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This is a sequel to my earlier paper of the same title (Raghunathan, 1976). 
Most of the results here are announced there in somewhat vague terms. 

Let k be a global field and V its set of valuations. For v~V, let k,, denote 
the completion of k at v and for non-archimedean v, ~ ,  the ring of integers in 
k~,. We fix once for all a non-empty finite subset S of V containing the set ~ of 
all archimedean valuations. We denote by A the ring of S-integers in k. Let G 
be a connected simply connected absolutely almost simple k-algebraic group 
and G(k) the group of k-rational point of G. A subgroup F=G(k) is an S- 
arithmetic subgroup if for some (and therefore any) faithful k-representation p: 
G- ,GL(n , ) ,  F~p ~GL(no, A ) has finite index in both F and p-I(GL(no, A)). 
An S-arithmetic group is an S-congruence group if for some (therefore any) 
faithful k-representation p of G, F contains a subgroup of the form G(p,a) 
={xeG(k)lp(x)~GL(n,, A), p(x)-1  mod a} where a = a ( p )  is a non-zero ideal 
in A. 

Now the family of S-arithmetic (resp. S-congruence) groups form a funda- 
mental system of neighbourhoods of the identity for the structure of a to- 
pological group, whose completion we denote d(a) (resp. G(c)). Then d(a) and 
G(c) are locally compact  groups and there is a natural map 7:: (~(a)-~d(c) 
induced by the identity map of G(k). It is not difficult to see that ~ is surjective. 
The group d(a) is naturally isomorphic to the S-ad61e group of G (this is a 
consequence of the fact the G(k) is dense in the S-ad61e group of G: Platonov 
(1970) for number fields and Prasad (1977) for all fields. The congruence 
subgroup problem (for (G,S)) is the determination C(S, G)=kernelzt.  That  is 
the main aim of this paper. 

To formulate our results in precise form, we need to introduce the (normal) 
subgroup G(k) § of G(k) generated by unipotent elements contained in uni- 
potent radicals of k-parabolic subgroups. For a wide class of groups, it is 
known that G(k)=G(k) +. (At the date of this writing in fact, it is known that 
G(k)/G(k) + is always finite abelian and in fact trivial except possibly in the case 
when G is a k-form of E 6 of k-rank 1 with anisotropic kernel a special unitary 
group in 2 variables over a involutive cubic division algebra of the second 

I I 
kind; the Tits index of such a group is o (" . We then have 

I I 
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Main theorem. Assume that G is isotropic over k and that ~k , - rank  G>2.  Let 
v 6 S  

(~(a) + be the closure of G(k) + in G(a). 7hen G(a)+ ~d(c )  is (surjective and) a 
central extension. (Consequently) C(S,G) is a 2-step solvable group with 
C(S, G)/C+(S, G)~-G(k)/G(k) + where C+(S, G) is the kernel of G(a) + --*G(c). 

When k-rank G >2,  the theorem is proved in Raghunathan (1976). We will 
therefore confine ourselves to the case when k-rank G = 1. We note that C(S, G) 
= C+(S, G) except possibly in the case when G is a k-rank 1 (outer form E(,) 

with Tits i n d e x ~ . '  ~and anisotropic kernel k-isomorphic to a special 
i i 

unitary group in 2 variables over a cubic division algebra D with an involution 
of the second kind, the centre of D being a quadratic extension over k. Using 
now Prasad and Raghunathan (1983) we obtain immediately the following 

Corollary. C+(S,G) is isomorphic to a quotient of/~(k), the group of roots of 
unity in k; it is trivial if one of the following two conditions hold: 

(i) S contains a non-archimedean valuation. 

(ii) There is a yeS such that k~ is real and the relative k~,-root space of G 
corresponding to any Iong root is of dimension I. 

Note. It is proved in Prasad and Raghunathan (1983) that if C(S, G) is central 
in d(a), then C(S, G) is isomorphic to a quotient of #(k) and in fact is trivial if 
(G, S) satisfy one of the two conditions above; however the proof there actually 
yields the analogous statement for C+(S, G) if it is central in G(a)+: in fact the 
"'relative fundamental group" of (G(c), G(k) +) is the group C + (S, G). 

Our method of proof involves the use of yet another family of subgroups of 
G(k). Fix a faithful k-representation p once and for all and for any ideal a4=0 
in A, let G(a) = {xeG(k) lp(x)eGL(n), p(x)--- 1 (mod a)}: {G(a) la a nonzero ideal 
in A} is evidently a fundamental system of S-congruence subgroups. Let E(a) 
denote the subgroup of G(a) generated by unipotents in G(a) which are con- 
tained in unipotent radicals of k-parabolic subgroups. (From a theorem of 
Margulis (1979), it is known that every E(a) (a4=0) is in fact an arithmetic 
subgroup; we will however not make use of that result but in fact obtain it as 
a consequence of our theorems: this is perhaps not altogether pointless as the 
techniques of Margulis have a completely different flavour as opposed to our 
purely algebraic methods - for instance we make no use of the fact that 
arithmetic groups are lattices). The {E(a)la a non zero ideal} serve to define 
yet another topological group structure on G whose completion is denoted 
(~(e). This last topology on G(k) is finer than that defined by S-arithmetic 
groups (Raghunathan, 1976, Theorem 2.1). Consequently the main result would 
follow from 

Theorem A. Let 62(e) § be the closure of G(k) + in G(e). I f  k-rank G =  1 and ~k,,- 
rank G > 2, (~(e)+ ~ (~(c) is (surjective and is) a central extension of G(c). ~s 

As in Raghunathan (1976) we obtain from Theorem A the following corol- 
laries (apart from the main theorem) under the hypothesis in the theorem. 
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Corollary 1. Every normal infinite subgroup of an S arithmetic group in G(k) is S- 
arithmetic. 

The proof is entirely the same as that in Raghunathan (1976, Theorem 2.1). 

Corollary 2. IF, F]  has finite index in F for any S-arithmetic group F in G. 

Corollary 3. Let p be a finite dimensional representation of an S-arithmetic group 
F over a field of characteristic zero. Then either kernel p has finite index in F or 
char k = 0  and there is a subgroup F' of finite index in F such that plF' extends 
to a rational representation of Rk, Q G. 

(See Raghunathan (1976) Chapter 7; Margulis (1979) proves Corollary 3 by 
other methods.) 

The method of proof of Theorem A is along the following lines. In Chap- 
ter 1 we establish the theorem in the special case when G is quasi split. This 
follows the same ideas as Serre (1970) closely. In Chapter 2 we give a method 
of construction of universal central extension of S-ad61e groups of G in terms 
of generators and relations' the universal extension is obtained as a quotient of 
the free product of two opposing unipotent S-adhle groups by certain relations; 
we also establish a partial converse. In Chapter 3 we show that (~(e) + when 
written as a natural quotient of the free product of opposing unipotent adhle 
groups satisfies all the relations required for central extensions of G(c). This is 
achieved by imbedding quasi-split k-groups (cf. Chapter 5) in G for which we 
know the truth of Theorem thereby obtaining relations in (~(e) and then 
proving that the relations obtained in this fashion generate all the necessary 
relations. Unfortunately the method fails to cover a few cases which are treated 
in w by techniques analogous to those in w Chapter 5 is an Appendix 
containing a general result (over arbitrary fields k) on k-rank 1 algebraic 
groups which seems to be of independent interest. We show the following: 

Let G be a k-rank 1 semisimple algebraic group and Ua  maximal connected 
unipotent k-subgroup normalised by a k split torus S. Let u~ U(k) be any 
unipotent element ~=1. Then there is a quasi split semisimple k-group H a k- 
split torus T c H ,  a unipotent k-subgroup V in H normalised by T and a k- 
morphism f:  H ~ G such that f (T) = S and x ~f(V(k)). 

The methods of this paper can in fact to applied to groups of k-rank G >__2 
but we have not carried this out for two reasons: the earlier proof in Raghun- 
athan (1976) seems to be pleasanter; secondly the notational complexity that 
would be inevitable in dealing with higher rank groups would perhaps render 
the exposition much less clear. 

We end this introduction with some remarks on completions of topological 
groups. In the outline of proof given above we have spoken of " the" com- 
pletion of a certain topological group. This requires some justification (I am 
indebted to J.-P. Serre for pointing out to me the need for exercising some care 
in this). The ensuing discussion will clarify this point and will also be useful for 
us later. If B is a topological group it carries a canonical left translation 
invariant uniform structure denoted V(1) in the sequel. Analogously it has also 
a right translation invariant uniform structure V(r). We denote the completion 
of B with respect to V(l) (resp. V(r)) by/~(l) (resp./~(r)). If the topological group 
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structure on B satisfies the Condition (,) or the equivalent condition (**) 
below, then we have a natural homeomorphism cb: B(1)-+B(r) making the 
diagram B 

/ \  
&l) - - - ~  &r) 

commutative where i I (resp. it) is the natural inclusion of B in the completion 
/~(l) (resp./~(r)). 

Condition (*). Each Cauchy .filter Jot V(1) is a Cauchy filter for V(r) and 
conversely. 

Condition (**). Let z: B-+B denote the map x-+x -1 , x6B. Then if F is a 
Cauchy filter jbr V(1), so is r(F). 

If the Condition (*) and hence also (**) is satisfied, then q~ enables us to 
identify /~(1) and /~(r) and we denote the space /~(l) simply /3 (and will freely 
identify it with/~(r) as well). For B satisfying Condition (,), it is easily checked 
that/~ is indeed a topological group, the group operation extending that in B. 
In the sequel when we speak of completions of topological groups we will only 
be considering topological groups satisfying Condition (,). We may - and we 
will therefore freely consider such completions as topological groups (complete 
both in the left and right invariant uniform structures). In fact all topological 
groups B we will be interested in this paper will satisfy the following Conditton C 
which is stronger than Condition (,) (or (**)) as can be verified quite easily: 

Condition C. The identity element in B admits a fundamental system U of 
neighbourhoods such that 

(i) each V ~  is a subgroup of B 

(ii) there is an open subgroup F of B such that F normalises all ~ ~  V. 

(It is evident that the topological group structure on G(k) defined by declaring 
the {G(a)[a a non-zero ideal in A} (resp. {E(a)ba a non zero ideal in A}) as a 
fundamental system of neighbourhoods of the identity satisfies the Condition C 
introduced above, with G(A) playing the role of/2.) 

Finally I would like to draw the attention of the readers to earlier work on 
the subject: Mennicke (1965), Bass et al. (1964) (the group SL(n) n>2  over Q) 
Bass et al. (1967) (SL(n) and Sp(2n) n > 2  over global fields) Matsumoto (1969) 
(Chevalley groups), Vaserstein (1973) (classical groups of rank>2) Serre (1970) 
(SL(2)), Bak and Rehman (1982) (SL(n) over division algebras with n>2) and 
Kneser (1979) (spin groups over number fields). 

w 1. The quasi-split k-group of k-rank 1 

1.1. Notation. Throughout this chapter we will use the following notation. 

k will denote a global field. 
K a quadratic Galois extension of k with Gal(K/k) as the Galois group 

and 
a~--~8 denoting the non-trivial element of Gal(K/k). 
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2; (resp. 2) will be the set of valuations of k (resp. K) 
k~ (resp. K,,) for veX, (resp. ~,) the completion of k (resp. K) with respect to 

v and 
O~, (resp. ~?,) the ring of integers in k,, (resp. K~), v non-archimedean S =t=!b a 

fixed finite set of valuations of k containing all the archimedean valuations and 
the set of valuations of K lying over those in S, A (resp. A) the ring of S- 

integers in k (resp. K): 
A ={xeklxe~,, for all v4~S} 

(resp. ft={xeKIxeO~, for all vq!S}). 

Also, let A*={aeflla= -a}. (If k is of characteristic 2, A*=A.) We some- 
times refer to elements of A* as purely imaginary. 

In the sequel we will have to use frequently the following ideals in A and A. 
In general, if q is an ideal in A, ~ wilt denote Oil. The ideals we are interested 
in are 

f = maximal s]-ideal contained in the A-submodule A +A* of .4; f is non-zero 
if the characteristic of k + 2. 

~o = ~c~ A. In general ~o c f but ~o may not equal f. 
t = {trace xlxe7t} (an ideal in A). 

= ideal generated by A* in i]. 
~ 0 = A  c3~. 

The ideals t and s 0 are always non-zero (in all characteristics). 
Let G =  SU(2, 1) denote the special unitary group of the hermitian quadratic 

form in 3 variables (on K) given by the matrix 

E =  0 

0 

G is the unique (upto k-isomorphism) simply connected quadi-split group of k- 
rank 1 splitting over K. The k-rational points of G is denoted SU(2, 1, K) or G: 

SU(2, 1, K) = {geGL(3, K) [ det g = 1, t~ E g = E}. 

F will be the subgroup G c~ SL(3, i]) of G. For an ideal q c A, 7t = q A and 

r(q) = { g e F l g -  Identity (mod 71)}. 

We denote by EF(q) the subgroup generated those unipotents in F(q) which are 
contained in the unipotent radical of a k-parabolic subgroup of G. A standard 
example of the k-points of unipotent radicals of k-parabolic subgroups of G are 
the following. 

U + = 1 trace ~ = N o r m  r/, 3, t leK 

- 6  
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U - =  1 - trace ~ = N o r m  r/, ~, r t eK  . 

0 

Thus E F ( q ) 2  U + (~F(q) and U-c~F(q).  A third subgroup of  G of interest to us 
is the group 

cb= d ~G a , d ~ A , b , c ~ A * , a d - b c = l  . 

0 

(It may  be remarked that cb may be realised as a subgroup of the au tomor-  
phism group of the projective A-module  A + A*.) For  an ideal q c A we set 

q~(q) = F(q) ~ ~. 

F rom now on we make the following addit ional assumption 

(*) The group of S-units in K (~f units in .4) is infinite. 

This assumption is equivalent to saying that, in characteristic 0, K is not a 
quadrat ic  imaginary extension of  Q and in all characteristics to saying that 
IS1>_2. We observe that if u is a unit in A, the matrix 

0(u)= li -1 belongs to G (in fact F). 

