.25 0.29

Coeff. of thermal expansion (/K)

a1 -0.3E-6 0.9E-6
a2 28.1E-6 0.9E-6

Coeff. of moisture co-efficient (/%w)

#1 0.0

#2 0.44

Piezoelectric constant (C/N)

d31, d32 — 250E-12 0.0 23E~12

Dielectric constant (F/m)

x11, x22 — 15.3E–9 0.0 10.62E-9

K33 — 15.0E-9 0.0 10.62E-9

Density(kg/m 3
)

P 1600 7600
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Table 7
Verification of non-dimensionalized natural frequencies in comparison with Ritz method (a/b = 1, a/h = 100, [0°/90°/

90°/0°])

Table 8
Verification of non-dimensional deflections and stresses of laminated simplysupported square plate ([PVDF/0 °/90°/0°/
PVDF]; a/h = 100, applied load=10 N/m

2
)

The results of the validation problems show that the present element is capable of modelling the
dynamic behaviour of piezo-hygro-thermo-elastic laminates.

5.2. Dynamic behaviour of piezo-hygro-thermo-elastic laminates

The piezoelectric lamina (PZT) can be effectivelyemployed as a distributed actuator or sensor
in feedback control application. As an actuator, it controls the amplitude of vibration and
frequencythrough active effects, namely‘active stiffening’ and ‘active damping’. The active
stiffening issue is attempted in the present paper. The angle-ply(45/ -45) and cross-ply(0/90)

laminates (CFRP: a = 0.1 m, b = 0.1 m) are taken for the numerical experiments with an
additional active lamina (PZT: 0°, hPZT = 0.0002 m) as an actuator. Simplysupported and

clamped boundaryconditions are assumed and the material data for the analysis is given in Table
6. The active stiffness is estimated using the coupled electromechanical stiffness (Kuo) and
capacitance (KOO) matrices, taking unit displacement gain. Hygral (Z 0 = 0.5%) and thermal
(T0 = 350 °K) effects are introduced through initial stress stiffness matrix in the dynamic analysis.
Thin (a/h = 100) and moderatelythick ((a/h = 10) piezo-hygro-thermo-elastic laminates (plates

Applied voltage
( a = 0 Applied voltage

( a = 100

%u %w %.xx %,yy %u %w %.xx.,: 6yy

Present +0.0068 0.4421 ±0.5524 ±0.1859 +0.00645 0.4202 +0.5174 0.1700
-~0.5227 -~0.1801

Ref. [17] +0.0068 0.4450 ±0.5590 ±0.1870 +0.0065 0.4209 +0.4980 0.1640
-0.5240 -0.1910

Ref. [18] +0.0067 0.4710 ±0.5380 ±0.1810 -~0.0063 0.4470 +0.5040 0.1580
0.0065 -0.5180 -0.1840

Mode no. Elastic,X0 = 0%, T0 = 0 K x0 = 0.1% T0 = 325 K

Present Ritz method Eight-noded
element [19]

Present Ritz Method Eight-noded
element [19]

1 12.0432 9.392 9.411 9.429 8.044 8.068 8.088
2 23.1842 19.881 19.911 20.679 18.342 18.378 19.196
3 41.1674 39.334 39.528 40.679 38.578 38.778 39.324
4 48.0229 45.593 45.815 46.752 44.546 44.778 45.431
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and shells) are analyzed (mesh size 8 x 8) and the results are presented in the form of non-
dimensional frequencies for various elastic modes with their respective mode order.

The boundaryconditions adopted in the present analysis are:
Mechanical: xx=0, 0x=0, a; v0 = 0, w w=0, 0w=0, 0

x =0 and y = 0, b; u0 = 0, ww=0,0w=0, 9
y = 0.

Electrical: Short-circuit (electric potential=0) and open-circuit (electric potentiala0).

5.2.1. Active stiffening and active compensation effects on plates
A parametric studyis carried out to capture the active stiffening and active compensation

effects on the dynamics of cross-ply and angle-ply laminated plates. The non-dimensional
frequencies of different elastic modes are presented in Tables 9–12 for plates with a/h = 10, 100.
In general, the frequencyreduction in thin plates due to hygrothermal strain is relativelymore for
the clamped plates compared to simplysupported plates. Also, the frequencies of thin
piezoelectric clamped plates are enhanced substantiallythan simplysupported plates due to
active stiffening effect. It is noted that the active compensation to thermal effect is around
(12"t, E:z6%~ for clamped plates to (%~pteE5%) to simplysupported plates. Similarly, the effect of
hygral is also actively compensated by the piezoelectric actuation in clamped plates W%~pheE7%/0) as
well as in simplysupported plates (Qp he E5%). The hygral and thermal influence on frequency
reduction of laminated plates with a/h = 10, is observed to be relativelyless. Also, it is noted that

the boundaryeffect on active stiffening is not verysignificant. The active stiffness introduced by
piezoelectric coupling compensates the frequencyreduction

	

that has occurred due to
hygrothermal effect in the case of moderately thick laminates (a/h = 10; Tables 11 and 12).

