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. Abstract. The finite element method emerged out of the old work and
energy methods and matrix structural analysis to become a numerical
procedure to solve practical stress analysis problems in solid and structural

. mechanics. With the impetus given by the rapid development of computer

technology, it became the most overwhelmingly popular analysis and

design computational tool for a very wide spectrum of engineering science,

e.g. fluid mechanics, heat transfer and electro-magnetics. Today, there are

very powerful general-purpose software codes that make analyses and

design tasks that were once considered to be intractable, routinely simple.

Many of these are closely held proprietary codes owned and used in-house

by large engineering firms or sold or licensed and supported by specialist

companies. (Recent estimates indicate that the market for these codes has
reached a turnover of a billion dollars and that industries and institutions
spend several tens of billions of dollars in running such codes.) These
codes are rarely given out in source code. In order to have an in-house
code that could be continuously up-graded and enhanced, NAL initiated

some work to develop a medium-sized general purpose code (about 20,000

lines of FORTRAN code) for the analysis of laminated composite structures

(FEPACS ~ finite element package for analysis of composite structures),

recognising the importance that laminated composites were assuming in

aerospace structural technology.

Several key elements commonly found in general purpose packages
(GPP) used by the aerospace, automobile and mechanical engineering
industries were identified. These were re-designed incorporating anisotropic
composite capabilities and validated. Many hurdles were faced during this
task and required an examination of the basic issues at a paradigmatic
level. Concepts such as consistency and variational correctness were
introduced and studied critically. These guidelines played a critical role
in developing robust versions of the elements and are briefly covered =
this review. The paradigms also helped to identify procedures to perfc
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a priori error estimates for the quality of approximation and this allowed
the elements being developed to be critically validated.

The article concludes with a summary of what has been achieved and
also suggests areas where the concepts can be applied fruitfully in the
study of the displacement type finite elemént method.

Keywords. Finite element method; composite structures; structural
analysis; element technology; general purpose packages; FEPACS.

1. Introduction — from C! to C° elements

We shall examine the subject as seen from our own practical viewpoint and as it
must have been seen by the larger finite element community as well, as we undertook
the task of designing a library of simple, accurate and efficient elements for general
purpose finite element structural analysis.

At the time we began our work, around 1978, it was slowly becoming accepted
that the element libraries of major general purpose packages (GPP) were replacing
what were called the C' elements with what were known as the C° elements. The
former were based on well-known classical theories of beams, plates and shells (i.e.
the Euler—Bernoulli beam theory, the Kirchhoff-Love plate theory and the equivalent
shell theories), reflecting the confidence that structural analysts have had in such
theories for over two centuries. It is indicative that the early history of the finite
element technology was almost entirely confined to the use of elements based on
such theories. These theories did not allow for transverse shear strain and permitted
the modelling of such structures by defining deformation in terms of a single field,
w, the transverse deflection of a point on what is called the neutral axis (in a beam)
and neutral surface of a plate or shell. The strains could then be computed quite
simply from the assumption that normals to the neutral surface remained normal
after deformation. One single governing differential equation resulted, although of a
higher order (in comparison to other theories we shall discuss shortly), and this was
considered to be an advantage.

There were some consequences arising from such an assumption both for the
mathematical modelling aspect as well as for the finite element (discretisation) aspect.
In the former, it turned out that to capture the physics of deformation of thick or
moderately thick structures, or the behaviour of plates and shells made of newly
emerging materials such as high performance laminated composites, it was necessary
to turn to more general theories accounting for transverse shear deformation as

well — these required the definition of rotations of normals which were different from

the slopes of the neutral surface. Some of the contradictions that arose as a result of
the old C* theories — e.g. the use of the fiction of the Kirchhoff effective shear reactions
could now be removed, restoring the more physically meaningful set of three boundary
conditions on the edge of a plate or shell (the Poisson boundary conditions as they
are called) to be used. The orders of the governing equations were correspondingly
reduced. A salutary effect that carried over to finite element modelling was that the
elements could be designed to have nodal degrees of freedom which were the six

basic engineering degrees of freedom — the three translations and the three rotations. -

at a point. This was ideal from the point of view of the organization of a general
purpose package. Also, elements needed only simple basis functions requiring only
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the continuity of the fields across element boundaries — these are called the C°
requirements. In the older C* formulations, continuity of slope was also required
and to achieve this in arbitrarily oriented edges, as would be found in triangular or
quadrilateral planforms of a plate bending element, it was necessary to retain curvature
degrees of freedom (W,,»w,,,w, ) at the nodes and rely on quintic, polynomials for

the element shape or basis functions. So, as general purpose packages ideal for .

production run analyses and design increasingly found favour in industry, the C°
beam, plate and shell elements slowly began to replace the older C* equivalents. It
may be instructive to note that the general two-dimensional (i.e. plane stress, plane
strain and axisymmetric) elements and three-dimensional (solid or brick as they are
called) elements were in any case based on C° shape functions — thus this development
was welcome in that universally valid C° shape functions and their derivatives could
be used for a very wide range of structural applications.

However, surprisingly dramatic failures came to be noticed when C° elements were
formulated. The greater part of academic activity in the late seventies, most of the
eighties and even in the nineties was spent in understanding and eliminating what
were called the locking problems. A good idea of the challenges involved can be seen
in two recent reviews — a bibliography of the finite element formulation of constrained
media elasticity (Prathap & Nirmala 1990) — about 500 papers in thirty years, and a
review of the quest for a reliable degenerate shell element (Gilewski & Radwanska
1991) — over 350 papers in about three decades of activity.