0 u -  ff 

In the special case where k has no S-units of infinite order, we see that there 
are infinitely many ;~-units u such that  u ~ =  1. For  such an element u 

(i ~ ~ O ( u )  = u ; 

0 u -  

evidently in this case O(u) commutes  with all of ~, an observat ion which will 
be useful later. A special unit in A is a unit in A or a unit u such that u ~ =  1. 

The following result is the main thrust towards the solution of our  problem 
in the present chapter. 

1.2. Proposition. Let  l denote the order of  the group of  roots of  unity in K and u 
a special unit in A. (We  assume that (*) holds.) There exists an ideal r c A  
(independent o f  u in fac t )  such that r ~ 0 and 

[0(u) ~2, r(r q)] = Er(q) 

for  all ideals q c A. 

The basic idea of the p roof  is derived from that of a similar statement in 
Serre (1970). In fact the present chapter has nothing very original from the 
point  of view of conceptual  development:  some technical difficulties are how- 
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ever encountered when one tries to push the ideas of Serre (in the reference 
cited above) to the case of  SU(2, 1), (the unique quasi-split, non-split ,  rank 1 
group). 

1.3. L e m m a .  Let q c A  be any non-zero ideal and 7 =  . any element of  

F(tq), (recall that t = { t r a c e x [ x ~ / ] } ) .  Then there exists q)eEF(q) such that 7q~ 

= with (a', b') = 4 .  

Let B denote the set of pr imes p in A dividing b. Let B 1 = { p 6 B I p  copr ime 
to a} and B 2 = { p ~ B ] p  divides a}. Then  no pr ime in B 2 can divide tq since 
a = l  (mod}~).  It  follows that  we can find 2~A such that  

2-=0 (mod p) for p e B  1 

(*) 2 - 1  ( m o d p )  for p~B 2 

2 ~ 0  (mod } ~I). 

Evidently then a+)oc is a unit modu lo  b: note that  either a or c is a unit 
modu lo  any pEB and a is a unit modu lo  "{ct. Next  if )~ is chosen to satisfy (,), 
one sees from our  definition of f that  there exists {eT~ with trace {=25~. Set ~p 

= 1 - ; then q o ~ U - m F ( q ) c E F ( q )  and ?q0 has the required property.  

0 
This proves  the lemma.  (abe) 
1.4. L e m m a .  Let  ? =  . be any element of  F(%q)  (recall that ~o 

=(.4.  A*)c~A). Assume that (a, b ) = i  Then there exists ~p~EF(~oq ) such that 

y q~ = with (a', c') = 1 and (a', b') = 1. 

Proof. Let C be the set of pr ime ideals in A dividing c. Let C l = { p c C I p  is 
coprime to a} and C2={peClp divides a}. For  p e C ,  let p o = p c ~ A .  We assert 
that if p e C 2 ,  ~ e C  2 as well�9 T o  see this observe that  we have 

a 6 + g b + c g = O  

and that  (a, b) =,4. Thus if p divides a and c it must  divide g; hence ~ divides a 
as well. Now if p, p' are ideals in C such that  p 4= p' and 

p o = p m A  = p' c~ A =Po  

we have necessarily p ' = O  and then bo th  p and  p' belong to the same Ci, i =  1 
or 2. 
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Consider now the A-submodule p*=pc~A*  of A* for each p~C. It is clear 
that 

p* = p  c~A* ~ p o .  A*, Po=Ac~p.  

Suppose now p e C2; then p c~A*4: A*. This is because the ideal generated by 
A* in A contains ~o and a being congruent to l modulo ~o, the divisor p of a 
must be coprime to ~o. It follows moreover that pc~A*=poA*;  this is because 
A* being a rank 1 module over A, A * / P o A *  is a simple A-module�9 It follows 
now that we can find 

2p~A* - p *  =A* - p o  A* 

such that for all p~C 2, 2~=2~ (observe that p* =~*). 
Since C 2 is closed under conjugation for p e C  1 and p '~C2, Po+Po.  Also for 

p@C2, p o = P ~ A  is coprime to the annihilator of A*/(-q'~c~A*). This is because 
~ c ~ A * ~ q A *  and since a - 1  ( m o d ~ ) ,  Po must be coprime to q~. 

Applying now the Chinese-remainder theorem to the (projective rank-l)  
module A* over A, we see that we can find 2~A* such that 

).-)~p (mod p*) for p e g  2 

2---0 (modp*) for p6C  1 

2 - 0  (mod A* c ~ ) .  

One sees then immediately that the element a + 2 b  is a unit modulo every p ~ C  
as well as modulo )~  we conclude that a + 2 b  is coprime to c. Consider now 
the element 

qo = 1 ~EF(q  5); ~/~o = . 

0 

Evidently 7~P has the required property�9 This proves the lemma. 
Combining Lemmas 1.3 and 1.4, we have 

1.5. Lemma.  Let  7eF(~otq). Then we can f ind  q~6EF(5oq ) such that 

7 q~ = . with (a, c) = (a, b) = A. 

1.6. Lemma.  Le t  7 =  . be any element o f F .  Then A a + A * b ~ c ~ fl. 

Since 7cG, we have c ~ =  - ( a b + 6 b ) .  If 2~A is any element 

). c b-= - 2 ( a / ~ + d b )  = - 2 a b - 2 a b + X a b - 2 6 b  

= - a ( 2 b + 2 b ) + b ( f ~ a - 2 6 ) ~ A a + A * b .  

This proves the lemma. 
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1.7. Lemma. Let u be a unit in 7t and yeF(q) be of the form 

u - 1  (modaa-), O(u) and 7 commute modulo EF(q), o o )) 
= ~-~ 0 . 

0 u -~ 

�9 if 

recall that O(u) 

Let ~ l = c ( u Z g - l - l ) / a  and ~={(ug - l )b+cO} /a .  These are elements of ~1 
as is easily from our assumption that 

u =- 1 (rood(aS)). 

Let (p= 1 . Then q0eEF(q) (A simple calculation shows that trace 
- q  

~=r/O; this takes into account the fact that a6+gb+cg=O).  Both elements 
7q~ and O(u)70(u) -1 take the form 

( :  b + a ~ - c F  1 a+c t l )  

It follows again by an easy computation that (Ttp).(O(u)70(u) -~) takes the 

form (l. 0 0 . ) .  . 

and hence belongs to U - c~ F(q) c E(q). This proves our contention�9 
We need one more result before we can prove Proposition 1.2. 

1.8. Lemma. Let l denote the order of the group of roots of 1 in K. Let d e Z  be 
a prime and d e the highest power o l d  dividing I. Let q be any ideal in A and 
aeft  a unit modulo ~. Then there exists aoeft with the following properties 

(i)  a o - a ( r o o d  q) 

(ii) ,3,ao=p, a prime with p4=~ or i ] ao=p~pz ,  Px, P2 primes with 
Pt =I=PZPl dfP2 and pi+ F) i fi)r i= 1, 2. 

(iii) A/A a o contains no unit of order d ~+ ~. 

This lemma is proved in Serre [1970, Lemma 3 o fw  except for the second 
condition. To secure the second condition we need a sharpening of Serre's 
Lemma4 of w in the cited reference which is used by him to prove his 
Lemma 3. The sharper version we need is 

1.9. Lemma. Let L be an abelian extension of K and P the set of prime ideals in 
K which do not ramify in L and do not split completely in L. Let P' be the set of 
prime ideals of K which are stable under Galois conjugation. Let Q be any finite 
set of prime ideals in K. Let q be any non-zero ideal in A and aef t  a unit modulo 
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~q. Then there exists ao6A such that 

( i )  a o = a (mod ~) 

(ii) Aa0=Pl.p2 or A a o = P l  with p i ~ P - P ' - Q ,  p l : ~ f f p 2 ,  ]~2 . 

For the sake of completeness we give a proof of Lemma 1.9 and deduce 
Lemma 1.8 from it. The proofs are essentially those of Serre for the corre- 
sponding results with minor modifications. 

1.10. Proof of Lemma 1.9. Let Hq be the ray class group of cl (Hq=group of 
fractionary ideals of A which are coprime to q, modulo the action of the group 
{xcKlx=2/lz, 2,#  coprime to q and x - ( l m o d q ) } .  Let Kq be the abelian 
extension of K with Galois group isomorphic to Hq under the isomorphism 
given by the Artin-reciprocity map. Let Lq be the composite of Kq and L. Let 
~ H q  be the image of Aa in H,  and ~Gal(L,~/K) a lift of ~. Set ~q=~ if ~ is 
non-trivial on L; if ~ is trivial on L let ~1 be any element of Gal(Lq/K) which 
is non-trivial on L and ~2=~i-~t.  We have thus 

~=n~ i i=1  or i=1 ,2 .  

For each i let P(i) be the set of primes in /] whose Frobenius equals ~i- 
Since ~ilL is non-trivial, these primes cannot split completely in L. Now the set 
P( i ) -P '  is infinite: this follows from the (~ebotarev density theorem. We can 
therefore choose Pi (i = 1 or i = 1, 2) such that ~ is the product 1-[ oi, o~ being the 
Frobenius corresponding to Pi. Since P( i ) -P '  is infinite we can, in case ~14:& 
choose Pl, P2 such that P14:P2 or P2- Then [ IP i  being equivalent a/] modulo 
{xef41x =- 1 mod q} the lemma follows 

1.11. Proof of Lemma 1.8. To deduce Lemma 1.7 from Lemma 1.8 we use the 
same arguments as Serre (1970). Take for L the extension K(m) where co is a 
primitive (de+l) TM root of 1. Then a prime p in K splits completely if and only 
(Norm p - 1 )  is divisible by d e+~ i.e. iff A/p contains an element of order d e+~. 

1.12. Proof of Proposition 1.2. Let eeA* be any non-zero element. Let f :  
SL(2, k ) ~  G be the group homomorphism: 

i) t: , 0 0 

Then we can find an ideal 0 4: b c A such that f(SL(2, b q) c F(q) for all ideals q 
c A  and if xeSL(2, A) with f(x)eF(bq), xeSL(2, q) (here for an ideal a c A ,  
SL(2, a) = {xeSL(2, A)Lx - Id mod a}). Now according to Serre (1970) 

(,) [SL(2, A), SL(2, q)] c ESL(2, q) 

where ESL(2, q )=group  generated by unipotents in SL(2, q). It is easily seen 
that 

f (E  SL(2, I) q)) ~ EF(q). 
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We conclude from this that  if u is a special unit, O(u) commutes  with (b( b q )=  q~ 
c~ F( [  q) modulo  EF(q). In fact u being a special unit 

or  

O(u)  = U 1 (the case ueA)  

0 

/i0 0) O(u) = u 0 . 
0 U - 2  

In the first case O(u) is in the image of  SL(2, A) and ~b(bq)cf(SL(2,  q) and our  
content ion follows from (,). In the second case O(u) and cb commute  and the 
assertion is trivial�9 

We now set r = % t b .  Suppose now 7sF(qr)  and u is a special unit. By 
Lemma 1.5 modifying 7 by an element of  EF(b 5 o q). We may assume that 

,=(: :t �9 ( e r ( b ~ o q ) )  

with a coprime to b as well as c. Now from Lemma 1.7, it is clear that  there is 
some power of O(u) that  commutes  with 7 modulo  EF(q). Let N be the smallest 
integer for which O(u) N commutes  with ? modulo  EF(q). It suffices to show that 
N divides 12. L e m m a  1.7 shows that if d is a prime in Z, and d N" the highest 
power of  d dividing N, then N d divides the order  of the unit g roup o f / ] / , 4a~ .  
The element a depends on 7 - it is the first entry of 7 - and may be varied by 
varying 7 in its class modEF(q) .  Consider  now the ideal h + = A c e h b ~ o ;  then 
a is unit modulo  ~+. This is because a - 1  (mod/t~ob),  ( a , c )=A  and also (a, cD 
= A: the last assertion follows from the equation 

a 6 + 6 b + c ~ = O  

and the fact (a, b)=,5,: in fact if p is a prime in ,4 dividing ~ and c, it must  
divide a as well since (& 6)=,4.  

Fix a prime d in Z and choose an element a o as in L e m m a  1.8 taking for q 
in that L e m m a  the ideal q+ = ) +  c~A. Then, 

a o = a + 2  , 2 ~  + 

and by L e m m a  1.6, we have 

2=c~a+f lb  

with c~e%qI)A and f le~oq[)A* so that 

ao=(c~+ l ) a + f l b .  

We now claim that A.  (e + 1)+ A* f l=  A. In fact if this were not the case we can 
find a prime ideal p c A such that  p ~ A(c~ + 1) and p ~ A* ft. This implies that 

b ~  ao~. 
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Since T0~A(c~-+-l) and  ~ = 0  (mod~b) ,  it follows that  To divides a o. But by our 
choice of a o (cf. P roper ty  (ii) in L e m m a  1.8) no proper  ideal of A coming from 
an ideal of A can divide ao, a contradict ion.  Thus 

A(o~+ I)+ A* /3=A. 

Let ~eA* and flea be chosen such that  (c~+ 1)r / - /3  ~ =  1. It follows that  

q~= ~-/3~ ~(bq). 
0 

N o w  7~o takes the form 

Since O(u) and ~o c o m m u t e  modu lo  EF(q) for a special unit u, we see that  the 
integer N must  divide the order  of the group  of units in ~ , / / ]aoao ( L e m m a  
(1.7)). We conclude that  Nd<2ea=2 max{e ld  e divides l}: note that  A/Aao8 o is 
i somorphic  to a p roduc t  of the form /I/P1 x/I /P1 or of the form A/P1 x A/Pl 
x A/P2 x / I /P2  and A/Pi (-~A/Pi) has no units of order  d e+ 1. This proves that  N 

divides 12 . 
As a corol lary to Proposi t ion  1.2 we see that  we have 

1.12. Proposition. Let F(c) (resp. F(e)) be the projective limit of the {F/F(q)lq a 
non-zero ideal in A} (resp. {f/EF(q)l q a non-zero ideal in A}. Let C be the 
kernel of the natural map F(e)~F(c). Then fbr any special unit ueA, O(u) t2 
centralises C. 