5.2.2. Active stiffening and active compensation effects on cylindrical shells
The cylindrical cross-ply and angle-ply laminated shells with R

x
/a = 10, 5 are taken to study

the stiffening effect on the frequencycontrol and the results are presented in Tables 13–20. The
reduction in elastic frequencies due to hygral and thermal effects is comparatively more in the case
of clamped shells. Also the frequencyreduction due to hygrothermal strain is relativelyhigher in
the case of R

x
/a = 10, compared to R

x
/a = 5, for both cross-plyand angle-plylaminated shells. It

is observed that the active stiffening is marginallyinfluenced byboundaryeffect in thin shells

Table 9
Non-dimensional frequencies of piezo-hygro-thermo-elastic plates (a/b = 1, a/h = 100, S–S–S–S, R/a = N)
Laminate Mode order S2

e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 9.1284 8.4688 8.1821 9.6193 8.8972 8.6513
1–2 19.9740 19.1813 18.8379 20.8783 20.0490 19.7668
2–1 26.8189 26.2035 25.9297 28.4468 27.7533 27.4996
2–2 36.4658 35.5165 35.0608 38.4203 37.4276 37.0156
1–3 38.9129 38.1180 37.7787 40.5667 39.7381 39.4630

45/-45/PZT 1–1 10.4514 8.7806 7.5274 10.9503 9.2513 8.0679
1–2 22.2106 20.3507 19.0348 23.2671 21.3506 20.0879
2–1 25.4945 23.9278 22.9540 26.9018 25.3325 24.4145
1–3 37.8852 35.9489 34.6158 39.6976 37.6992 36.4065
2–2 46.3335 44.9937 44.1492 48.7129 47.3187 46.5111



Table 11
Non-dimensional frequencies of piezo-hygro-thermo-elastic plates (a/b = 1, a/h = 10, S–S–S–S, R/a = N)

Table 12
Non-dimensional frequencies of piezo-hygro-thermo-elastic plates (a/b = 1, a/h = 10, C–C–C–C, R/a = N)

(simplysupported shells:
%
2pe E5–6%; clamped shells: %

2pe E5%). And this trend is observed to be
the same both in Rx /a = 10 and Rx/a = 5. The piezoelectric actuation modelled in the present
studyis basicallyisotropic in nature ( d31 = d32). It is evident from the results that the isotropic
actuation efficientlycompensates the reduction in natural frequencies due to hygral and thermal
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Table 10
Non-dimensional frequencies of piezo-hygro-thermo-elastic plates (a/b = 1, a/h = 100, C–C–C–C, R/a = N)

275

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 17.7429 14.5812 12.3842 18.7901 15.8412 13.8515
1–2 30.8129 26.5959 23.8389 32.2872 28.2917 25.7197
2–1 41.0721 38.0265 36.1688 43.7366 40.8902 39.1695
2–2 51.6875 47.8886 45.658 54.572 50.9884 48.3509
1–3 53.0355 48.4682 45.5744 55.3714 51.0132 48.822

45/-45/PZT 1–1 17.1875 13.8642 11.4923 18.1476 15.0351 12.8838
1–2 32.7699 28.7444 26.1458 34.4314 30.6178 28.1901
2–1 36.6901 33.2581 31.1202 38.8194 35.5907 33.6009
1–3 50.3398 46.2235 43.6891 52.9266 49.0094 46.6165
2–2 61.3571 57.3811 54.9778 64.5861 60.815 58.5494

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 14.8304 14.7723 14.7288 15.0056 14.9483 14.9055
1–2 26.5977 26.5215 26.4646 26.7589 26.6832 26.6267
2–1 27.5165 27.4438 27.3896 27.8672 27.7957 27.7422