These spectacular failures were called the ‘locking’ problems in C? finite elements.
It was not clear why the displacement type method, as it was understood around
1977, should produce for such problems, answers that were only a fraction of a
percent of the correct answer with a practical level of discretisation. Studies in recent
years have established that an aspect known as consistency must be taken into account.

The consistency paradigm requires that the interpolation functions chosen to

/initiate the discretisation process must also ensure that any special constraints that

are anticipated must be allowed for in a consistent way. Failure to do so causes
solutions to lock to erroneous answers. The paradigm showed how elements can be
designed to be free of these errors. It also enabled error-analysis procedures that
allowed errors to be traced to the inconsistencies in the representation to be developed.
The authors have now developed a family of such error-free robust elements for

application in structural mechanics and these are now available in a package, FEPACS -

(finite element package for analysis of composite structures), developed at the Natioqal
Aerospace Laboratories.

This article would therefore review the understanding of such errors on a
paradigmatic basis and the arrival at the end, of a family of robust elements of
acceptable accuracy for use in typical GPP. ‘

2. Difficulties with C° elements: Locking and stress oscillations

With the wide-spread acceptance of the C° family of elements, instances where the
finite elements models of practical structures under certain physical conditions produced

_very erroneous solutions in spite of satisfying the continuity and completeness require-

ments came to be noticed (Doherty et al 1969; Pawsey & Clough 1971; Zienkiewicz
et al 1971). Such errors are today classified as locking — where errors in solutions
grow indefinitely as the physical limits are approached (Prathap & Bhashyam 1982)
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and delayed convergence — where the convergence rate of the solutions is much lower
than that assured by the conventional continuity and completeness requirements of
the finite element method (Prathap & Babu 1986b). Such errors in displacement
solution are always associated with violent stress oscillations (Prathap & Babu
1987).

Walz et al (1970) classified errors into two categories — errors of first kind (errors
due to the discretisation process but which disappear rapidly as mesh is improved)
and errors of the second kind (discretisation errors which disappear very slowly and
which get exaggerated when some structural parameter is changed). At the time this
classification appeared (Walz et al 1970) it was not known that the latter class of
errors were due to incorrect representation of the constrained strain energy
components and arise purely from the way the finite element fields are expressed.
Recent work shows that such errors become very serious in a particular class of
problem — constrained media elasticity (Babu 1985; Prathap 1986, 1993; Naganarayana
1991). These problems span a wide range of structural phenomena — shear-flexible
beams using Timoshenko theory (Prathap & Bhashyam 1982) and plates/shells
(Mindlin theory) suffering from shear locking (Hughes et al 1977; Prathap &
Viswanath 1983; Bathe & Dvorkin 1985; Hinton & Huang 1986; Donea & Lamain
1987; Prathap & Somashekar 1988), curved beam/shell structures suffering from
membrane locking (Stolarski & Belytschko 1981; Prathap 1985a, b; Prathap & Babu
1986a; Jang & Pinsky 1988), 2-D plane-stress, plane-strain and 3-D elasticity suffering
from parasitic shear (Cook 1975; Prathap 1985c; Prathap et al 1986) and/or near
incompressibility locking (Chandra & Prathap 1989; Naganarayana & Prathap 1991)
etc. These are described in detail in table 1.

Many ad hoc techniques have been suggested to overcome such difficulties. Reduced/

Table 1. Some constrained-multi-strain problems in structural mechanics.

Class of Strain fields Type of constraints and
structural the associated penalty
problem Unconstrained Constrained limits
Plane stress Normal ~ Shear y—0as (b/)—=0
Plane strain - .
3-D elasticity £ ¥y where b and I form the
in modes of section on which y is
flexure : , acting s.t. b< 1
Plane stress Distortional Dilatational g,—0as u—05
Plane strain for isotropic materials
3-D elasticity &y & where u is Poisson’s
in modes of near ratio
incompressibility
Shear-flexible Bending Transverse y—0as (t/h—0
beam (Timoshenko) shear where t = thickness and
plates (Mindlin) X Y I = “element length”
Curved beams Bending Membrane e—0 as (Rt/I*)-0
and shells X & where t = thickness and

R =radius of curvature
[ = “element length”

3
\
=
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sel‘ective integration (Pawsey & Clough 1971; Zienkiewicz et al 1971; Zienkiewicz &
Hinton 1976; Hughes et al 1977, 1978), assumed strain methods (MacNeal 1982;
Olgson 1983), addition of bubble modes (Wilson et al 1973), residual energy balancing
(Ij“ned }974, 1975), spurious mode decomposition (Belytschko et al 1984, 1985),
discontinuous force-field mixed methods (Noor & Hartley 1977; Noor & Anderson
}982; Noor & Peters 1981), symbolic Fourier synthesis (Park 1984), unequal field
Interpolations with condensation of constraints (Tessler & Dong 1981), Kirchhoff
mode method (Stolarski et al 1985), quasi-conforming techniques (Tang et al 1984),
use of trignometric basis functions (Hepper & Hansen 1987), using shear constraints
(Crisfield 1984) etc. represent a broad coverage of the various artifices used with
varying degrees of success to resolve these issues. Often these procedures lacked an
explanation for their success. Sometimes they were successful in one context and
failed in some other. Again the reason for such behaviour was not clear.