1.13. It is easily seen that  there is an element 2~A such that  for a non-zero  
ideal b c A we have (using the notat ions  of  the In t roduct ion)  

G ( 2 b ) c F ( b )  and F(2b)cG(b) 

E(2b)cEF(b)  and EF(2b)cE(b) .  

One deduces immedia te ly  f rom this that  F(e), (resp. F(c)) can be identified with 
the closure of  F in (~(e) (resp. (~(c)) and consequent ly  C may  be identified with 
kernel rc(e,c): G(e)--*G(c). It  follows that  the centraliser of C in G(k) is a 
normal  subgroup  of G(k) containing O(u) t2 for any special unit u~/].  This means  
that  the centraliser of  C in G(k) is infinite and hence is all of G(k). It follows 
that  G(e)--,G(c) is a central extension proving the main  theorem in the special 
case of quasi split, non  split G over  k. (When G is split over  k, G-~SL(2)  over  k 
and the main  theorem is due to Serre (1970)). 

We have established 

1.14. Theorem.  The main theorem is true for those G which are quasi split over k. 
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w 2. Construction of some central extensions 

2.1. Notation. As in Chapter 1, k will be a global field Z the set of its va- 
luations, for veX, k v will denote the completion of k w.r.t, v, S will be a non- 
empty finite subset of 2; containing all the archimedean valuations and A the 
ring of S-integers in k. From now on however G will denote a connected 
absolutely almost simple connected k-algebraic group of k-rank 1. If L ~ k  is 
any extension of k, G(L) will denote the L-rational points of k and G(L) + the 
subgroup of G(L) generated by L-rational unipotents contained in the uni- 
potent radical of a k-parabolic subgroup of G. We fix once and for all two 
opposing maximal unipotent k-subgroups U + of G. We denote by P+ the k- 
parabolic subgroups normalising U -+ and M=P+c~ P  -. For any k-algebraic 
subgroup H of G, H(L) will denote the L-rational points of H. From the work 
of Tits (1969) it is known that U+(L) generate G(L) + for all L. Platonov (1969) 
has shown that G(L)=G(L)  + if L is a local field. Finally, let T denote the 
central k-split torus in M and N the normaliser of T in G. The following result 
is well known (Borel and Tits (1965)). 

2.2. Lemma. Let x~U(k )x# : l .  Then there exists unique elements n(x)~N(k), 
f(x), g(x)~ U(k) such that 

x = f (x )n (x )g (x ) .  

The element n(x) conjugates U (resp. U- )  into U -  (resp. U+). 

2.3. Lemma.  Let L ~ k be an infinite field. Then the set 

f2- (L) = {xe U -  (L) lx = u w v, u ve U(L), weN(L)} 

is Zariski dense in U-  and Zariski open in U (L). 

2.4. Definition. f:  ~2-(L)-+ U(L), g: Q-(L)-+U(L) and n: f2-(L)-+N(L) are the 
maps given by 

x = f ( x )  n(x) g(x), xef2-(L) .  

2.5. Consider now the free product G * ( L ) = U + ( L ) , U  (L) of U+(L) and 
U-(L). To avoid confusion, when we consider an element ueU+(L) as an 
element of G*(L) we will denote it by u*. For xef2-(L),  let 

n*(x) =( / (x)*)  t. x*-(g(x*))-k  

If ~z*: G*(L)-~G(L) + is the natural map, evidently ~*(n*(x))=n(x) for all 
xef2-(L).  Let R(L) be the normal subgroup of G*(L) generated by E ~ wE  
where 

E +- = {(n*(x) a* n*(x) 1) ((n(x) a n(x)- t ) , ) -  11x~2- (L), a~ U -+ (L)}, 

and 
G(L) = G*(L)/R(L). 

2.6. Proposition. R(L) is in the kernel of lr*: G*(L)~G(L)  +. Under the map ~r: 
G(L)-+G(L) + induced by rt*, (~(L) is a central extension of G(L) +. 
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For xeU+(L) or U-(L), we denote by 2, x considered as an element of 

(~(L). For  xEO-(L), let f(x)=f(x"~), ~(x)=g(~'~) and fi(x)=Image of n*(x) in 
(~(L). We fix zeU-(k)-{1}cf2-(L) and denote fi(z) by ~r. Let )~(L) be the 
group generated by {~(~)-fi(fl)lc~,fleQ-(L)}. With this notation we will first 
establish the following 

2.7. Claim. Any element q~e(~(L) can be expressed as a product 

where x, u, veU(L), ~ef2-(L) and 2e/g/(L). 

Let G' be the subset of elements of G(L) which can be expressed in this 
form. Now (2-(L) and U+(L) are contained in (~' (this follows easily from the 
definition of M(L) and O-(L)). Further from Lemma 2.2, it is easy to see that 
(2-(L).f2-(L)=U-(L). Thus it suffices to show that G' is stable under left 
multiplication by 

{xlxeU+(L) or fa-(L)}. 

For U+(L) this is obvious. Suppose now 

is as above and qe~2-(L). Then we have 

0 =f ( . )  ~(.) ~(,) 
so that 

=fol ) ia ,mv  
where 

2( = n0/) g(q)' x n(O-1)e U- (L) 

a( = n (/;/) ~ n(t / ) -1)c U + (L) 

/2( = n(r/) u n(t/)- 1)E U-  (L) 

~(  = ~(t/) ~ ~) c ]~/(L). 

Now in view of the relations R(L) again, 

a = ~(~)(f(o ~(r ~(0) ~(~)-' 
= ~  

where ~, fleU-(L) and ~eM(L). We see now that 

where ?, 6e U- ( L)  and /~e37/(L): note that )k/(L) normalises U+(L) and U-(L). 
Again conjugating # past c~ we see that 

with d~U(L). Let g2={Oe(2-(L)]?O-XeO-(L)} and n(O)g(O)dn(O)-teO-(L)}. 
Since O-(L)  is Zariski open in U-(L) it is immediate that ~2 is non-empty. Pick 
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any 01~(2 and set 78~ -1 =02. Then we have 

~o = f @  02 f(8 0 ~(8~) ~(01) J ~/7 

and by the choice of 01, n(OOg(OOdn(80-~= ~e~2-(L) so that we have 

~] ~9 = f(?]) 0 2 f (O,) q' fi (81) 1A? ]~ 

= f(~]) 02 f(81) f(7t) fi(7t) g(~)/~1 ~ 

with/Tt~M(L). Since /~1 can be conjugated past ~(~) to give an element of the 
form /~. ~ with c~U(L) and f ( o o f ( ~ ) ~ U ( L  ) as well the desired result follows. 
This proves Claim 2.7. 

2.8. Completion of the proof of Proposition 2.6. Suppose now that ~0~kernel of 
~. Then we have setting 

(with x, u,/)~ U(L), ~ 2  (L) and 2r 

l = ~ ( ~ o ) =  x ~ u w z /) 

where z=~(2)  normalises both U(L) and U-(L) and hence belongs to M. This 
leads to 

~ X - 1 / ) - I  z - I w - l  u-1 
so that 

f ( ~ ) = x - 1 / ) - 1  and g(~)=u -1. 
But then 

= ~ _ 1 ~ ( ~ ) ~  

=~(~) ~ ' ~ 1  with /)leU(L). 

But this means 

1 = ~(~o) = n(~)  w z Vl 

so that (on account of the uniqueness of the decomposition P(L) = M(L) U(L), 
/)1 = 1. Thus 

~o = ~(~) ~ ~ ~ t ( L )  

Since q~ normalises U(L) and U- (L)  and projects to 1 under n, we conclude 
that q~ must centralise U(L) and U-(L) (in (~(L)) and hence all of (~(L). 

2.9. Proposition. The extension constructed above is a universal central extension 
i.e. if f:  G~ ~G(L) + is any central extension with [G 1, GI]=G1, there is a unique 
homomorphism fl: G(L)~Gl such that f f l  =~. 

We use the following fact proved in Deodhar  [1978, Theorem 1.9]. The 
map zc*: G*(L)--,G(L) + factors through G 1. It suffices therefore to show that 
E + and E -  are in the kernel of this map of G*(L) in G~. But this is clear since 
the action of G 1 on itself factors through the quotient G(L) +. 

2.10. Remark. The proposition proved above is a refinement (in the case of 
rank 1 groups) of Deodhar 's  theorem which concerns itself with the case k = L. 
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The generators given for R(L) are much more economical than those given by 
Deodhar. (In the special case of quasi split groups Deodhar 's  theorem was 
obtained much earlier by Steinberg (1962).) Finally, note that Propositions 2.6. 
and 2.9 are valid for any field k. We will however need them only in the case 
when k is a global field and L is a completion of k. Our aim now is to obtain 
Adelic versions of these results. We begin with a result on Ad61e groups of 
isotropic groups. 

For a k-algebraic group H we denote by H(A(S)), the S-Adele group 
associated to H. With this notation we have 

2.11. Proposition. G(A(S)) is generated by U+(A(S)) and U-(A(S)) as a (n 
abstract) group (not merely as a topological group). 

For any yeS, G(k~) is generated by U+(k,,) and U-(k~.) as a group. This 
follows from the results of Platonov (1969). (If M is the common normalizer of 
U + and U , U+(k~), U-(k~) and M(k~) generate G(k~,) so that the group 
generated U+(k~) and U-(kv) is normalised by G(k,,) etc.) This means that we 
can replace S by any larger finite subset S o (as far as the proof  of this 
proposition is concerned). We want to choose S o with the following properties. 
There is a reduced connected closed A0-subscheme ~ of GL(n) (A0=S o- 
integers in k) which is isomorphic to G over k, the inclusion ~ - -~GL(n)  being 
a closed immersion. Moreover we want that for all yeS o, the reduction modulo 
p~, ~ |  of Jvtf (p~=prime ideal in A o corresponding to v) is a connect- 
ed simply connected reduced group-scheme over the residue field F~,. To the 
subgroups U • of G correspond in a natural fashion (unique) reduced closed 
subschemes oK • of  ~ .  We assume that "U • admit good reductions modulo p,,, 
yes o and that the F~.-rational points of ~K + and ~U- generate ~g(F,,). Let b 
denote the A0-Lie subalgebra of M(n, k) corresponding to J4~ Let E 1 . . . . .  E r be 
linearly independent elementary nilpotent matrices in M(n, Ao) such that 

k 

M(n, k)=bR+ ~ k Ei where Dk, the k-span of b can be identified with the Lie 
i:1 

algebra g of G. Suppose now that XeD is tangential to the centre of U +, then ,q 
is known to be the linear span (over k) of {Adg(X)lgeH(Ao)+}, H(Ao) + being 
the group generated by U• We fix then conjugates XI . . . . .  Xq (under 
H(Ao) +) of X in I) which form a k-basis of g. For  each X i, l<i<=q (resp. Ej, 
l<j<r).  We have unipotent 1-parameter subgroups of G i.e. morphisms q0i, 
(resp. 3) tw-*Xi(t) (resp. t~--~E~(t) of the additive group G~ in G such that X i 
(resp. Ej) is tangential to ~o~ (resp. ~). Then the map 

c~: l-i G~-,GL(n) 
(q + r) copies 

given by (tl , . . . , tr,  tr+ 1 . . . . .  t r+q) - -*  [ I  Ej(tj). 1-I Xi(tj+~) the product taken in 
l<j<=r l<=i<~q 

the natural order - has Jacobian of maximal rank at (0, 0 . . . .  , 0 ) e [ I G  .. We assume 
S o so chosen that this polynomial map c((t~{e~j(t)}~<=~,j<=,) has all coefficients 
in the ring A o and the determinant of the Jacobian matrix of this map at 
(0 . . . . .  0) (it is a m a p  k "~ in M(n,k)=k "~) is a unit in A o. For  the local field k~,, 
vr this has the following implication. The natural map %: k,,x ... 
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x k~,--.GL(n,k,,) gives an analytic i somorphism of p~ x ... x p~, onto  GL(n ,p , )  
= {ueGL(n,  ~ , ) i u - 1  (rood p~)}. (This follows easily f rom the usual p roof  of the 
inverse function theorem using the me thod  of majorants.)  

Next,  we can find a k-representat ion p of GL(n)  on a vector  space W and a 
k-rat ional  vector  woeW such that  G is precisely the isotropy of w o in GL(n) 
and moreove r  the orbit  m a p  g ~ p ( g ) w  o is an immers ion  of GL(n)/G in W. This 
means of course that  if p denotes the induced m a p  of M(n, k) in End(W),  p is 
injective on the k-span of the E~. Moreover ,  it is not difficult to see that  after 
enlarging So, we can assume that  w o belongs to a free Ao-submodule  L in W of 
maximal  rank containing the p(E~)wo, 1 <<_i<_r as part  of a Ao-basis of L such 
that  we have for t~ep~, 1 <=i<=r, 

r 

p(Ei( t i ) )"  WO = E t i p (E l )  Wo ( m o d  Z ti tjL). 
i=1 i=1 l<i,j<r 

This shows in par t icular  that  

r q 

p(Ei(t~)) [ l  p(Xj(tj+~)) w o = w o 
i--I j--1 

for tiep.: if and only if t i = 0  for 1 < i < r .  We conclude then that  for a suitable 
finite set S 0, the m a p  %, vq~S o induces an analytic i somorphism of p,  x ... x p,, 
(q-factors) onto G(p~,), the g roup  {ueGc~GL(n ,~ , ) Iu -1  modp~}.  It is im- 
mediate  from this that  the group  [ l  G(p,.) is contained in the abst ract  group 

vr 

generated by 1~ U-+(~) .  In fact we have proved  more:  there is an integer m 
vr 

such that  any element  of 1~I G(p,,) can be expressed as a word of length less 
vr 

than m in the elements of I J  u - + ( ~ )  - We will improve  further on this: we will 
vr 

show that  (at least after enlarging S o still further if necessary) that  every 
element of 1~ G(~ , )  is expressible as a word  in the elements [ I  U+-(~,) of 

verso t,r 
length bounded above  by a fixed integer. In order  to do this we choose S o so 
that for all v~So, the reduct ion Jt~,, rood p~, of ~ is a smoo th  semisimple group  
scheme over the residue field and is also such that  ~-+ admit  smooth  re- 
ductions which are unipotent  radicals of oppos ing  parabol ic  groups.  Using 
then s t rong app rox ima t ion  for unipotent  groups  and the Bruha t -decompo-  
sitions over  the residue fields it is easily concluded that  any x~ I~ G(D~) is 

v~So 

expressible as a word in the elements of [ I  U +-(~,) of length bounded  above  
v~So 

at least modu lo  17 G(p~); the earlier assert ion about  1~1 G(p~) now leads to the 
vCSo vCSo 

following observat ion  which we record as a l e m m a  for future use. 