2–2 36.1760 36.0893 36.0243 36.5069 36.4212 36.3569

45/-45/PZT 1–1 14.4399 14.3810 14.3368 14.6134 14.5553 14.5117
1–2 26.2379 26.1613 26.1038 26.4566 26.3806 26.3237
2–1 26.6774 26.6026 26.5466 26.9941 26.9203 26.8651
2–2 37.2473 37.1626 37.0994 37.5424 37.4585 37.3959

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 8.4018 8.3901 8.3817 8.5411 8.5289 8.5202
1–2 19.8782 19.8638 19.8535 20.0395 20.0248 20.0143
2–1 20.9143 20.9007 20.8909 21.2986 21.2844 21.2744

45/-45/PZT 1–1 11.0622 11.0378 11.0196 11.1691 11.1447 11.1264
1–2 20.8132 20.7843 20.7627 21.0101 21.5381 20.9590
2–1 21.2716 21.2419 21.2201 21.5677 20.9808 21.5164
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Table 13
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 100, S–S–S–S, Rx /a = 10)

Table 15
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 10, S–S–S–S, Rx /a = 10)

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT

45/-45/PZT

1–1
1–2
2–1
2–2
1–3

1–1
1–2
2–1
1–3
2–2

10.2211
21.5817
26.7430
35.7179
40.4067

14.4642
23.0722
27.2787
39.0511
46.3052

9.5971
20.7212
26.1177
34.5876
39.5262

13.7795
22.0225

26.3564
37.8609
45.4736

9.0144
19.9626
25.5818
33.7201
38.7516

13.1030
21.0043

25.5358
36.7448
44.7293

10.9434
22.9599
28.5248
38.0020
42.7379

15.3621
24.4039

29.1365
41.3217
49.0115

10.1783
22.0240
27.8383
36.9973
41.7431

14.0521
21.9898
27.3812
38.9585
46.9869

10.4890
21.8336
28.8501
37.3464
41.4023

13.3867
20.8356
26.5408
37.7690
46.2044

Table 14
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 100, C–C–C–C,
Rx la = 10)

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 24.5242 22.9637 22.011 25.7293 23.6138 22.2781
1–2 35.1734 32.0191 30.0609 37.1028 33.6387 31.4675
2–1 41.1288 39.3794 38.344 43.8669 40.7736 38.8802
2–2 51.7259 48.8281 47.0946 54.8555 51.1248 48.8558
1–3 55.7654 51.8213 49.4299 58.7585 54.6329 52.1280

45/-45/PZT 1–1 22.0049 20.2891 19.2277 23.2283 20.7036 19.0316
1–2 34.2459 31.627 30.0079 36.1709 32.1593 29.5731
2–1 38.2399 35.8938 34.4924 40.6949 37.3083 35.2036
1–3 51.7210 48.8396 47.1129 54.6819 50.5913 48.0778
2–2 61.4327 58.4724 56.6953 64.9663 60.7717 58.2240

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 8.4221 8.4106 8.4021 8.5663 8.5537 8.5452
1–2 19.8830 19.8682 19.8576 20.0518 20.0367 20.0261
2–1 20.9780 20.9648 20.9552 21.3646 21.3511 21.3422

45/-45/PZT 1–1 11.1063 11.0821 11.0640 11.2189 11.1944 11.1762
1–2 20.8029 20.7743 20.7530 21.0043 20.9749 20.9530
2–1 21.2973 21.2675 21.2456 21.5986 21.5687 21.5469
2–2 33.7128 33.6803 33.6564 33.9917 33.9585 33.9343
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Table 16
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 10, C–C–C–C, Rx /a = 10)

Table 17
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 100, S-S-S-S, Rx /a = 5)

Table 18
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 100, C-C-C-C, Rx /a = 5)

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 37.8102 37.0379 36.5844 39.2567 37.6666 36.6786
2–1 41.9351 40.9668 40.4021 44.7028 41.5182 39.5582
1–2 45.8697 43.7034 42.4123 48.1135 45.3463 43.6576
2–2 53.5618 51.3529 50.0489 56.8600 53.1522 50.8958
1–3 63.4776 60.2148 58.2710 66.9757 63.2834 61.0655

45/-45/PZT 1–1 32.3819 31.6419 31.2066 33.8727 31.8426 30.4944
2–1 38.1589 36.9385 36.2070 40.2014 36.3850 33.9366
1–2 43.7662 42.1935 41.2780 46.4506 43.3122 41.3724
1–3 55.6853 53.9099 52.8613 58.9297 54.9761 52.5695
2–2 63.1547 61.3315 60.2127 66.8202 62.5619 59.9650