Most explanations for the locking behaviour available at the time we started our
work — singularity of shear stiffness (Zienkiewicz 1977), constraint counting and rank
of the shear stiffness matrix (Cook et al 1981; Hughes 1987) - lacked a rigorous
scientific basis. Zienkiewicz (1977) argued that the elements which lock have non-
singular shear stiffness matrices while the shear stiffness matrices of elements after
reduced integration are singular. It was argued therefore that locking is due to
non-singularity of the shear stiffness matrix and a reduced integration order that
induces singularity in the shear stiffness matrix is recommended. In other words, the
locking behaviour of an element is due to the high rank of the penalty-linked stiffness
matrices. But, it was soon realised that an arbitrary reduction of the rank of the
penalty-linked stiffness matrices may lead to the undesirable spurious zero energy
mechanisms (Hughes 1987). The optimal rank for the shear stiffness matrix is often
determined by a technique known as constraint counting (Malkus & Hughes 1978).
The method of constraint counting makes an attempt to determine optimal integration
order based on number of constraints given in a problem. It is based on the ratio
r of the total active degrees of freedom in a given mesh n to the total number of
penalty constraints m(r = n/m). Locking occurs if r < 1. The mesh does not lock if r
is slightly greater than unity and may have spurious zero energy modes if it is too
high. Heuristically it argued that the near-optimal ratios are r = 2/1 for 2-D problems
and r = 3/1 for 3-D problems (Cook et al 1981).

It should be observed here that such explanations are heuristic and lack a rigorous
scientific basis i.e. the validity of the explanations is not numerically verifiable
(falsifiable) since a causal relationship between the locking errors and the rank of the
‘constrained’ stiffness matrix is not established. Such arguments often follow from
the given mesh for a structural problem rather than the basis of discretisation adopted
in the finite element formulation. Such an explanation, hence, cannot be generally
applied in developing a finite element. These arguments cannot identify the milder
problems of delayed convergence which are observed in the case of higher order
elements. Finally, they attempt explanations based on the symptoms accompanying
the problem of locking (i.e. the high rank of non-singularity of the shear stiffness
matrix is a symptom of an inconsistent formulation) rather than exploring the cause
for the errors. There is no established procedure for obtaining the optimal rank of
the penalty-linked stiffness matrices in literature. Here, we review some of the work
done to provide a scientific basis for the origin of such errors. Very recently, it was
possible to relate the consistency paradigm and the requirements that foliow from
it to the rank of the penality-linked stiffness matrix, showing that there is a link ~
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between the cause of such errors and the symptoms (i.e. high rank, non-singularity
of matrices etc.) associated with the locking problem (Prathap 1994).

In the next sections, we shall present a scheme for error-free displacement type
finite element formulation based on the consistency and correctness paradigms. The
elements developed thus are now incorporated in an in-house finite element package
called FEPACS.

3. Field-consistency

Prathap & Bhashyam (1982) demonstrated that it is the inconsistent finite element
representation of the constrained state of the strain energy in the respective penalty
limits that causes problems like locking and stress oscillations. It considered a
Timoshenko beam element formulation and showed that the constraint of vanishing
transverse shear strain energy near vanishing beam thickness imposed two types of
constraints. The constraints which had contributions from all the displacement fields
appearing in the respective strain field definitions were classified as true constraints
and the constraints that do not have contributions from at least one of the constituent
displacement fields were classified -as spurious constraints. It was also demonstrated
that the latter (i.e. spurious constraints) disturbed the bending strain energy in the
penality limits. Using this fact, analytical a priori error estimates were constructed
to prove that it was the spurious constraints that caused locking and the associated
stress oscillations (Prathap & Babu 1986b, 1987). This was confirmed by conducting
appropriate numerical experiments with the inconsistent finite element formulations
which contain spurious constraints.

Eventually, the field-consistency paradigm emerged (Prathap 1986) to provide an
explanation as well as a remedy for difficulties like locking and stress oscillations in
the finite element formulation of the problems in constrained media elasticity. It holds
the inconsistent representation of the constrained state of the corresponding strain
energy components, giving rise to the spurious constraints in the penalty limits,
responsible for such difficulties. It also suggests that the energy components associated
with the spurious constraints have to be eliminated from the formulation for removal
of the above-mentioned difficulties from the element formulation. The paradigm can
be broadly stated as follows.

In a constrained media problem, some strains will have to vanish under certain
conditions. Strain fields derived from displacement shape functions cannot always
do this in a meaningful manner — spurious constraints are generated which cause
locking. The consistency condition demands that the discretised strain field inter-
polations must be so constituted that it will enforce only physically true constraints
when the discretised functionals for the strain energy of a finite element are
constrained.

In the development of a finite element, the field variables are interpolated using
interpolations of a certain, order. From these definitions, one can compute the strain
- fields using the strain-displacement relations. These are obtained as interpolations
associated with the constants that were introduced in the field variable interpolations.
Depending on the order of the derivatives of each field variable appearing in the
definition of that strain field (e.g. the shear strain in a Timoshenko theory will have

0 and-the first derivative of w), the coefficients of the strain field interpolations may

have constants from all the contributing field variable interpolations or from only
one or some of these. In some limiting cases of physical behaviour, these strain fields

T
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can be constrained to be zero values, e.g. the vanishing shear strain in a thin

Timoshenko beam. Where the strain-field is such that all the terms in it (i.e. constant,
linear, quadratic etc.) have, associated with it, coefficients from all the independent

- interpolations of the field variables that appear in the definition of that strain-field,

the constraint that appears in the limit can be correctly enforced. We shall call such
a representation field-consistent. The constraints thus enforced are true constraints.
Where the strain-field has coefficients in which the contributions from some of the
field variables are absent, the constraints may incorrectly constrain some of these
terms. This field-inconsistent formulation is said to enforce additional spurious
constraints.