2,12. L e m m a .  Let U +- (9) denote the product ~ U +- (~v). Let qo be the map of the 
yes 

m-fi)fd product I-[ U+(~) x U-(D) (of  U + ( ~ ) x  U - ( ~ )  with itself) into G(A(S)) 
given by 

1A + {( i , u/-)ll <=i<=m}--, 11 u+ u/- 
i=1 



90 M.S. Raghunathan 

(taken in the natural order 1 lom) .  Then the image of ~o contains an open 
compacr subgroup of G(A(S)) for some integer m > O. 

Now to conclude the proof of Proposition 2.11, we note first the G(k) +. M 
=G(A(S)) for any open subgroup M of G(A(S)) (and G(k +) is the group 
generated by U + (k) and U-(k). (This is a consequence of strong approximation 
for U + combined with the truth of the Kneser-Tits conjecture for local fields 
(Platanov (1969))); and we can choose for M an open subgroup contained in 
the image of ~o as in Lemma 2.12 above. 

2.13. Corollary. The natural map U + (A(S)), U-(A(S))~G(A(S)) is surjective. 

We end this chapter with two final results on central extensions of Ad61e 
groups. 

2.14. Proposition. Let i+: U+-(A(S))--*G(A(S)) denote the natural inclusions. Let 
be a second countable topological group and ~z: G--*G(A(S)) a continuous 

homomorphism. Suppose that we have continuous inclusions j+-: U+-(A(S))~G 
with the following properties 

(i) j+-(U+-(A(S))) generate G as a topological group. 

(ii) For v,wr v#w, either of the subgroups j• and j• 
commute with each other. 

(iii) The natural map f~: U+(k~),U-(k~)--*G contains R(k) (cf. w for the 
definition) in its kernel. 

(iv) ~. j+=i  +-. 

Then n is a central extension of G(A(S)), 

Let G' be the abstract group generated by the images of j+-. We will first 
show that ~z': G'~G(A(S)) is a central extension, r( being the restriction of ~. 
Suppose xeker~' ,  then x can be expressed in the form 

x =gl"  hi "g2" h2 ""  grn" hm 

with gi~j+(U+(A(S))) and h~j-(U-(A(S))). In the sequel we identify 
j+-(U+-(A(S))) with U• themselves so that gi (resp. hi) will be regarded as 
elements of U+(A(S)) (resp. U-(A(S)). Using the fact that U+-(A(S)) is a restrict- 
ed product each gi (resp. hi) can be expressed a limit of products of the form 
I-[ gi(w) (resp. [ ]  hi(w)) S' a finite set of valuations in the complement of S 

wES" WES' 

and gi(w), (resp. hi(w)) in U+(kw)(resp. U-(kw) ). In view of (ii) we can express x 
as the limit of products of the form 

x(S') = 1-[ (gl(w) h,(w) g2(w) hz(w) ... gin(w), hw(w)). 
w6S' 

That re(x) is identity means that n(x(S')) is identity for each S' so that each x(w) 
is in the kernel of n. Now according to (iii) the kernel of fw contains R(k) and 
hence a simple continuity argument shows that it contains R(kw) as well. It 
follows now (Proposition 2.6) that x(w) commutes with U+-(kw). By (ii) x(w) 
commutes with U+-(k~) for v+w. Thus x(w) is in the centre of G; as this holds 
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for all w, x is in the centre of (~'. Thus ~': G'--*G(A(S)) is a central extension. 
Let  C' be the kernel of  (~' and C the closure of  C' in (~. Clearly (~' C is again a 
central extension of G(A(S)). It  suffices to show that  (~'C is closed in (~. For  
this, we know from Corol lary  2.12 that  there exists a compact subset M in (~' 
which maps  onto an open subgroup  of G(A(S)) under  ~. Suppose  now that  E 
c G ' C  is a subset whose closure in (~ is compact ,  then re(E) ( E = c l o s u r e  of E) is 
compac t  and hence conta ined in a finite union of translates of re(M). It follows 
that  we can find a compact subset  F of (~' such that  ~(F)=~(E) and FC is 
closed in (~. 

The  second result is a part ial  converse to the previous one. 

2.15. Proposition. Let 7~: G~G(A(S)) be a topological central extension and j+ : 
U(A(S))~ G be continuous inclusions with 7z.j+-= i +-. Then for v =g w, v, w(sS each 
of U+-(k~) commutes with both + U-(kw). For each vr the natural map f~ 
U+(k~)* U-(k~)-~G contains R(k) in its kernel. 

The second s ta tement  is immedia te  from Proposi t ion  2.6. To  prove the first 
fix + x~U-(kw) (identified as a subgroup  of U• which in turn are t reated 
as subgroups  of (~. Then  the m a p  t - , t  x t -~ x-~ defines a h o m o m o r p h i s m  of 
the subgroup  (~  generated by U • into the kernel of ~ (which is central). 
This h o m o m o r p h i s m  is moreove r  trivial on G~c~ker ~ and the quot ient  (~,,/(~ 
c~ ker ~ is precisely G(ko), a g roup  equal to its own commuta to r .  It  follows that  
this h o m o m o r p h i s m  is trivial proving our  contention. 

w 3. The main theorem for IS] > 2  and a special case  

3.1. We cont inue with the no ta t ion  int roduced in Chap te r  2 (specifically 2.1). 
We assume th roughou t  this chapter  that  

k , - rank G > 2. 
YES 

This hypothesis  is satisfied if either of the two following condit ions hold. 

A. ISI > 2 .  

B. S={v} ,  k~-rankM'=O, M ' # { 1 } ,  k ~ - r a n k G > 2 .  

Recall that  M'=[M, M], M being the intersection P+ r If T is the central 
split torus in M, then M=Z(T)  is the centraliser of T. Let xeU-(k)  be any 
element with x 4: 1. As already observed in L e m m a  2.2 we have 

x = f ( x )  - n(x). g(x) 

with f(x), g(x)eU+(k) and n(x)~N(k) ( N = n o r m a l i s e r  of  T). For  xeU-(k),  x #  1, 
let H(x) denote the k-subgroup of G generated by x, n(x) and T. Then  accord-  
ing to the main  theorem of the Appendix  (w 5) H(x)~-SL(2) over  k or  there is a 
finite extension l of k and a quadra t ic  Galois  extension L of 1 such that  over  k, 
H(x)~_RvkSU(h), h a hermit ian form in 3 variables over  L with Wit t  index 1. 
Let V-(x)=H(x)c~U-; then V-(x) is defined over  k and is the unipotent  
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radical of a minimal k-parabolic subgroup in H. Let U~- be the commutator 
subgroup of U-.  Then U-/U~- is a vector space E over k and the image l?- of 
V-(x) in U-/U 1- is a linear subspace. We also know that Ua- is central in U- 
and that U~- (k) = [ U -  (k), U-  (k)]. Consequently, if F c U-  (k) is a subset whose 
image in E(k) generates all of E(k), then F generates U-(k). These remarks 
enable us to establish the following 

3.2. Lemma. Assume that (A) or (B) of 3.1 holds. There is an element xeU-(k) ,  
x #= 1 such that the following two conditions hold 

(i) U-(k) is the smallest subgroup of U-(k) containing V-(x)  (k) and stable 
under M(k). 

(ii) ~ k~-rank H(x) > 2. 
yES 

Proof. In the light of the comments at the end of 3.1 to show that xeU-(k) ,  
x=t= 1, satisfies the first of these conditions, it suffices to prove that E(k) is 
generated as an M(k)-module by l~ (k). Since 1~ (k) is a vector subspace one 
may pass to the Zariski closures. From the chevalley commutation relations 
one establishes easily that E as a rational M-module is generated by a single 
element. Thus we have proved the set {x~U-(k), x+ l lU-(k) is the smallest 
M(k)-stable subgroup of U-(k) containing V-(x)} is Zariski open in U-(k) and 
non-empty in U-(k). In view of this it suffices to show that the set 

Y = {xe U-  (k) lx 4: 1, ~ k~,-rank H(x) > 2} 
t,~S 

is open and nonempty in the topology on k induced by the diagonal imbed- 
ding k-~I~k ~. When [Sl=2, Y=U-(k )  so we assume that S={v} and thus (B) 

yes  

holds. Now when (B) holds we have the following implications. Since ~k,,- 
v ~ S  

rank G>2,  M contains k~-split torus of dimension >2. Since M' remains 
anisotropic over k~, M must admit a central k~-split torus of dimension >2. 
From the general structure theory (Borel and Tits (1965)) one knows that the 
centre of M has dimension at most 2. We see therefore that the centre of M 
contains a k-torus C anisotropic over k and split over k,,. This has also the 
implication that U + are not abelian. It follows that the k-root system 
={+c4  +2~} where c~ is a k-root such that the corresponding root space g(cQ 
(in the Lie algebra fl of G) is tangential to U +. Let T~ be a maximal k,,-split 
torus in M. Then Tv= T. C and it is a maximal k~-split torus in G itself. Let 
X*(Tv) denote the character group of T~ and ~b~ the kv-root system of G with 
respect to T~. Introduce a linear ordering on X*(T~,) such that xeX*(T,;) is 
positive if z]T=r .~  with r>0 .  Let A~ be the simple system for this ordering. 
Evidently ]A~] =2. From the fact that C is anisotropic over k but splits over k, 
one sees easily that every ~oeA~ restricts to ct. Let A~={qo, @}. Then ~0 and 
have the same length: if they have different lengths, we will have a k~-root of 
the form pq0+q~ with p + q > 2  and then (pq0+q~b) l T = ( p + q ) - ~  would be a 
root, a contradiction. It follows that A~ is a root system of type A 2. It follows 
that we can find a k~-imbedding 2: SL(3)~G carrying diagonal matrices into 
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M and the upper and lower triangular unipotent subgroups of SL(3) into U -+ 

{(!~ ~ / (i~ and the group 1 0 tsf% into T. Let y =  1 ~SL(3, k )  with 

0 t i 7 
/3+0; then y admits a Bruhat decomposition of the form 

v = ~  1+c~/3 1 7 r /=~.v(y)-~/ ,  say 

0 

with ~, t/ upper triangular unipotent matrices in SL(3, k,.). It follows that 
2(y)~O-(k,~) (={x~U-(k~)lx=f(x).n(x).g(x) with f(x),g(x)~U+(kt.) and 

n(x)eN(kv)}) and that n(2(y))=2(v(y)). Clearly v(y)2= 0 2 where 0 

0 - 
= 1 +~f l -1  7. It is clear from this that v(y) 2 generates a subgroup F(y) which is 
not relatively compact  modulo 2-1(T(k~,)) iff v ( l+c t f l -17)+0 .  Now chose 
~,fl,~ek~, such that l + e f l  17 is not a v-adic unit and let xeU (k) be a close 
approximation to 2(y) in the v-adic topology on U (kt,). If the approximation 
is sufficiently close, n(x) 2 will be close enough to 2(vly) 2) to ensure that it 
generates a subgroup which is not relatively compact modulo 2-~(T(k~)). It 
follows that the group F~ generated by n(x) 2 in M(k~,) does not have compact 
closure modulo T(k~,). But from the structure of SU(h) it is clear that this means 
that ksankH(x)>2.  The argument shows that the set of {xeU-(k) lx+ 1, k~- 
rank H(x)>2} is open in the v-adic topology as well. This completes the proof 
of Lemma 3.2. 

3.3. We are now in a position to prove the main theorem using the results of 
Chapters 1 and 2 if A or B of 3.1 is satisfied. Recall that we fixed an 
imbedding G in GL(n) and defined (~(c) as the S-addle group of G viz the 
completion of G(k) with respect to the family {G(b)=xeGc~GL(n,A), 
x - l m o d b } ,  b a non-zero ideal in A. We also set E(b)=group  generated by 
{xeG(b)lx belongs to a maximal unipotent k-subgroup of G} and defined t~(e) + 
as the completion of G(k) + with respect to {E(b)tb a nonzero ideal in A}. 
Consider now the inclusion of U+-(k)~G(k) +. Since the {E(b)c~U+-(k)Lb a non- 
zero ideal in A} is a fundamental system of congruence subgroups in U• 
the closure of U+(k) in (~(e) may be identified with the S-adOle group U+-(A(S)) 
of U +-. We see then that we have inclusions j-+: U + (A(S))~ (~(e) + and we will 
show that all the hypotheses of Proposition 2.14 hold for the projection ~t: 
G(e)+~G(c)=G(A(S)). (That ~t is surjective is proved in Raghunathan [-1976, 
Prop. 1.21]. That proof  is essentially repeated in the next chapter: see Proposi- 
tion 4.6.) The inclusions j-+: U++-(A(S))~G(e) + are evidently compatible with ~t 
and the natural inclusions i-+: U+-(A(S))~G(A(S))=G(c). Since U+-(k) generate 

G(k) + condition (i) of 2.14 holds. As has already been remarked condition (iv) 
holds. Assume now that (ii) holds. Then we assert that (iii) holds as well. Once 
condition (ii) holds the element h(x), xeU-(k),  x4= 1 can be written as product 

H ~(x)~ = H f ( x V '  �9 L ,  ~(x); -~ 
yes yeS 
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where x=f(x).n(x).g(x) with f(x),g(x)eU+(k) and n(x)eN(k) and for an ele- 
ment ~cU+-(A(S)), ~ is ~ considered as an element of (~(e) i.e. ~ = J •  and 

Using the relation 

~ ( X ) = f ( X ) - I ' - ~ ' g ( X ) - I .  