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 14.7720 14.5298 14.2465 15.5252 14.4497 14.3868
2–1 27.0027 26.6248 26.2206 28.9204 26.7141 26.8611
1–2 28.7979 28.3787 27.9317 30.3507 29.4176 29.1242
2–2 36.2489 35.3667 34.6145 38.8044 36.9035 36.6940
1–3 47.0872 46.6048 46.0737 49.8527 48.8421 48.4137

45/-45/PZT 1–1 22.4581 22.2569 22.0122 23.5668 22.7038 20.9833
2–1 24.1425 23.6517 23.1145 25.6501 22.4773 22.0877
1–2 34.7796 34.4249 34.0308 36.8674 35.2791 34.4516
1–3 42.1881 41.5970 40.9351 44.6908 41.7842 40.2686
2–2 47.7948 47.3497 46.8995 50.7047 48.0875 46.8949

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 14.9880 14.9312 14.8887 15.1668 15.1102 15.0679
1–2 26.6595 26.5839 26.5275 26.8285 26.7532 26.6969
2–1 27.5778 27.5065 27.4533 27.9288 27.8573 27.8038
2–2 36.2207 36.1349 36.0706 36.5547 36.4689 36.4046
1–3 42.7634 42.6728 42.6054 42.9373 42.8469 42.7797

45/-45/PZT 1–1 14.5359 14.4779 14.4345 14.7139 14.6562 14.6128
1–2 26.2307 26.1550 26.0982 26.4534 26.3773 26.3204
2–1 26.7436 26.6696 26.6142 27.0663 26.9924 26.9370
2–2 37.2728 37.1890 37.1265 37.5732 37.4891 37.4265
2–2 41.7131 41.6218 41.5533 42.0770 41.9854 41.9167
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Table 19
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 10, S–S–S–S, Rx /a = 5)

Table 20
Non-dimensional frequencies of piezo-hygro-thermo-elastic cylindrical shell (a/b = 1, a/h = 10, C–C–C–C, Rx /a = 5)

effects on cross-plylaminates, and moderatelycontrols the dynamics of angle-plylaminate for
R

x
/a = 10. However, the performance of actuator lamina reduces drasticallyin the case of

R
x
/a = 5 for cross-plylaminate and does not seem to be effective in angle-plylaminate.

Therefore, to achieve better structural control of a moderatelythin laminate that has the

extension-bending and extension-twisting coupling, it is essential to tailor the piezoelectric
actuation along the fibre direction using the directional actuators (PiezoFibre Composites, Active
Fibre Composites, Directionally Active Piezos). In the case of cylindrical shells with a/h = 10, the
boundaryeffect does not seem to influence the active stiffening and active compensation is very
low independent of boundaryconditions.

5.2.3. Active stiffening and active compensation effects on spherical shells
The spherical cross-plyand angle-plylaminated shells with Rx/a, Ry /a = 10 and 5 are taken to

studythe stiffening effect on the frequencycontrol and the results are given in Tables 21–28. A
moderate reduction in natural frequencies is observed due to hygral and thermal effects. The
active stiffening is relativelyefficient in the simplysupported shells ( %

2pe E6% for Rx /a, Ry
/a = 10)

than the clamped shells (
%
2p e E5: 5%). However, in the case of R

x
/a, R

y
/a = 5, the active stiffening

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 15.4641 15.4109 15.3711 15.6447 15.5900 15.5491
1–2 26.9069 26.8330 26.7778 27.0836 27.0090 26.9534
2–1 27.6306 27.5631 27.5128 27.9813 27.9096 27.8559
2–2 36.2787 36.1953 36.1328 36.6151 36.5293 36.4649
1–3 42.8992 42.8096 42.7430 43.0822 42.9922 42.9253

45/-45/PZT 1–1 14.8274 14.7723 14.7310 15.0090 14.9522 14.9095
1–2 26.2828 26.2097 26.1549 26.5090 26.4327 26.3756
2–1 26.8736 26.8020 26.7483 27.2019 27.1277 27.0721
2–2 37.3518 37.2704 37.2098 37.6570 37.5729 37.5102
2–2 41.7350 41.6465 41.5800 42.1009 42.0088 41.9396

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 8.4884 8.4772 8.4688 8.6362 8.6226 8.6138
1–2 19.9581 19.9431 21.0113 20.1336 20.1179 20.1071
2–1 21.0334 21.0207 19.9323 21.4219 21.4076 21.3988