We shall also determine procedures that can modify the element characteristics so
that the consistency requirements are met. We shall call such elements the field-
consistent elements as opposed to the field-inconsistent elements which do not take
into account such requirements. There is a unique manner in which the field-consistent
elements have to be generated — they have to satisfy a condition we shall call the
correctness condition which will ensure that the variational theorems are not violated
in the process of modifying the element stiffness matrix.

Scientific evidence and analytical proof for this paradigm have been provided and
verified through several practical examples of finite element formulations over the
years (Babu 1985; Prathap 1986, 1993; Naganarayana 1991). Using the so-called field-
reconstitution technique, analytical a priori estimates of the errors in displacement
as well as stress recovery arising due to violation of various field-consistency require-
ments are derived for a family of elements and are digitally verified using appropriate
computational models, see Prathap & Nirmala (1990) for a bibliography.

Most of the ad hoc techniques mentioned before offer procedures for achieving
field-consistency with varied degrees of success. The assumed strain methods appear
to be the most versatile among these since they have the capability of isolating the
spurious constraints in the formulation. Thus the behaviour of the inconsistent terms
in the constrained strain fields and the associated spurious constraints becomes
apparent and the construction of a priori error estimates, with reference to displacement
as well as stress recovery, becomes simplified. The assumed strain methods essentially
try to eliminate the inconsistent terms in the original strain field (derived by the
gradient operations on the kinematically admissible displacement fields) for the
constrained strain component. The popular procedures used in the literature for
achieving this are reduced/selective integration (Zienkiewicz & Hinton 1976; Hughes
et al 1978), least squares method (Bose & Kirkhop 1984), mean value method (Donea
& Lamain 1987), collocation of the strain fields at certain standard points (Huang &
Hinton 1984; Bathe & Dvorkin 1985) etc. and all these belong to assumed strain
methods in a broad sense of definition.

Various aspects of the field-consistency paradigm are briefly illustrated using the
simple example of a 2-noded C%-continuous Timoshenko beam element. The field-
reconstitution technique is used to derive a priori analytical error estimates for the
additional stiffness parameter and stress oscillations which can be digitally verified.
The technique is used to derive a priori error norms for many other useful elements

- in a series of publications.

3.1 Example-linear Timoshenko beam element (BEAM2)

A 2-noded beam element with two degrees of freedom (deflection w and section

rotation 6) per node, shown in figure 1, is considered.

T R S e
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T | ¢ 2y, = ( Xy~ X|)/2

6 ‘(k" l ') 2 N, = (1 = ¢)/2
Qw ‘wz} :

! Np= (1 +€)/2

Figure 1. 2-noded beam element.

Using the linear shape functions N; and N, the displacement fields can be expressed
as,

9=a0+alc and W=b0+b1€ (1)

Now, the two strain fields, flexure x and the transverse shear y, can be derived using

(1) as
L)
14 6 — dw/dx (ag—bi/D)+ayl - ’

The strain energy can be considered as the sum of bending and shear strain energy
components as follows. ‘

Ul= Ug+ Us= j(El/2)(x)2dx + J.(kGA/2)(y)2dx,

= (EI(a, /)’ + (kGAD{(ao — by /D* +(a;)*/3}. )

In the penalty limits of vanishing beam thickness, the shear strain energy U vanishes
resulting in two constraints,

a,=b,l=0=dw/dx, )
g, =0=df/dx=0. - 5)

It is apparent that (4) is the true constraint representing the Euler—Bernoulli condition
in the thin limits. But (5) is the spurious constraint which directly disturbs the bending
strain energy. It can be noted that the spurious constraint corresponds to a situation
where the beam is locked against rotation, thus explaining the locking behaviour of
the problem. The field-consistency paradigm now suggests that the linear term in the
shear strain field be eliminated for removal of locking and violent stress oscillations.
The method of Legendre polynomial expansion can be used here so that the inconsistent
linear term in shear strain is to be simply dropped. The procedure and variational
justification for it are discussed in detail, in the next section.

It is also possible to obtain a priori error estimates by considering the strain energy
after discretisation by a procedure called the functional reconstitution technique. For
this example, it is possible to show that the effect of retaining the spurious constraint
leads to an artificial stiffening of the bending action by a factor (kGAI?/3EI); i.e. the
discretised beam behaves as if the moment of inertia of the cross section has changed
from I to I' such that, ‘

I'/I =1+ kGA I2/3EL (6)

Thus an analytical error norm for the additional stiffness parameter e,, can be written
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as,
e, =I'/l =1 =kGAI/3EL (7)

This can be compared with results obtained from a actual finite element computation
as,

€ om = W(th)/w( fem) — 1 , (8)

The agreement of the computed errors (8) with the predicted errors (7) is very good
and has been documented in Prathap & Bhashyam (1982) and Babu (1985).