~(X)"  U n(X) - 1  = ( n ( x ) .  u n ( x ) -  1) ~ 

which holds for xeU-(k),  x # l  and ueU• and the assumption that (ii) 
holds, it is clear that condition (iii) holds. 

We are yet to establish that condition (ii) holds viz. that j• and 
j•177 commute  for v,wr v#w. To see this choose x as in Lemma 3.2. 
Then by the results of Chapter 1, j -  (V- (x) (kv)) and j + (V(x) (k~)) where V • (x) 
=H(x)c~U • commute  if v+-w (we have also made use of Proposition 2.15). 
Now consider the action of M(k) on j+(U+(kw))xj-(U-(kv)). This action 
evidently factors through the natural action of M(kw)x M(k~) on U+(kw) 
x U-(k~), v+w. Now from the density of M(k) in M(kw)x M(kv) and the fact 
that V+(x)(kw) and V-(x)(k~) commute and the first condition satisfied by x in 
Lemma 3.2, one sees easily that j+(U+(kw)) and j-(U-(k~j) commute. This 
shows condition (ii) of 2.14 satisfied. We have therefore shown 

3.4. Theorem. G(e)+--*d(c) is a central extension if ISl>2 or if S={v} and 
k~.-rank M' =0.  

3.5. In the next chapter we take up the case when S={v} and k~-rank M'> 1. 
Actually the techniques are such as to cover all cases when ~ k~-rank M'> 1 - 

v~S 
i.e. the cardinality of S is irrelevant in the proofs. Thus there is some overlap 
between the results of this chapter and the next. Unfortunately we have not 
been able to device a neat common approach to handle both cases simulta- 
neously. As will be seen the methods in chapter 1 and chapter 4 have a lot in 
common. Finally when ]S[= 1 relatively few groups are covered by the results 
in this chapter. In fact the possible Tits indices of groups satisfying (B) over k 
and k~, S = {v}, are listed below. 

Index over k Index over k~ 

d 

d 

I I I . . . b - - o - q . . . b - - o - - - - t . . . t  I I 
"--..--.~*-~Vq~.-- "~ ~ 

d d d 

o I 1 I o 
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w 4. The main theorem (continued) 

4.1. We continue with the notations of the previous chapters (Chapters 2, 3 
and the Introduction). Thus we fix a faithful k-representation p: G ~ G L ( n )  and 
denote by G(A) the group {xeG(k)[p(x)EGL(n, A)}. We denote by I the family 
of non-zero ideals in A and for b~I recall that 

G(b)= {x~G(A)[p(x)- 1 (rood b)}. 

E(b)=group generated by {xeG(b)[x belongs to a maximal 
unipotent k subgroup of G}. 

We have denoted by (~(c) and G(e) + the completions of G(k) + for the two 
topologies defined above. We will now introduce a third family of subgroups of 
G(k). For a k-parabolic subgroup Q, let Q '=  [Q, Q]. Then Q' is defined over k 
and contains the unipotent radical V of Q. If Q =L .  V, L reductive k-subgroup, 
is a Levi decomposition of Q over k and E = [L, L], evidently Q '=  E .  V and E 
is semisimple. For beI ,  let Q'(b)=Q'c~G(b) (more generally for any k-subgroup 
H of G, H(b)=H~G(b)). For beI,  let F(b) be the subgroup of G(k) generated 
by {Q'(b)[Q a minimal k-parabolic subgroup of G}. Then the {F(b)]b~I} is a 
fundamental system of neighbourhoods of 1 in G(k) for the structure of a 
topological group. We denote the corresponding completion by (~(f). The 
inclusions E(b)~--*F(b)~--*G(b), beI define continuous maps 

(~(e) + ~ (~(f)+ ~ G(c) 

of the corresponding completions of G(k). In the present chapter we have to 
deal with the case when LS[ = 1 so that S = {v} and k~.-rank of M' > 1 (recall that 
M'= [M, M], M = P  + c~P-; M is the centraliser of its maximal k-split torus in 
G). The condition ~ k~,-rank M ' >  1 has the implication that for any proper k 

v ~ S  

parabolic subgroup Q of G, Q'(b)4= V(b), V the unipotent radical. A converse 
also holds: if ~k,,-rank M '=0 ,  Q'(b)=V(b), for all ideals be1 contained in a 

YES 

suitably chosen fixed ideal boeI. This is because we can find hoe1 such that 
E(bo)= 1 for any Levi supplement L in Q. Since G has only finitely many G(A) 
- conjugacy classes k-parabolic subgroups we see that the b 0 above can be 
chosen to be independent of Q (see Borel (1969), Behr (1969), Harder (1969)). 

2. The remarks made in 4.1 clearly show that if ~ k , - r a n k M ' = 0  then 
~ z ( e , f )  ^ + v ~ S  

G(e) + , G(f) is an isomorphism. We will now obtain more reformation on 

~(e, f )  when ~ k,-rank M '>0 .  Although we have only the case when IS] = 1 left 
Y E S  

to be considered, the arguments used below make no use of the assumption 
that ISl=l  so that we will not make that assumption. Some of the results 
proved below overlap with similar ones in Raghunathan (1976) but we have 
given detailed complete proofs to make the exposition self contained - and 
more importantly - pleasanter. We will begin by proving a known consequence 
of strong approximation which however is not set down in print. 
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4.3. Lemma. Let H be a simply connected k-simple group with S-rank H ( =  ~ k v- 
YES 

rankH)=>l. Let N be a non central subgroup of H(k) normalised by an S- 
arithmetic subgroup F of H. Then the closure of N in H(k) in the S-congruence 
(= S-adkle) topology is an open subgroup. 

Proof Let H(A(S)) be the S-ad61e group of H and/~ (resp. N) the closure of F 
(resp. N) in H(A(S)). Then F is an open subgroup of H(A(S)) and hence contains a 
product of the form lq/~ with /~, a compact open subgroup of H(k~) and /~ a 

yes  

maximal compact subgroup for almost all v. The group N being non-central in 
H(k), the Zariski closure of N in H is all of H. From this it is easy to conclude 
that the closure of the group [N,/~] (=group  generated by {nxn-Xx-llnEN, 
xe/~}) is open in G(k~,) for all v~S and equals F~, for almost all v. (This is seen 
from a careful look at the structure of maximal compact subgroups in the 
H(k~,)). It is now clear from this that _N is open in H(A). The lemma follows 
easily from this. 

4.4 Corollary. (i) The closure (~(b) of E(b) beI  in the S-addle topology in G(k) is 
open. 

(ii) Let M'= [M, M] the commutator subgroup of M. If ~ k~,-rank M ' >  1, 
v~S 

then for be/ ,  E(b)c~M' contains in its closure, in the S-adOle topology on M'(k), 
an open subgroup of M"(k) where M" is the product of all the k-simple factors of 
M' which are isotropic over k~, for some yeS. 

Proof The first assertion is immediate from Lemma 3.3. To deduce the second 
assertion from Lemma 3.3, it suffices to show that for be/ ,  E (b )~M"  is Zariski 
dense in M". To prove this consider the Zariski open set B =  U-P + in G. Then 
E(b)c~B is Zariski dense in G. If we set g=fl(g).p(g) with fl(g)eU-,  p(g)eP + 
then g~fi(g)  and g~p(g)  are k-morphisms of B onto U-  and P+ respectively. 
In particular fl(E(b)~B) is Zariski dense in P+. Let gee(b)  and J(g) 
={oem"(b)[Ou(g)O-'u(g)-leU-(b)}. Then J(g) contains a congruence sub- 
group of M"(b). It follows that if 0sJ(g), gee(b),  

0g-X0 '.Ou(g) O 'u(g)-l .geE(b) i.e. 

O . p(g)- 1. O- 1. p(g)eE(b). 

Varying geBc~E(b) and OeJ(g) we see that E(b)c~"P + where "P+ = M " .  U + is 
Zariski dense in "P+. Now "P+ being the semidirect product of M ' .  U § we 
can write any x~"P + in the form q~(x).~(x) with ~o(x)eM"(k), ~(x)eU+(k), 
~o, qJ being k-morphisms. It follows that there is a 2eA such that 
q~(x)eM"(2- ' .b)  and q/(x)eU(2-1b) if xeP"(b). It is now clear that q~("P 
c~E(2b))=E(b) so that E(b)c~M" is Zariski dense in M". 

4.5. Corollary. The closure of E(b), be1 in G(f)+ is an open subgroup. Equiva- 
lently for be/ ,  there is a b' in I such that for any oeI ,  

E(b). F(a) ~ F(b'). 
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Proos Let Q be a minimal k parabolic subgroup of G, V its unipotent radical 
and Q = L- V a Levi decomposition of Q. Let E = [L, L] and L" the product of 
all its k-simple factors which are k,,-isotropic for some yeS. Then according to 
the Corollary 4.4 above, there is an ideal b'(L, V) such that for any aeI ,  

E(b). F(o)D M"(b'(L, V)) 

and we may assume b'(L, V) so chosen that 

M"(b'(L, V))= M'(b'(L, V)), 

and that b ' (L ,V)cb .  It follows that E(b)F(a) contains Q'(b'(Q)) for some 
b'(Q)~I depending on Q. Now we may assume that b'(Q)=b'(Q1) if Q and Q1 
are conjugate by an element of G(A). Since G has only finitely many G(k)- 
conjugacy classes of minimal k-parabolic subgroups we can find b'~I inde- 
pendent of the minimal k-parabolic subgroup Q such that Q'(b')~E(b). F(a) for 
any a~I. This proves our contention. 

4.6. Proposition. Let ~(e, c) (resp. ~(e, f)) be the homomorphism of (~(e) + in G(c) 
(resp. G(f)+) induced by the inclusions {E(b) ~ G(b)lb~I} (resp. {E(b) ~ F(b)[b~l}. 
Then ~(e, c) (resp. 7z(e, f ) )  is onto. 

Proof We will prove the assertion for 7z(e, c). The proof for ~(e, f )  is analogous 
and uses Corollary 4.5 instead of Corollary 4.40). Let b, be a sequence of 
ideals in I such that any b~l contains b, for some n. From the density of G(k) 
in G(e) and G(c) and the openess of G(A) in the S-ad61e topology of G(k), one 
sees easily that the surjectivity of ~(e, c) is equivalent to the surjectivity of the 
map of projective limits 

Lim G(A)/E(b,,) ~ Lim G(A)/(~(b ) 
( ( 

n tl 

where (~(b,) is the closure in G(k) of E(b,) for the S-ad61e topology. (G(b,,) form 
a fundamental system of open neighbourhoods of 1 in G(k) for the S-ad61e 
topology: Corollary 4.4(i).) Suppose now that {x,,~G(A)/G(b,)]1 < n <  ~}  is an 
element of the projective limit. It suffices to construct a sequence y,~G(A)/E(b,) 
such that y, maps to x, (resp. y, 1) under the natural map of G(A)/E(b,) onto 
G(A)/G(b,) (resp. G(A)/E(b,, 1)). We will define y,, inductively. Assume y, cho- 
sen for n < N  with the requisite properties. Let y' (resp.)/ ')  be an element of 
G(A)/E(bN) which maps to x N (resp. YN 1) under the natural map. Then 
y'.y"-16G(b N 0/E(bs). It follows that we can find z~E(b N 1) such that 
y'.y" I~z.G(bN)/E(bN). Clearly then the element zy" maps to YN l in 
G(A)/E(bN-1) and to x N in G(A)/(~(b,,). This proves the proposition. 

We will now establish 

4.7. Theorem. d(e) + is a central extension of C,(f) +. 

Proof Let Q be a minimal k-parabolic subgroup with a Levi-decomposition Q 
=L .  E L reductive, V unipotent radical, defined over k. Let Q be the oppos- 
ing parabolic to Q determined by Q so that L=Q c~Q-. Let E = [L, L] and E' 
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the product of all the k-simple factors of E which are isotropic over k v for some 
v~S. Let DL(b)= E'(b). E(b)/E(b) a n d / ) L  the projective limit of the DL(b), bel. 
Then /)L has a natural identification with a subgroup of (~(e) contained in 
kernel n(f,e). Let ~ be the subgroup of G(k) generated by V(A) and V-(A). 
Then since [V+-(A),E'(b)] c V-+(b)=E(b) we see that 7 j centralises DL. Since 
[R(k), E'(b)] is trivial where R is the central split torus in L, we conclude that 
the group generated by R(k) and 7/is in the centraliser o f / ) L .  But it is easy to 
see that R(k) and 7 j generate all of G(k) +. Now from Corollary 4.5, it is easily 
seen that the image /SL in F(b)/E(b) contains a subgroup of the form 
E(b).E'(b')/E(b) where b '~ I  is an ideal depending on L and b. If we set Q" 
=L" .  V, then Q" is independent of the choice of L and we see that for b~I  
there is an ideal b"=b(Q)  such that the image of /)L in F(b)/E(b) contains 
Q"(b").E(b)/E(b). As [G(k)+,D(L)] is trivial, setting G(A)+=G(k) + c~G(A), we 
have 

[Q"(b"), G(A) + ] = E(b). 

Now b"=b"(Q")  can be taken to be the same for all k-parabolics Q in the same 
G(A)-conjugacy class. As there are only finitely many G(A)+-conjugacy classes of 
k-parabolic subgroups in G, we can find a single ideal b 0 such that 

[Q"(b0) , G(A) +] c E(b) 

for all k-parabolic subgroups Q i.e. IF(b0), G(A) +] =E(b). In the projective limit 
this means that G(A) + centralises kerrc(e,f). Since G(A) + is infinite and G(k) + 
has no proper infinite normal subgroup containing G(A) + and the centraliser 
of kernel rc(e,f) in G(k) is a normal subgroup of G(k), we conclude that kernel 
n(e,f) is central in (~(e) +. 

4.8. Recall that we denote by B the Zariski open subset U -  �9 P+ of G. For goB 
we defined p(g), fl(g) by setting 

g=fl(g).p(g) fl(g)~U- and p(g)~P+. 