45/-45/PZT 1–1 11.2566 11.2334 11.2159 11.3744 11.3496 11.3313

1–2 20.8244 20.7967 20.7759 21.0302 20.9997 20.9773
2–1 21.3757 21.3466 21.3251 21.6814 21.6507 21.6283
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Table 21

Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 100, S–S–S–S, Rx /a = 10,
Ry /a = 10)

Table 22
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 100, C–C–C–C, Rx /a = 10,
Ry /a = 10)

Table 23
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 10, S–S–S–S, Rx /a = 10,
Ry /a = 10)

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 14.7851 14.5585 14.2862 15.5401 14.7274 14.8041
2–1 22.9975 22.4827 21.9488 24.4402 22.7582 22.7712
1–2 29.7159 29.3991 29.0298 31.9276 30.5495 30.5011
2–2 36.2493 35.4355 34.7159 38.8058 36.9668 36.7990
1–3 40.9263 40.3780 39.8011 43.3181 41.4656 41.5864

45/-45/PZT 1–1 22.4796 22.2801 22.0364 23.5909 22.5910 22.0843

1–2 26.6311 26.2049 25.6803 28.3164 25.8609 24.5220
2–1 29.7049 29.2720 28.8436 31.7655 29.6782 28.6549
1–3 41.9556 41.3501 40.6599 44.5750 41.8096 40.3294
2–2 46.7400 46.3208 45.8721 49.8078 47.1806 45.9656

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 8.4573 8.4457 8.4371 8.6049 8.5929 8.5848
1–2 19.8298 19.8145 19.8035 19.9998 19.9844 19.9744
2–1 21.0025 20.9896 20.9801 21.3972 21.3833 21.3741

45/-45/PZT 1–1 11.2786 11.2554 11.2380 11.3967 11.3720 11.3537
1–2 20.8150 20.7873 20.7665 21.0210 20.9906 20.9682
2–1 21.3426 21.3134 21.2919 21.6487 21.6178 21.5954

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 30.7714 30.2691 29.9767 32.5210 30.6465 29.4119
1–2 35.6555 34.6115 33.9995 37.6824 33.9624 31.5715
2–1 45.6022 44.7078 44.1876 48.9187 46.0205 44.2393
1–3 52.6109 51.0507 50.1414 56.0362 52.2008 49.8456
2–2 56.4508 55.2200 54.4990 59.5392 55.2055 52.5688

45/-45/PZT 1–1 29.3912 28.8276 28.4980 31.0011 28.8291 27.3665
1–2 37.1569 36.0090 35.3360 43.5895 35.3303 32.7108
2–1 40.8865 39.8392 39.2248 39.3612 40.1654 38.0204
2–2 54.5300 53.1033 52.2724 57.8398 53.7027 51.1617
1–3 61.8338 60.2830 59.3762 65.6541 61.1054 58.3100
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Table 24

Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 10, C–C–C–C, Rx /a = 10,
Ry /a = 10)

Table 25
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 100, S–S–S–S, Rx /a = 5,
R

y
/a = 5)

Table 26
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 100, C–C–C–C, Rx /a = 5,
Ry /a = 5)

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–2 48.0811 47.8948 47.7844 50.4500 47.6006 45.8264
1–1 51.5383 51.4765 51.4390 54.0567 52.0471 50.6701
2–1 56.1802 55.9227 55.7704 59.8344 57.2103 55.5801
2–2 58.2006 57.5249 57.1383 61.9543 58.4337 56.2913
1–3 67.1440 66.8896 66.7360 70.8518 67.6127 65.7642

45/-45/PZT 1–1 48.9962 48.7660 48.6004 51.3692 48.4137 46.4296
1–2 49.0499 48.9223 48.8759 51.5689 49.0617 47.4823
2–1 52.0116 51.7004 51.5191 55.0240 52.1831 50.4312
1–3 65.9500 65.5640 65.1903 69.8197 66.1228 63.4793
2–2 66.2055 65.4797 65.2066 70.4439 66.6029 64.7215

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 26.8985 26.8583 26.7950 27.6751 26.9552 26.7622
1–2 33.5011 33.3124 33.1123 35.0940 33.3540 32.7679
2–1 38.8524 38.7598 38.5946 41.2471 39.6423 39.0784
2–2 40.8525 40.3832 39.9597 43.7283 41.3866 40.5431
1–3 49.1120 48.8677 48.6027 51.9443 49.5109 48.7239