Through a similar exercise, in an inconsistent element with severe shear locking
(when e > 1), the shear force resultant can be expressed as,

Q=0+(M,/)¢,

where Q represents the correct shear force contributed from the consistent part of the
shear strain field and M is the constant part of the exact bending moment distribution.
Thus the shear force recovered from the inconsistent element will have violent linear
oscillations which are proportional to the constant part of the bending moment M.
Again, the analytical predictions of the stress oscillations are well-matched by the
finite element results (Babu 1985).

Such behaviour, ie. locking and stress oscillations, is typical of inconsistently
formulated beam, plate/shell, plane stress/plane strain and brick elements, the work
horse elements of all current general purpose packages. It is imperative therefore that
the design of a family of such elements must be carefully done to ensure that during
formulation, the inconsistencies are systematically identified and removed so that the
elements are free of such errors. The field-consistency paradigm offers us a conceptual
scheme which enables this to be done.

4. Variational correctness.

We now turn our attention to the task of formulating a consistent element without
violating any of the norms required from energy and variational principles. It has
become clear to us from the previous section that the field-consistency paradigm
suggests the form of the interpolation functions for the constrained strain fields.
However, the reconstituted assumed strain field interpolations cannot be chosen
arbitrarily (as done, for example, in Mohr 1982). A variational basis for the correct
field-redistribution (that is to find the coefficients of the consistent field from those
of the original field) can be obtained by determining the conditions for exact equivalence
of the assumed strain displacement approach to the mixed approaches based on the
Hellinger—Reissner or Hu-Washizu variational theorems (Simo & Hughes 1986;
Prathap 1988). The coefficients of the field-consistent assumed strain fields should
now be determined from an orthogonality condition that arises when the equivalence
of the minimum total potential energy principle with respect to the mixed variational
principles is sought. This leads to another fundamental requirement in certain finite
element formulations involving redistributed (or assumed) fields (e.g. strain or stress) —
variational correctness — that the redistributed field should be orthogonal to the error
introduced because of the field-redistribution (Prathap 1988; Prathap & Naganarayana
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1988; Naganaréyana & Prathap 1989a):

jéy(y—— yydx =0,

where y represents the coristrained strain field kinematically derived from the constituent
displacement fields while 7 is the assumed field to be determined from the original
field such that 7 is field-consistent and the resulting element formulation is free of
locking and stress oscillations.

If the orthogonality condition that represents this equivalence is violated while
designing the strain field to satisfy the field-consistency criteria alone, the resulting
elements have poorer efficiency and are also plagued by undesirable strain and stress
oscillations (Prathap & Naganarayana 1988; Naganarayana & Prathap 1989a).

In Prathap & Naganarayana (1988), the variationally correct (or orthogonal) and
incorrect (or non-orthogonal) field-consistent assumed strain forms of the quadratic
and cubic shear deformable beam elements are used to explore these aspects in
detail. It is shown that the non-orthogonal formulations can lead to reasonably
accurate displacement solutions but have spurious stress oscillations. Using the field-
reconstitution technique, a priori analytical estimates were derived for the magnitude
and pattern of these stress oscillations and tested digitally using computational results
in Prathap & Naganarayana (1988). These stress oscillations are related to the presence
of artificially created spurious load mechanisms which are self-equilibrating.

These spurious load mechanisms lead to additional spurious linear oscillations in
the shear force and bending moment in a quadratic Timoshenko beam element and
spurious quadratic oscillations in bending moment (but no change in the shear forces)
in cubic Timoshenko beam element as demonstrated in Prathap & Naganarayana
(1988). The resulting extraneous oscillations in the stress fields may often lead to
difficulty in identifying points for optimal stress recovery in the element domain e.g.
line-consistent 8-noded plate element (Naganarayana & Prathap 1989a).

In many problems, it is possible to determine the variationally correct strain field
by expanding the inconsistent field in terms of Legendre polynomials; it is easy then
to identify and eleminate the inconsistent terms. The logic is simple and direct; the
coefficients associated with each Legendre polynomial represents a discretised
constraint in the penality limits; identify the inconsistent Legendre term applying the
field-consistency paradigm and simply drop it to get the correct and consistent field.
Since the Legendre polynomials are orthogonal in the domain of integration, it follows
that this procedure satisfies the orthogonality condition arising from the equivalence
of the minimum total potential energy principles with reference to the mixed principles
and hence the method is variationally correct. The same result can often be achieved
quite simply by using reduced integration if y is one order higher than 7. It will be
variationally incorrect otherwise. Reduced integration is universally popular since it
is very easy to implement it on a computer. We shall see later that reduced integration
cannot satisfy the edge-consistency requirements and hence fails when used in a
distorted mesh. Hence the methods like Legendre polynomial expansion and truncation
become very important in development of general purpose finite elements.

5. Consistent non-uniform mapping and edge-consistency

So far, we have looked at the consistency requirements in a simplified form that can
be directly applied only to straight line elements or elements of rectangular form. It
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is not practical to have such a restriction for the plate/shell elements in a general
purpose application. The development of an efficient and robust quadrilateral plate
bending element has therefore been a formidable challenge. The point here is to
ensure that consistency is maintained in curved and arbitrary quadrilateral forms of
an element. The current practice in the development of elements is to use what is
called the isoparametric concept — this requires the use of a covariant or natural
co-ordinate system for all interpolations — i.e. the same interpolations serving to map
both geometry (from the natural system to the Cartesian system) and displacements.
The strains are based on the Cartesian system but interpolated using natural
co-ordinates. It is therefore necessary to allow for changes from one system to another
without loss of consistency, especially as far as the mapping of the constrained strain
fields are concerned. It turned out that one crucial factor was the way tangential
strain components on each edge of an element had to be defined under situations of
non-uniform mapping.