Then as already remarked g~f l (g )  and g ~ p ( g )  are k morphisms of B onto U-  
and P+ respectively inducing an isomorphism of algebraic varieties of B on 
U - x P  +. Suppose now that g e B n G ( b )  - note Bc~G(b) is Zariski dense in G. 
Let 

J (g )={0~M(b) [0u(g)0  lu(g) a~U-(b)}.  

Then we know that J(g) contains a congruence subgroup M(b(g)) of M(b). In 
particular the Zariski closure of J(g) contains M", the product of all those k- 
simple factors of M' which are isotropic over k, for some v~S. We will now 
obtain some more precise information on the ideal b(g). Let V denote the 
representation space for p. This means that V is equipped with a k-basis. We 
assume as we may that this k-basis is compatible with the decomposition of V 
into weight spaces with respect to T. Let r be the largest positive half-integer 
such that rc~ is a weight of T. (Then all other weights of T are of the form ra 
- m  ~ or r ~-m/2 .  ~ where m is an integer.) Let V(r ~) be the weight space of r~ 

u 
and N its dimension. Let /~ V= W and W* the dual of W. Let # = N.  r. ~ and 
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W(/0 (resp. W * ( - g ) )  be the eigen space of T in W (resp. W*) cor responding  to 
the eigen character  # (resp. -/~). Then d im W ( / l ) = d i m W * ( - / 0 = l  (W(/~) 

N 

~-- /~ V(rc~)) and these are non-degenerate ly  paired. The  basis of V determines 

moreove r  bases of W and W* in a natural  fashion so that  whenever  
p (g)eGL(n ,  A), g in its act ion on W and W* leaves the A-span of these bases 
stable; moreover  the two A-spans are non-degenerate ly  paired over  A. It  
follows that  there are integral vectors we W(/0 and w*eW*(-I~) with respect  to 
these bases such that  {w, w * ) =  1. 

N o w  define a k-regular function f on G by setting 

f(g) = <g. w, w*). 

Then f is a po lynomia l  in the entries of p(g) with coefficients in the ring A. It  
is well known and not difficult to see that  B can be character ised as the (affine) 
open subset 

{geG]f(g)+O}. 

It  follows that  the coordinate  ring of B over k is precisely k[Xij]l<=i.j<=,(f 1) 
where Xij is the k-regular function g--.( i , j)  th entry of p(g). Since g-~p(g)  is a k- 
morph i sm  we can find polynomia l  P/v, P/J (in (•2+ 1)-variables) 1 <i, j<n with 
coefficients in k such that  for g~B 

def 
Pij(g) ( = (i,J) TM entry of p(g)) = P~j(Xkz, f -  1)1 < k , l  <_ n(g) 

def 
P'ij(g) ( = (i, j)th entry of p (g)- ~) = P~}(Xkt, f -  1) 1 =< k,~ ~, (g)" 

It is now easy to deduce that  there exist an integer N'  and an element t'eA 
such that  for all geBc~G(t'b), b any ideal in I, 

f(g)U'(Pij(g) - 6ii) eb  

f (g)U'(p,ij (g)  - -  (~ij) E b. 

A standard  a rgument  now shows that  there exist teA and an integer N > O  
such that  

p(g)-  1. O.p(g) O-leP+(b) 

for all geG(tb)c~B and O6M((f(g)N)). In other  words we may  assume that  b(g) 
= (f(g)N) so that  

J(g) ~ M((f(g))N). 

This has the following consequence which we record as 

4.9. L e m m a .  I f  geG(tb)c~B and OeM((f(g) N) then g-10gO-~eF(b). 

Proof. We have 

OgO l=O.ff(g).p(g)O-X 

=O.ff(g)p(g)O X.Op(g)-~.O-t.p(g).p(g) X Op(g)O 

=O ff(g) O ' p(g).(p(g)-l Op(g)O -1 ) 

= ff(g) p(g).  p(g) 1 ff(g) 1 .0  ff(g) 0 -~ p(g) (mod P(b)) 

= g .  {p(g)-~ ff(g) i Off(g) 0 -1 p(g)}. (rood V(b)). 
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Since g~G(b)as  also ( ) g 0  -1 and p(g) lfi(g) 10fi(g ) 1(i lp(g)=~ evidently 
belongs to the maximal unipotent k-subgroup p ( g y ~ U  p(g) 1 we see that 
~ F ( b )  so that g - 1 0 g 0 - t ~ F ( b ) .  

4.10. Corollary. For g~G(tb) let F(g) be the subgroup of M(k) generated by 
M(( f (gh))  N for all h~F(tb) such that gh~B. Then 

IF(g), g] c F(b). 

4.11. Theorem. If ~ k~,-rank M '>0 ,  (~(f)+ is a central extension of G(c). 
t ~ S  

Proof. Let C denote the kernel of n(f. c). Then the centraliser of C in G(k) + is a 
normal subgroup N of G(k) +. Since G(k) + admits no proper infinite normal 
subgroup, it suffices to show that there is an infinite subgroup F of M(k) 
contained in all the F(g), geG*(tb)  where G*(a) for a~I the closure in G(k) of 
F(a) in the S-ad61e topology. (We know from 3.4 that G*(a) is open in the S- 
ad61e topology; this combined with Corollary 3.10 gives the desired conclu- 
sion.) Now let geG*(tb)  hleF(tb  ) be such that ghl~Bc~G*(tb ) and let o 
=(f(ghl)N). Since F(tb) is dense in G*(tb) in the S-ad61e topology we can find 
h2cF(tb ) such that ghlh2~G(tab  ). Since f ( 1 ) = l  and f has coefficients in A, 
one sees that f (g  h I h2)---1 (rood a). The theorem now follows from the lemma 
below (Lemma 4.12) taking for H in that lemma the group M" which is 
product of all those k-simple factors of M' which are isotropic over k~, for some 
c'eS. 

4.12. Lemma. Let H be a k-simple group with S-rank H>=I. Let H ~ G L ( n )  be 
an imbedding of H as a k-subgroup of GL(n). Let H(A)= H c~GL(n, A) and for 
an ideal b ~ A, H(b) = {x~H(A)]x =- 1 mod b}. Then there is a subgroup F c H(A) 
of finite index such that for any pair b, b' of coprime ideals H(b). H(b') ~ F. 

Proof. Let B be the closure of H(A) in the S-ad61e group H(A) of A. Then B 
contains a product of the form IqB,, where each B,. is compact and open in 

v~S 
G(k~) and B,~ is a maximal compact subgroup of G(k~) for almost all v. Also for 
almost all v, say v~S' (S '~S)  

H(k~,) c~ GL(n, ~ )  = B~, 

and we may assume that for v ~ S ' - S  

B~, = {x c H(kv) ~ GL(n, ~)1  x -= 1 mod p~,~ } 

where n~, yeS' are suitably chosen integers. Now let F=H(A)c~I-[B,j. We claim 
yes 

that H(b).H(b')~F.  If b =  [Ip~ ~, then the closure of H(b) contains the group 
vr 

{ x ~ B ~ l x - 1  (mod p~")}. Similarly if b '=  ~pb~, the closure of H(b') contains the 
groups ,,~s 

{xeB~, lx-  1 (mod pb:~)}. 

The assumption that (b ,b ' )=A now readily yields the conclusion that 
H(b). H(b') contains in its closure [ I  B~ and hence H(b). H(b')~ F. 

v~S' 
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4.13. Corollary (to 3.11). / f  ~ k , - r a n k M ' > l ,  ffd(e)+--.ff3(c) is a central exten- 
sion. yes 

Pro41 The extensions d ( f ) + ~ d ( c )  and d (e )+ - - , d ( f )  + are central. Let 
zekernel of ~(e,c) and geG(k) +. Then since d ( f ) + ~ ( ~ ( c )  is central 
g z g  ~z l ekerne l~(e , f ) .  For fixed z, g ~ g z g  ~z ~1 is then a homomorphism 
of G(k) + in kernel ~(e, f ) .  Since G(k) + is perfect this homomorphism is trivial. 
As z~kernel 7r(e, c) is arbitrary, G(k) + centralises kernel of ~(e,c). G(k) + being 
dense in (~(e) the corollary follows. 

w 5. Appendix: Imbedding quasi split groups 

We prove in this appendix a result of some independent interest on semisimple 
algebraic k-groups of k-rank 1 over an arbitrary field k. Let G be such a group 
and T a maximal k-split torus and Z(T)  (resp. N) its centraliser (resp. normali- 
ser). Let �9 be the k-root system of G with respect to T. Let U be a maximal 
unipotent k-subgroup of G normalised by T and ~e4) the unique k-root such 
that the Lie algebra u of U is spanned by eigen spaces of T corresponding to 
the characters { r ~ l r > 0  an integer}. Then q)={+~} or {_+~, +2~}. Let U -  be 
the unique opposing maximal unipotent k-subgroup of G to U also normalised 
by T. Finally let U' denote the centre of U: note that U4: U' if and only if 
2eeq~ and in that case U ' =  [U, U]. We denote by N the normaliser of T in G. 
Then we have for each zEU(k), z4: 1, the Bruhat decomposition 

z = f ( : ) .  n(:). g(z) 

with f(z) ,  g(z)eU (k) and n(z)r uniquely determined by z. With this 
notation our main result in this Appendix is the following. 

5.1. Theorem. Let x , y~U(k )  with either x = y  and xZ:t:l or x, yeU'(k),  x# : l ,  
y 4: 1. Let H = H(x, y) be the smallest algebraic subgroup of G containing T. x, y 
and n(x). Then there is a finite (not necessarily separable) extension k' of k, an 
absolutely almost simple simply connected quasi split U-group H' of U-rank 1 and 
a central isogeny F: Rk,/kH'--*H with the following properties. There is a maxi- 
mal U-split torus T' in H' such that the (unique) maximal k-split torus T o in 
Rk,/k T' ( CRk,/RH') maps onto T. Moreover there is a maximal unipotent k-subgroup 
U o in Rk,/kH' normalised by T o such that FI U o is a (separable) immersion and 
there exist Xo,Yo~Uo(k ) with F(xo)=X and F(yo)=y. The field k' is separable 
over k ![" and only if n(x). n(y) is a semisimple element of  G(k). 

Remarks. The group H'  is isomorphic either to SL(2) or to SU(h), the special 
unitary group of a hermitian form of Witt index 1 in 3 variables over a 
quadratic Galois extension l' of k'. 

5.2. We consider first a special case. Let TeT be an element such that c~(r)= 
-1 .  Then r represents a k-rational point of the adjoint group so that r U(k)~ 1 
= U(k). The special case we consider is the case when z x r  -1 = x  1 and x = y .  
Observe that if x e U '  then z x r  l = x  1. And if x e U '  and x = y  Theorem 5.1 for 
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such a pair follows from Theorem 7.2 of Borel and Tits (1965). It turns out the 
argument given there yields a proof also in the case x = y, ~ x z-1 = x ~ (even if 
xr U'). This is done as follows. Let E =  U/U' and Y= image of x in U/U. Then 
E is a vector space over k on which elements t e T  act through the homothesy 
by a(t). Let V c E  be the 1-dimensional vector space (over k) determined by 
and 171 the inverse image of V in U. The commuta tor  map ({, 1/)-+ { r/~-1~/- l of 
U x U in U' factors through to an alternating k-bilinear map E x E--+ U'. Since 
dim V= 1, and U' is central in U, we see that 1? is abelian. It is evidently T- 
stable. We claim that the sequence 

7Z 

1--~ U' , V--* V----' I 

admits a T-equivariant k-splitting r: V- , l ?  with x~r(V(k)). When char k+2 ,  
consider the morphism ~--+~ ~- -1  ~ of I2 into U' ( c  l?). It is easily checked that 
on U' this induces the isomorphism ~___+~2 and that the kernel which contains x 
maps isomorphically onto V. This shows that the above sequence admits a T- 
equivariant k-splitting. When char k=2 ,  ~2=T ~T -1 ~-1= 1 for all d el/ :  this 
holds for {eU '  as U' is a vector space over k; it holds for all txt  -1, t eT  by 
assumption and 17 is generated by U' and { tx t - l l t eT} .  Let k[l?] (resp. k[V] 
resp. k[U*]) denote the algebra of k-regular functions on if" (resp. V, resp. U'). 
Let P09) (resp. P(V), resp. P(U') be the k-linear subspace of functions f in 
k[l?] (resp. k[V], resp. k [U ' ] )  which satisfy 

At, f = f | 1 7 4  

(resp. Av f = f  |  + l |  

resp. Av, f = f  |  + l |  

where At~ (resp. Av, resp. Av. ) is the diagonal map in k[I7] (resp. k[V], resp. 
k [U ' ] )  defined by the group structure. Now since ~2=1 for all ~el?,, 19 is a 
vector space (over/7) and it follows that P(I)') generates k[l?] as an algebra and 
the map P(F/)-*P(U') is onto. Also since P0?) and P(U') are T-stable and the 
T-action on these spaces are completely reducible one concludes that if 
P(f/)--*P(U') admits a splitting r as a T-module. Now U' is a vector space over 
k with T acting on it through the character 2~. It is easy to see then that P(U') 
contains dim U'-dimensional vector subspace P0(U') such that k[U'] is the 
symmetric algebra on P0(U') and t s T  acts on P0(U') as multiplication by (X(t) -2. 
The T-module homomorphism r: Po(U')--+P(f/)c--~k[f/] evidently provides a 
splitting of the sequence 

1---+ U'--+ V ~ , V---,1. 

It follows that I7" decomposes as a direct product U' x V 0 where V o is a T-stable 
subgroup of I? which maps isomorphically onto V under =. The element 
xef/(k) goes over under this isomorphism into a pair (x',Xo) in U ' x  V o. Let 
V(x)={(t2x',txo)lte/7} where V o is given the k vector space structure through 
the isomorphism it I V0: VoW+ V (and on U' we take the natural k-vector space 
structure). Then V(x) is a k-subgroup of 19 containing x and 7rlv(,): V(x)--+ V is 
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clearly an isomorphism: V(x) can be characterised as the Zariski closure of {t 
• t - l l t e T } .  We have thus proved 

5.3. Lemma.  Assume that zxz  -1 =x  -1. Then the Zariski closure of { t x t - l l t e T }  
is a T-stable k-subgroup of U which is isomorphic to a 1-dimensional vector space 
with T acting through the character ~. 