45/-45/PZT 1–2 38.6166 38.5171 38.3407 40.5408 38.6663 37.6246
2–1 40.9612 40.7893 40.6190 42.5143 41.4899 40.6141
1–1 41.0132 40.9719 40.9044 43.2732 41.8769 41.4684
1–3 50.6756 50.5082 50.2249 53.8075 50.9988 49.4808
2–2 51.8227 51.6548 51.4437 55.3330 52.5531 51.1393

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 15.1759 15.1217 15.0811 15.3625 15.3067 15.2650
1–2 26.5950 26.5223 26.4680 26.7647 26.6889 26.6324
2–1 27.7111 27.6420 27.5903 28.0749 28.0035 27.9501
2–2 36.1829 36.0994 36.0369 36.5201 36.4341 36.3696
1–3 42.6949 42.6079 42.5433 42.8691 42.7784 42.7109

45/-45/PZT 1–1 14.7555 14.7002 14.6587 14.9379 14.8808 14.8380
1–2 26.2540 26.1807 26.1259 26.4807 26.4043 26.3471
2–1 26.8386 26.7671 26.7134 27.1670 27.0928 27.0371
2–2 37.3354 37.2539 37.1933 37.6407 37.5565 37.4938
2–2 41.7157 41.6270 41.5606 42.0825 41.9903 41.9211



S. Raja et al. / Journal of Sound and Vibration 278 (2004) 257–283

	

28 1

Table 27
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 10, S–S–S–S, Rx /a = 5,
Ry /a = 5)

Table 28
Non-dimensional frequencies of piezo-hygro-thermo-elastic spherical shell (a/b = 1, a/h = 10, C–C–C–C, Rx /a = 5,
Ry /a = 5)

is found to be better in clamped shells. It is also noticed that the piezoelectric actuation trend in
controlling the frequencyis same for both cross-plyand angle-plylaminates. The active
compensation bypiezoelectric actuator is observed to be relativelylower in thin piezo-hygro-
thermo-elastic spherical shells compared to thin plates and cylindrical shells. In the case of
spherical shells with a /h = 10, the active stiffening and active compensation effects are verylow
independent of boundaryconditions.

6. Conclusions

A generalized FE formulation involving electromechanical coupling and hygrothermal strain
field is presented. Further, a nine-noded field consistent Langrangian element is developed to
studythe influence of active stiffening on the frequencycontrol of piezo-hygro-thermo-elastic
laminated plates and shells. The hygrothermal strain modifies the elastic stiffness and brings down
the elastic frequencies of piezoelectric laminated plates and shells significantly. The isotropic PZT
actuator modelled in the present formulation activelycompensates the frequencyreduction that

Laminate Mode order S2
e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 16.1541 16.1092 16.0757 16.3496 16.2973 16.2583
1–2 26.7797 26.7161 26.6687 26.9574 26.8817 26.8252
2–1 28.0822 28.0219 27.9769 28.4566 28.3855 28.3323
2–2 36.2410 36.1658 36.1096 36.5834 36.4968 36.4318
1–3 42.7827 42.706 42.6491 42.9665 42.8755 42.8079

45/-45/PZT 1–1 15.6746 15.6283 15.5936 15.8636 15.8093 15.7685
1–2 26.4531 26.3886 26.3403 26.6868 26.6096 26.5518
2–1 27.1773 27.1144 27.0672 27.5153 27.4403 27.3841
2–2 37.6026 37.5297 37.4754 37.9174 37.8330 37.7701
2–2 41.7601 41.6808 41.6213 42.1321 42.0379 41.9672

Laminate Mode order S2e Qte Qhe 92pe Qpte Ophe

0/90/PZT 1–1 8.7215 8.7107 8.7026 8.8730 8.8589 8.8499
1–2 19.8883 19.8728 19.8617 20.0658 20.0464 20.0344
2–1 21.1880 21.1764 21.1675 21.5904 21.5737 21.5631

45/-45/PZT 1–1 11.9397 11.9200 11.9050 12.0667 12.0415 12.0229

1–2 20.9458 20.9211 20.9025 21.1598 21.1260 21.1012
2–1 21.5365 21.5100 21.4902 21.8506 21.8164 21.7916
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has occurred due to hygral and thermal effects in cross-ply laminates. However, it is observed that
the actuator performance reduces significantlywith increase in curvature particularlyin angle-ply
laminates, which demands the use of directional actuators. The active stiffening and active
compensation effects are low in moderatelythick piezo-hygro-thermo-elastic plates and shells,
which are less influenced byboundaryconditions.

Appendix A. Notation
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