That small errors in data preparation leading to distortion of the element can
cause large errors in the solutions was reported by Hoppe (Hoppe 1984, 1985). This
is due to the non-uniform mapping from the covariant system to the Cartesian system.
The effect in the case of a constrained media problem is much more severe. Since
curved beam, and quadrilateral plate and shell elements will intrinsically have such
mapping conditions, there can be very large errors on this account. It is therefore
necessary to take care to design an element so that accuracy and efficiency when
used in a distorted mesh do not go down rapidly. There have been several attempts
in literature to develop elements that are free of locking in their general form (Hughes
et al 1977; MacNeal 1982; Hinton & Huang 1986; Donea & Lamain 1987) — most
of them using the sampling points on the element edges. However, they lack an
explanation for their success. ‘

It was observed in Prathap & Naganarayana (1992) that it is not sufficient if field- -
consistency is achieved in a variationally correct sense in the covariant natural system
alone in such cases. It was demonstrated that the difficulties are with the non-uniform
mapping of the strain fields because of which the consistency and correctness
conditions achieved in the natural covariant system are not preserved over the element
domain and across its boundary after transformation into the Cartesian system..
Several methods of achieving consistent mapping of the constrained strain fields from
the natural system to the Cartesian system were discussed from two popular points
of view — Cartesian base formulation and covariant base formulation,

The additional requirement for an element to be free of errors in a patch is the
edge-consistency requirement (Prathap & Somashekar 1988). It was shown that the
tangential strain components which are continuous across the element boundary in
the undistorted covariant natural system should remain continuous even after the
necessary transformations, and that the tangential strain components should be built
from their corresponding tangential displacement components only. Though the
Cartesian base formulation appeared to be very accurate in Prathap & Naganarayana
(1992), identification of tangential strain components and hence achieving edge-
consistency becomes a formidable job. Thus a covariant base formulation becomes
desirable for developing general purpose finite elements. ,

We should note here that, in case of covariant base formulations, consistent
mapping preserves the field-consistency over the element domain in the Cartesian -
system. However, special methods have to be used if edge-consistency has to be
satisfied. An- effective (from_both accuracy and computational points of view).

procedure namely, nodal Jacobian transformation, is developed and employed to.
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achieve both consistent mapping and' edge-consistency while developing several
general purpose finite elements (Prathap & Somashekar 1988; Prathap et al 1988;
~ Naganarayana & Prathap 1989a, 1989b; Naganarayana et al 1992; Prathap &
Naganarayana 1992). Such elements which satisfy both field- and edge-consistency
requirements are subjected to several severe patch tests and are found to be very
accurate.

It is interesting to observe here that the methods of sampling the constrained
tangential strain components at the error-free points on the element boundary (Hughes
et al 1977; MacNeal 1982; Hinton & Huang 1986; Donea & Lamain 1987) in fact,
try to achieve field- and edge-consistency requirements in the Cartesian system in a
similar fashion. This explains their success when used in a distorted mesh.

6. Problems with initial strain/stress and varying moduli

In problems with initial stress/strain or with varying moduli, the discretised stress-
resultant and strain fields will be of different order — consequently there is a loss of
consistency in the formulation that results in oscillations in the stress-resultant fields
(Prathap & Naganarayana 1990a, and to be published; Naganarayana 1991). For
example, it has been known for some time that thermal stresses computed directly
from stress-strain and strain-displacement matrices in a finite element analysis with
simple finite elements can show large errors (Ojalvo 1974; Pittr & Hartl 1980). The
conventional wisdom to tackle such problems is to sample stresses/strains at the
Gauss points corresponding to a reduced integration rule. However, cases exist, ¢.g.
the tapered quadratic bar element (Prathap & Naganarayana 1990a), where the
oscillations are such that easily identifiable points of accurate stress do not exist.

In the computation of the stiffness matrix, eneryy terms of the form U = jaTedQ
exist and if the order of ¢ (0 may be stress or stress-resultant depending on the
problem) is higher than that of the strain &, the higher order term may not “do work”
- on the strain terms and are not recognised in the stiffness matrix. Thus, stress-resultants
computed from the displacements recovered from such a formulation show extraneous
oscillations. ‘

It is necessary to define a consistent stress or stress-resultant field to ensure that
the stress recovery reflects correctly the order of strain interpolations used. The
orthogonality conditions, required for reconstituting the assumed fields for both strain
and stress functions (from their original fields) simultaneously, can be obtained from
the Hu-Washizu variational principle as,

| j 506 1)d2 = 0; j 577 — B)dQ =0,

where, 7,7, Dy and Q represent the original inconsistent strain field, consistent strain
field, stress-resultant field derived from the consistent strain field through constitutive
laws and the consistent stress resultant field respectively.