5.4. Once we have this lemma the method of Borel and Tits [1965, Theorem 
7.2] carries over almost verbatim to our situation. We note that we have 
z ~ r - 1  =~  1 for all ~eV(x) so that any 4=#1 in V(x) admits a Bruhat-decompo- 
sition of the form 

~ ~--~- (Z �9 n - 5( 

with cteU and neN(T).  Thus we have proved the theorem in the special case 
w h e n r x r  ~=x  -1. 

5.5. In the sequel we assume that r x z - l x : t = l  and x = y  or that x, yeU',  x + l ,  
y4: l .  We will take up the case when all the simple factors of G over the 
algebraic closure are of classical type. We may clearly assume that G is simply 
connected: this is because any central k-isogeny induces an isomorphism of 
maximal unipotent subgroups (and carries a maximal k-split torus to a maximal 
k-split torus). It is also obvious that we can assume that G is k-simple. Any k- 
simple group is k isomorphic to a group of the form Rt/kH where l is a finite 
separable extension of k and H is an absolutely almost simple /-algebraic 
group. It is immediate now that we can assume that G is absolutely almost 
simple (and simply connected). We will make this assumption in the sequel. Let 
X(T)  be the character group of T. Then X(T)~-Z.  Let 2 be the unique 
generator of X(T)  which is a positive multiple of c~. If z~U'(k), z4: 1, one knows 
from a result of Borel and Tits (1965, Theorem 7.2) that there is a k-isomor- 
phism ~0.,: S L 2 ~ H  of SL 2 onto a k subgroup H of G such that 2: (diagonals) 

= T a n d ~ 0 , ( ;  l ) = z .  Using this imbedding and standard f a c t s a b o u t  repre- 

sentations of SL 2 it is easy to conclude the following: if p is an irreducible 
representation of G, then there is a positive integer n(p) such that the weights 
of p with respect to T are { - n ( p ) 2 + 2 r 2 l r  an integer O<_r<_n(p). It  may be 
remarked that c~=2 or 2)~ according as 2~xe4~ or 2~r All the observations 
made so far are applicable without the assumption that G is of classical type 
over /~. The following proposition however is valid only when G is of classical 
type over/~. 

5.6. Proposition. I f  G is simply connected and of classical type over k,, then G 
admits a representation p such that the only weights of p with respect to T are 
(2,0, - 2 )  or (2, - 2 )  according as 2~ is or is not a root in �9 and the kernel of p, 
the induced representation of the Lie algebra, is central and consists of  semisim- 
ple elements. 

5.7. This can for instance be checked using the Tits' classification (Tits, 1969). 
We will however give a proof using only classification over /~. In order to this, 
let T* be a maximal torus in G and X(T*) its group of characters and 
introduce a linear ordering in X(T*)  such that for ~oeX(T*), if q~l T is a positive 
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multiple of e, then ~o >0. Let A* be the simple root system of G with respect to 
T* and the ordering chosen above. Let 4>* be the root system of G with 
respect to T* and for ~0eO* and OeA*, let 

~o = ~ mo(~O ) . O. 
OeA* 

Let fifO* be the highest root in the ordering on X(T*). Then if Ao= {O~A* [01r 
=c~}, f l iT= ~ mo([3).cc It follows that ~ m0(fl)<2 (and hence IAIo<2). Sup- 

Oedo OeAo 
pose now that A is a dominant weight for the root system O* and p is any 
representation of G obtained by reduction of an irreducible representation in 
characteristic zero with dominant weight A. Then it is not difficult to see that 
the weights of p with respect to T are of the form 

( - p 2 , ( - p + 2 )  2 . . . . .  (p-2)  2,p2) 

where p=  ~ mo(A ). It is clear then that it suffices to show that if G is of 
OeAo 

classical type, we can find a dominant weight A such that ~ mo(A)= 1. We 
consider the different classical types separately. O~Ao 

5.8. A* of type A,, [AIo=l. The Dynkin diagram has the form (with Ao={~pi } 
say). 

0 0 . . . . .  ~ . . . .  - 0 - - - - - . . 0  

991 ~2 (Pl (#n 

Let A be the dominant weight of natural representation, i.e. the fundamental 
weight corresponding to the root (p,, say; then we have 

A= ~ j~oj/(n+l). 
l < j < n  

Sinm~,(/~)=l (fl= ~ Oj), we see that 2e is not a root so that e = 2 2 .  Evident- 
l < j < n  

ly, AIT=(i~oi/n+l)lT=icxL(n+l) necessarily an integral multiple of 2. We 
conclude then that (n+ 1)= 2i and A IT=2.  

5.9. Type A,, IAI0=2. The Dynkin diagram is as above and Ao={q~h,~Oi} for 
some h, i with 1 <h<i<n.  We take the same A as above and conclude that 

AI T=(h (Pa + i~oi)l(n+ 1)I T=(h + i) c~/n+ l i T  

= (h + i) 2/(n + 1) 

(as 2 = e :  2~ is a root  in this case) and h + i = n + l  is the only possible way in 
which A I T can be an integral multiple of 2 and then A I T =  2. 

5.10. Type B,. The Dynkin diagram is 

O O---------O------O------~ . . . .  u ~ t ,  

~1 {#2 c#, ~~ CPn 
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Since []=qh +2~q ,~ ,  we have necessarily ]Aol=l. The dominant weight A of 
i > 1  

the natural representation (=fundamental  weight corresponding to q~,) is given 
by 

A=  ~ cpj. 
l < - j < n  

It is clear then that Ao= {~oi} with i + l ,  AIT=~ and 2~ is a root. 

Suppose then that Ao={q~l}. We take for A the dominant weight of the 
spin representation A=(<ol+2q)z+...+n~o~ Then clearly A]T=<o,/21T=Jt 
(and ce = 22). 

5.11. Type C,. The Dynkin diagram is 

O O - - - - - O - - - O - - ~  . . . .  , ,  / , ,  

In this case /3=2~<oi+~p, so that IAo]=l and 2ce is a k root except when A o 
i<n 

= {q),}. The dominant weight of the natural representation is 

A=  Z <o,+ cp,/2. 
i<n 

Evidently AIT=c~ or c~/2 according as 2a is a k root or not. 

5.12. Type D,. The Dynkin diagram is 

0 0 0 0 0 - - ~  
~n-1 

~1 ~2 ~l ~n-2 '0 ~n 

We have /:~=<0i+2 ~ q~i+q),, 1+<o,. The natural representation of S0(2n) 
l < i < n  1 

- the group of type D, - has for dominant weight 

A = ( ~ q~i) + (q', , + q~,)/2. 
l < i < _ n - 2  

From the form of/3, it is clear that either Ao= {q~} or Ao= {<02, c0j} with {i,j} 
{1, n - l , n } .  From the form of A, it is clear that if Ao={q)i} with i=t=l, then A]T 
=c~ or ce/2 according as i < n - 1  or i~{n-1,  n}. If A o = {e,_ 1, c~,} again A serves 
our purpose. Further A o cannot be of the form {c~,,ce, ,} or {cel,ce,}' if this 
happened A] T would not be an integral multiple of 2. 

In case Ao={el} so that e=22 ,  consider one of the spin representations say 
the one with dominant weight is 

A={<ol + 24Oz +... +(n-2)<Oz +(n-1)(o . ~/2 +nq,,/2}/2. 

Clearly then A I T =  2 (= 0(2). 
This completes the proof of Proposition 5.3. 

5.13. Remark. The proposition is false for exceptional groups. As we will see 
later this necessitates additional arguments to cover exceptional groups. 
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5.14. Proposition 5.6 guarantees the existence of a representation of p of G on 
a vector space V defined over a finite separable extension l of k such that the 
set of weights of p with respect to T is of the form ( 2 , 0 , - 2 )  or ( 2 , - 2 )  
according as ; t=a  or c~/2. One then obtains a k-representation of G on Rt/k V 
= E with (2, 0, - 2) or (2, - 2) as the set of weights for T according as 2 = c~ or 
c~/2. We fix such a k-representation a on the vector space E. We will make a 
further hypothesis on a when 2as~b but we now take up first the case when 

5.15. We assume in this and the next few paragraphs that 2a is not a k-root. 
We then have U = U' is an abetian group. Consider the decomposition 

E=E(2)+ E(-)O 

into the direct sum of E()0, the weight space of T corresponding to the weight 
2 and E ( - 2 )  the weight space corresponding to - 2 .  If we use a basis of E 
over k compatible with the direct sum decomposition above each g~G may be 
represented by a matrix of the form 

A(g) B(g)] (=~(g)) 
C(g) D(g)/ 

where A(g), B(g), C(g), D(g) are n xn-matrices with n=dimE(2)=dimE(-2). 
If geT, C ( g ) = B ( g ) = 0  and A(g)=D(g) - t ,  a scalar matrix while if gcU,  
C(g)=0 and A ( g ) = D ( g ) = l  (the identity matrix). The normaliser of a(T)  

= r 1 t a scalar matrix in GL(E) is easily seen to be the group 

{(O O ) A ' B  n~ A) A ' B  n~ 

The Bruhat decomposition x=f(z).n(z).g(z) with f(z)~U(k), g(z)~U(k) and 
n(z)eN(k) for elements zeU(k) now shows that for z~U(k), B(z) is non-singular 

and n(z)= _B(z)_ 1 . The choice of bases for E(2) and E ( - 2 )  may 

clearly then be made so that 
1 

(1 representing the (n x n) identity matrix). For this choice of basis let B(y)=B: 

Let ~ be the k-subalgebra of M(n, k) generated by B. If l is any k-algebra we 
have an inclusion then of SL(2, N |  l) in GL(E)(l) i.e. we have a morphism of 
R~/~SL2~GL(E)  defined over k. The algebra ~ is evidently commutative. We 
will now show that ~ is a field. Let ~ '  be the subset of B consisting of 
{B(z)e~lzeU(k)}. From the fact that ~ is injective on the Lie algebra of U and 
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using the action of the adjoint torus of T on U, it is easy to see that ~ '  is a k- 
vector space. (Observe that if z,z'EU(k) are such that B(z), B(z') are in M~ then 
B(zz')=B(z)+B(z') also belongs to ~' . )  Suppose now that z~U(k), z'eU(k) are 
such that B(z), B(z') belong to M (hence M'). Then it is easy to see that n(z) and 
n(z') belong to the image of R~/kSL(2 ). Since for z4=l a(n(z)) 

( 0 B~) )  (B,0z, 0 ) 
= _B(z)  1 we have a(n(z))a(n(x)) 1= " c o n j u g a t i n g  B(z) 1 , 
cr(z') by this element, one sees that B(z). B(z'). B(z)e~' for any z, z' in U(k) with 
z4=l and B(z),B(z')eM. We now claim that B(z)"e~' for all integers n > 0  if 
B(z)eM'. We argue by induction on n. When n = 0  or 1 this is obvious. For 
n > 2  we have taking z' to be such that B(z')=B(z)" 2, B(z)B(z')B(z) 
= B ( z ) " ~ ' .  Taking z=y we see that ~ '  contains the k-algebra generated by 
B(y) i.e. ~ ' = ~ .  Since every element of ~ '  is of tile form B(z) for some zeU(k) 
and B(z) is nonsingular if z4=l i.e. if B(z)#O, we conclude that ~ = ~ '  is a 
field. The algebra ~ is a separable extension of k if and only if B(y) is 
semisimple: This is because n(y)n(x)-l=-n(y)n(x) is represented by the ma- 

trix - (Y) - B ( y )  1 �9 This completes the proof of Theorem 5.1 when 2e is 

not a k-root. 

5.16. We now take up the case when 2~ is a k-root. (We continue to assume 
that G is of classical type.) From Proposition 5.3 we know that there exists a 
representation p of G on vector space V defined over a finite extension l of k 
such that the weights of p with respect to T are ( 2 , 0 , - 2 ) .  Replacing V by 
Rt/k V we obtain a representation r of G defined over k with (2,0, - 2 )  as the 
weights of r with respect to T. Let o r = r O t * ,  r* the dual of r and E be the 
representation space for a. The duality between z and z* enables one to define 
on E a G-invariant non-degenerate alternating form. We decompose E over k 
into eigen-spaces for T: 

E=E(cO+ E(O)+ E(-c  O. 

Then the alternating form is non-degenerate on E(0) and sets up a duality 
between E(c 0 and E ( - c  0. Choosing bases of E(7), E(0) and E ( - c 0  over k 
suitably we may assume that the alternating form is represented by a matrix of 
the form 

00 il 
- 0 

where 1 denotes the (m x m) identity matrix, m = d i m  E ( ~ ) = d i m E ( - c  0 and J '  is 
an alternating (nxn)-matrix,  n=d imE(0) .  (The first m basis elements form a 
basis of E(e), the next n of E(0) and the last m of E ( -  c0). 

For g6G we set 
A(g) B(g) C(g)[ 

a (g)= X(g) U(g) B*(g). 
z(g) Y(g) A*(g) 
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If gEU clearly A(g)=A*(g)  and D(g) are identity matrices while X ( g ) =  Y(g) 
and Z(g) are zero. If g e T  all non-diagonal  blocks above are zero while D(g) is 
the identity and A(g) and A*(g)=A(g)  -1 are scalar matrices. Suppose now that 
z~U(k) so that 

li B(z) C(z) 
(~(z) = 1 B*(z) 

1 0 

one deduce easily from the fact that G leaves invariant the alternating form 
above that we have 

(,) J'B*(z)-'B(z):O 

(**) C(z) - t C(z) + tB* J' B* = O. 

5.17. Claim. If zeU(k), z#:l, then C(z) is non-singular.  If ~ z r  l z4 :1  and 
B(z) :t:0, B(z). B*(z) is also nonsingular.  