In a varying moduli problem, due to varying D, the strain and stress-resultant
fields will be of different interpolation order. In a thermal stress problem, the initial
strain field in the element &, which will be of the same order as the temperature field
in the element, and the total strain field, which is obtained by differentiating the
displacement fields will be of different order, especially if the temperature fields vary
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significantly over the domain and are interpolated by the same isoparametric functions
as the displacement fields. Consequently, the total stress will be of an order higher
than the strain field. Therefore, in recovering stresses in such problems, care must be
taken to maintain consistency. In our work, the definitions of stress-resultants, or
initial strains/stresses are a priori made consistent with the strain fields by invoking
the orthogonality conditions seen earlier in this section.

7. A complete consistent and correct procedure for displacement type finite element
formulation

So far, we have reviewed the important consistency and correctness paradigms
necessary for finite element formulation free of locking and stress oscillations. Here,
we sum up all these concepts and the additional considerations that are necessary
for developing a general-purpose finite-element library for analysis of composite
structures. For continuity, we recapitulate our understanding of the sources for the
locking and stress oscillations and the required consistency and correctness paradigms
to eliminate the same (table 2).

Continuity: The displacement function must be continuous over the element domain
and across the element boundary in a given arbitrary finite element mesh.

Table 2. Types of errors, their sources in finite element analysis and the
"associated paradigms.

Source

Symptoms

Paradigm/concepts

Finite element
discretisation

Constrained media
elasticity

" Element distortion

(nonuniform
mapping)

Varying moduli

Initial strain & stress

field representation

Redistribution of
strain/stress fields

Modelling warped
Surface with
linear elements

Errors of first kind
Discretisation errors
(errors of first kind)

Errors of second kind
Locking,

delayed convergence,
stress oscillations

Locking,
delayed convergence,
stress oscillations

Stress oscillations

Strain and stress
oscillations

Poorer convergence
spurious load
mechanisms and
stress oscillations

Erroneous displacements
and stress recovery

Continuity and
Completeness

Field-consistency

Edge-consistency
and consistent

mapping
Stress field-consistency

Stress field-consistency

Variational
correctness

Warping
correction




302 G Prathap, B P Naganarayana and B R Somashekar

Completeness: The strain/stress fields should be able to model strain-free rigid body
motion of the element and the constant strain state of the element deformation.
Field-consistency: 'The terms in a constrained strain field that have partial contribution
from the constituent displacement fields, leading to the spurious constraints in the
penalty limits for the corresponding strain energy components, should be eliminated
from the formulation for assuring convergence of results from a finite element model
of the structural problems belonging to the class of constrained media elasticity.
Consistent mapping: Mapping of the strain/stress fields from t .2 covariant natural
system (where the element configuration is always undistorted) to the Cartesian system
should not introduce any additional spurious constraints.

Edge-consistency: The tangential strain components which are continuous across

~ the element boundary in the undistorted covariant natural system would remain

continuous even after the necessary transformations; and the tangential strain
components should be built from their corresponding tangential displacement
components only. _

Stress field-consistency: The terms in the strain and/or stress fields that do not
participate in the strain energy computations (and hence in the displacement recovery)
should be eliminated while recovering the corresponding strain and/or stresses in a
displacement type formulation. |

Variational correctness: The redistributed field should be orthogonal to the error
introduced because of the field-redistribution with reference to the original field.

The ideal characteristics of a finite element formulation for general purpose
applications and the paradigms/concepts required to achieve the same in a scientific
manner are briefly shown in table 3. :

Based on the consistency and correctness principles several linear and quadratic
elements, free of locking and stress oscillation, are developed for 1-, 2- and 3-
dimensional applications.

8. FEPACS - finite element package for analysis of composite structures

FEPACS is a medium-sized general purpose package (i.e. about 20,000 lines of FORTRAN
code) for the finite element analysis of isotropic, anisotropic and layered-composite
structures. It has a family of simple, accurate and robust field-consistent elements.
The package was initially built around the data and program organisation of SAP-IV,
but recently, these have been modified and new solution capabilities are being
introduced, to give FEPACS a character of its own. o

The structural analysis program (SAP) is one of the earliest general purpose programs
used for structural analysis through the finite element method. It was developed by
Bathe et al (1974) under the sponsorship of many international organisations. The

first version of SAP was released in September 1970 (Wilson 1970). The improved

version, SAP-IV, which can be used for linear static and dynamic analysis of 3-
dimensional structures was released in 1974 (Bathe et al 1974). As it had been released

with its source code in the public domain, it has served as the spring board for many

other finite element packages which were improved versions of the original package.
It is well known that SAP-IV has reasonably efficient solution capabilities and data-
handling procedures that can solve large 3-dimensional systems. However, its main
weakness is its very old, outdated element library based on mainly linear finite elements
for isotropic structures.

P
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Table 3. Ideal characteristics of a finite element formulation.

Characteristics

Paradigms/concepts/procedures

Discretisation errors should
vanish as the mesh is refined

The element should be free of
locking and/or delayed convergence

Element should be able to give
variationally correct stress
distribution without any oscillations

Distorted geometry should not
disturb the element geometry

The element should be free of
spurious zero energy mechanisms

Element formulation should be scientific &
should provide a priori methods of error
analysis (i.e. should not be based on
numerically adjusted factors, heuristic
arguments etc.)

Element performance should be free
from its geometry and position in space

Continuity and completeness

Field-consistency and
Variational correctness

Field-consistency,
Stress field-consistency,
Variational correctness

Consistent mapping and
edge-consistency

Consistency and correctness
Integration rules and Spectral
analysis

Consistency and correctness
paradigms supported by the
functional reconsistution
techniques

Edge-consistency, appropriate
local coordinate system and
tensorial transformations

8.1 Finite element library

FEPACS has replaced this with the state-of-the-art field-consistent linear and quadratic
1-D, 2-D and 3-D element formulations — thus making the element library complete
(Prathap et al 1989). The emphasis is on laminated anisotropic material structure

(any other material constitution becomes a sub-set of this). A complete flow diagram

representing the package is shown in figure 2.

Each element in FEPACs utilises field- and edge-consistent stiffness matrices derived
in a variationally correct fashion; consistent initial (thermal) strain representation;
consistent stress resultant field representation; diagonal or consistent mass matrices;
and geometric stiffness matrices which can be used for linear buckling analysis;
material constitutive laws are derived assuming general orthotropic layers. The finite
elements included in the library are given below.

(1) SPRING - 2-noded constant stiffness spring element,

(2) TRUSS - 2-noded linear truss element,

(3) BEAM2-T — 2-noded laminated linear Timoshenko beam element,

(4) BEAM2-E — 2-noded laminated linear classical beam element,

(5) BEAM3 - 3-noded laminated quadratic curved Timoshenko beam element
(with taper and twist) ,

(6) PLAXTQ - family of plane strain, plane stress & axisymmetric elements of
triangular or quadrilater shapes (orthotropic),

(7) SHEL4 - 4-noded shear deformable laminated anisotropic Mindlin plate/
plane-shell element of quadrilateral shape with warping corrections,
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(8) SHEL8 - 8-noded quadrilateral laminated degenerated shell element,
(9) HEXA8 - 8-noded linear solid brick element (orthotropic),
(10) HEXA27 - 27-noded quadratic brick element (isotropic),

8.2 Library of solution capabilities

An eigenvalue solution routine based on the determinant search method has been
added to FEPACS so that dynamic eigenvalue analysis using consistent mass matrices
and buckling analysis of the linear structures can be carried out with the software.
The solution routines can be efficiently used for both small-scale as well as large-scale
problems using the respective in-core and out-of-core solution algorithms that are

built in the program. The solution capabilities of FEPACS now include the following.

‘(1) Static analysis under thermomechanical loads — Gauss - elimination solution

routines based on banded assembled matrices are used;

(2) Natural frequency analysis — Both diagonal as well as consistent mass matrices
can be used. Two eigenvalue solution routines, the determinant search method which
is optimal for in-core solution and the subspace iteration method which is optimal
for out-of-core solution, are available.

(3) Natural frequency analysis followed by response history analysis — Only diagonal
mass matrices need to be used. Method of superposition of the natural modes and
the forced modes is utilised to get the structural response to dynamic loads.

(4) Response history analysis using direct integration — Explicit time-step integration
routines are used to get the structural response to dynamic loads without going
through eigenvalue solution.

(5) Natural frequency analysis followed by response spectrum analysis.

(6) Buckling analysis — If the in-plane stresses are known a priori for each element,
the analysis is done in a single run — construct the geometric stiffness matrices from
the element in-plane stresses and solve for buckling loads and modes using the new
eigenvalue solution routines. If they are not known (as in general structural analysis)
the analysis is done in double runs —the in-plane stresses for each element are
calculated from the first run of static analysis and the geometric stiffness matrices
calculated from this static solution are then used for the second eigenvalue analysis.

8.3 Other features

Some of the other features specially in}:orporated in FEPACS to enhance its general
purpose nature and its accessibility to users — for both regular analysis as well as for
enhancement of the package with other capabilities include the following.

(a) Generalised data input and output structures so that integration of pre- and
post-processors can be efficiently achieved.

(b) The program is organised in a highly modular fashion so that any new element
or solution capability can be included with least difficulty.

(c) The whole program is modified to use only general FORTRAN-77 commands such
that the package is highly portable except for the scratch file operations, while are
kept in a separate module which is compiler-dependent. The package is currently
available on a variety of platforms like PC 386/486, workstations, super-mini
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computers etc. with UNIX operating system, minimum 2 MB RAM and a FORTRAN
compiler supporting scratch files of unlimited record length (only the scratch file
allocations have to be modified). It can be loaded in any other operating system with
similar support.

9. Conclusions

In this paper, many difficulties arising in displacement-type finite element formulation
and the remedial measures offered for these have been reviewed. A general, complete
and scientifically based procedure for formulating robust finite elements is provided.
A general purpose finite element package (FEPACS) using a library of robust elements,
developed along the lines presented here, is also reviewed. Though the emphasis is
on the displacement-type finite formulations for structural analysis, the concepts
discussed here are equally applicable to other types of finite element formulations
applied to many other fields of engineering.

The authors are deeply indebted to Prof R Narasimha, FRS, former Director of
National Aerospace Laboratories, for his constant encouragement. They are also
grateful to many colleagues — Dr H R Srinatha of Aeronautical Development Agency,
Bangalore; Dr D H Bonde of Indian Space Research Organization, Bangalore and
from the National Aerospace Laboratories, Drs G R Bhashyam, S Viswanath,
S Chandra, the late Mr C Ramesh Babu, M/s B Sudhakar, K Guruprasad, S Nagaraj,
V Baskar, Shaik Cheman, J Durga Prasad and Ms B R Shashirekha who have
supported or worked on the development of FEPACS at various times.
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