Pro@ Let Sp(E) be the symplectic group of the al ternating form on E chosen 
above. Let ~F= a(T) and /9 the normaliser of  T in Sp(E). Then (~(N(T))c/9. It 
is easy to check that 

/(00  0 / 0 ! ) ,  ) 00 eSp(E)  ESp(E) / 9 =  0 w D . 

0 A [ 0 

It is easy to see that  C(a(n(z))= C(z) for zeU(k), z4=l and since n(z)e~,  C(z) is 
non-singular.  Let u = z z z -  1 z. (Then if char k = 2, u = z:.) A simple computa t ion  
show that B(u) and B*(u) are zero while 

C(u) = 2 C(z)-  B(z) B*(z). 

If u=l=l, this proves that B(z)B*(z) is nonsingular  when char k = 2 .  When k=t=2, 
let v = r z ~ - I z - 1 ;  then it is easily seen that v# : l  if B ( z ) # 0  

C(v) = 2B(z) �9 B*(z). 

Thus we see that B(z).B*(z) is nonsingular.  

5.18. Corollary. For zeU(k) with z2:# l and B(z)#O, B*(z) (considered as a 
homomorphism of E ( - o  0 in E(0)) is injective and B(z) (as a homomorphism 
of E(O) in E(cO) is surjective. Moreover kernel B(z)~ImageB*(z)={O}. Also 
Kernel B(z) and Image  B*(z) are mutually orthogonal to each other with respect 
to the alternating form and on each of these two subspaces of E(O), the alternat- 
ing Jbrm is non-degenerate. 

The last assertion is a consequence of (*) of 5.13. 

5.19. Assume now that  x=y~U(k) and that x2=t=1, B(x)#O. Corol lary  5.15 
gives a decomposi t ion  of E(0) as a direct sum E ( 0 ) = i m a g e  B*(x)+kerne l  B(x). 
Let Image  B*(x) = F(0) and kernel B(x) = F'(0). Let  F = E(~) + F(0) + E( - c 0. The 
element a(x) operates trivially on F'(O) and so does the torus T. Let {e,+m+ 1, 
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en+,,+2 .... , en+2m} be the basis of E ( - c 0  chosen above and we assume as we 
may that B*(e,+,,+s)~F(O), l< j<m are part of the basis chosen and also that 
BB* e,+m+i= e), the basis for E(~) chosen. We assume further that the basis for 
E(0) chosen above is compatible with the decomposition E(O)=F(O)+F'(O). 
With respect to this (more careful by chosen) basis a(x) is represented by the 
matrix 

i 1 0 C(x) 
1 0 B*(x) I 
O l  

0 0 

where B*(x) is the matrix corresponding to the isomorphism defined by o-(x) of 
E(-c~) on F(0). The matrix J '  representing alternating form on E(0) takes the 
form 

where J (resp. J") represents the form on F(0) (resp. F'(0)). The equations (.) of 
5.13 now shows that B*(x)=J 1 and (**) leads us to 

C ( x ) _ t C ( x ) + t j  1 . j . j  1 = 0  . 

Since J is antisymmetric this means that 

C(x ) - tC(x ) - J  1=0. 

Let ~ = C(x). J, then we have 

o: - tC(x )J - l=O or again 

~ + J  l t ~ J - 1  =0.  

Let ~ be the k-algebra generated by c~ in M(m, k). 
Then ~ is stable under the involution ~ - ~ J  1 t~.jo It is easily seen that 

the involution is nontrivial in view of our assumption that 7 x 7 1 =#x 1. Let 4o 
denote the hermitian form in 3 variables over o~ for the above involution given 
with respect to a basis .1-1, Jo, f l  by the conditions 

~o(Jo, f+ 1) = ~o(I. ~, f.. , )=  co(L, . f l )=  o 

+ 40 ( f , ,  J+1) = 4o (Jo, Jo) = 49 (f , ,  f I) = 1. 

Let H denote the k-algebraic group SU(~o), the special unitary group of this 
hermitian form. There is a natural k-morphism F of SU(~p) in Sp(E) which 
maps the 3 x 3 matrix (ais)l~=i,j~=3 in SU(m) into 

a l l  a12 0 a13J 1 

a21 a22 0 -a23J 1 

o 0 1 0 

Ja31 -Ja32 0 a33 
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We claim that F(SU(~0))cG and that ~' is a field. The arguments for this are 
analogous to those in the proof of the case when 2c~ is not a root and we leave 
out the details. Clearly ~ is separable over k if c~ is semisimple. A simple 
calculation shows that o'(n(x) 2) is the matrix 

~-1~ 0 0 
0 07 2 c~ -2 0 

0 0 1 

0 0 0 

0 
0 

0 
07-10~ 

where ~ ~ ~ is the conjugation in N'. Since c~+~= 1, c~ is semisimple if and only 
if 5-tc~ is. Thus ~ is separable over k if and only if n(x) z is semisimple (note 
that gcG is semisimple iff a(g) is semisimple since ~ is a central isogeny). 

This completes the proof when all simple factors of G (over the algebraic 
closure) are of classical type. (Note that this include the groups of trialitarian 
D 4 type.) To handle the exceptional case we need the following. 

5.20. Lemma. Assume that G is exceptional (and absolutely simple). Let G* 
denote the adjoint group of G and M* the image of M in G*. Let m* denote the 
Lie algebra of M*. For x, y6 U, let I(x, y) denote the isotropy group scheme at 
(x, y) of M* acting by inner conjugation on U • U. Let i(x, y) denote the Lie 
algebra of I(x,y). Then if either x = y  and z x z - l x 4 = l  or if x ,y~U',  i(x,y)(k) 
contains a non-zero semisimple element X o. 

5.21. Once the lemma is accepted the theorem (for exceptional G) follows from 
induction on dim G since the theorem is known for classical groups. If (x, y) is 
as in Lemma and X 0 is chosen in i(x, y)(k) as in the lemma, the centraliser 
Z(Xo) of X o in G* is a reductive k-group H*. Evidently (x, y)~V*, the uni- 
potent radical of the parabolic subgroup of H* determined by the split torus 
T * c H *  (T* is the image of T in G*). If H* denotes the (unique) isotropic 
semisimple normal subgroup of H* and H~ its simply connected cover, H 1 
=Rg/kH which H absolutely almost simple and l/k a finite separable and the 
problem reduces to proving the result for H; since d i m H  (over l) is evidentb 
smaller than dim G (over k) induction hypothesis applies. Thus Lemma 5.20 
yields the theorem. 

The following result is well known (see Borel and Tits (1965) and Richard- 
son (1967)). 

5.22. Proposition. Let H be a absolutely almost simple k-algebraic group and I) 
its Lie algebra. Assume that H is anisotropic over k. Then D(k) consists entirely 
of semisimple elements if one of the following conditions hold. 

(a) k is perfect 
(b) H is of type B, C, or D,, Chark4 :2  
(c) H is of type G 2, F 4 o r E  6, C h a r k + 2 , 3  
(d) H is of type E 7 Char k 4: 2, 3, 5 
(e) H is of type E s Char k 4: 2, 3, 5, 7 
(f) H is of type A, Char kX(n+ 1). 
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5.23. Corollary. Lemma 5.20 holds if k is perfect or if Char k > 5. 

Proof This follows from the Proposition above and the type of m in the 
different exceptional k-groups of k-rank 1 which is listed below in the Table. 

5.24. Table 

Case Type Tits Index d i m M  d imM'  d imU d i m U '  d i m C  

2 35 ( I I 
1. E6,1 O 

I I 

2. 2E296,1 I 

3. E 78 0 I T 7,1 

36 35 21 1 0 
1 

30 28 24 8 0 
1 

I I 79 78 27 27 0 
1 

i f p + 3  
i f p = 3  

if p#:3 
if p = 3  

i f p + 2  
i f p = 2  

4. E667,1 I I T I 0 67 66 33 1 0 if p + 2  
1 if p = 2  

5. E 48 I O t T I I 49 48 42 10 7,1 0 if p=62 
1 if p = 2  

6. E 133 T 8,1 0 I t t I I 134 133 57 1 0 

7. E 91 T 8,1 I I I I I 0 92 91 78 14 0 

8. E 21 4,1 O ~ I 22 21 17 7 0 

5.25. Using Proposition 5.22 and Corollary 5.23 we now see that we have now 
to establish Lemma 5.20 only in the following cases: 

Char k = 2. All diagrams of 5.24 other than the first (viz. o 

Char k=3 .  G has for its Tits Diagram one of the following: 

I). 
( , 

("~ o I I I I o I I I I O 
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Char k = 5. G has for its Tits diagram the diagram 

M.S. Raghunathan 

When the Tits diagram of G is of the form 

o I I T t 

U=U' (i.e. 2e is not a root) and we are to assume that x=#y, x, y eU-{1} .  We 
will take up this case first. 

5.26. Groups of type E 78 (Char k=2,  3). By examining the 27-dimensional "7,1 
representation of g6 (which is the representation of [M*, M*] on U) one has 
the following facts: 

(i) There is a (M-stable) Zariski open subset (2c U such that for any 
xe(2(/~), the orbit map g--*gx on M* is a submersion of M* onto U; the 
isotropy group scheme l(x) at any xe~(k) is thus reduced (i.e. smooth). 
Moreover l(x) for xe~(/~) is a semisimple group of type F4. 

(ii) The complement of f2 in U contains an open M*-orbit ~21 such that for 
any x~21(l ) (kc lck ) ,  I(x) is a reduced group scheme isomorphic (over /~) to 
the semidirect product of the group Spin9 with the (vector) representation 
space of the spin representation. Further the unipotent radical of this group 
I (x) is defined and split over k. 

(iii) Let ~'~2=~'~1-~c~ 1 and ~2=~'~2--{1}; then (22 is an orbit of M* and for 
xef22(l ) (lc/7:) the isotropy group scheme I(x) is reduced and has a /-split 
nontrivial (connected) unipotent radical (infact l(x) is of codimension 1 in a 
parabolic subgroup). 

Now according to a theorem of Borel-Tits if a reductive k-group H admits 
a nontrivial k-split unipotent subgroup then the group H is isotropic. We see 
thus that for xe U(k), I(x) is a k-form of F,. Thus l(x) has dim 54. It follows by 
looking at the orbit map g ~ g x  of l(x) in U - that dim l(x, y)> 52-  27= 25. 
Now if i(x, y) has all elements nilpotent, then l(x, y) would contain a connected 
a unipotent reduced subgroup scheme (over /7) of dimension>25. But any 
connected unipotent subgroup of l(x) (note that l(x,y)cI(x))  has dimen- 
sion<24.  Thus i(x,y) contain a nonzero semisimple element. Hence Lemma 
5.20 holds for groups of type EV,S 1. 

5.27. Groups of Type 2E351 (Char k=3).  (The proof of Lemma 5.20 below for 
this case applies to all characteristics.) As dim U =  21 and dim M * =  36, we see 
that dimI(x)  (= I (x ,y )  as x = y )  is at least 3 6 - 2 1 = 1 5 .  If I(x) has no semi- 
simple elements, the group l(x)~ (=  identity component of l(x)red ) is unipotent 
and since 15 is the dimension of any maximal connected unipotent group of 
M*-note that M' is of type A s i.e. SL(6)- i (x)  contains the Lie algebra u of a 
maximal unipotent subgroup U of M*. As i(x) consists entirely of nilpotent 
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elements, i (x )=u  so that U=l(x);  but then M* will have to be quasi-split, a 
contradiction. This proves Lemma 5.20 for groups of type 2u35 ~6,1" 

5.28. Groups of Type F133 ( C h a r k = 2 , 3  or 5). (Here again the proof below is ~8,  1 
valid in any characteristic.) The isotropy group l(x) (we have x = y  as 2e is a 
root) has dimension at least 1 3 4 - 5 8 = 7 6 .  On the other hand the dimension of 
a maximal connected unipotent group in M (hence also in M*) is 63. Thus 
I(X)r~ cannot be unipotent so that i(x) contains a non-zero semisimple ele- 
ment. 

5.29. Groups of Type F21 a (Char k=2) .  In the table this group is the only one 
with a root diagram having two different root lengths. (We will be giving a 
uniform proof to cover all groups other than F 21 and EW,81 for fields of 4,1 
characteristic 2.) Here we assume that x2+  1 (Char k = 2). Evidently x2e U' and 
the representation of M'  on U' is the standard representation of an anisotropic 
special orthogonal group on a 7-dimensional vector space. It follows that the 
isotropy group l '(x 2) at xZe U'(k) of M' acting on U is reduced and isomorphic 
to a special orthogonal group of an anisotropic quadratic form over k in 6 
variables. If l'(x) is the isotropy group at x for the action of M' on U, 
evidently I '(x)cl '(x2).  On the other hand dim l ' (x)>6.  Now the dimension of 
any (connected) unipotent subgroup of I'(X 2) is at most 6. Consequently the 
Lie algebra i'(x) of I'(x) can consist entirely of nilpotent elements only if 
dim i ' (x)=diml '(x)  i.e. I'(x) is reduced; but then I ' (x 2) would be quasi split, a 
contradiction. Thus i'(x) contains a non-zero semisimple element; as G--+ G* an 
isomorphism, in our case so is i'(x)--+ i(x) and Lemma 5.20 follows. 

5.30. Combining Corollary 5.23 and the results in 5.26-5.29, we see that we are 
left with having to establish Lemma 5.20 only in the following cases: 

Char k = 2, diagram of G has all roots 
of equal length and U': fU i.e. 2~ is a root 

(even this has an overlap with 5.26-5.29; the proof below will cover all these 
cases namely all cases in Table5.24 other than E~81 and F214,1, C h a r k = 2 ) .  
Throughout  the sequel unless otherwise specified we assume Char k=2 .  We 
begin however with a proposition valid in all characteristics. 

5.31. Proposition. Let k be of arbitrary characteristic and G an absolutely simple 
simply connected k-group. Assume that all roots in the Dynkin-diagram of G have 
the same length. Then the Lie algebra g of G carries a G-invariant bilinear form 
defined over k satisfying the Jollowing conditions 

(i) ( , ) is symmetric and !l" Char k=2 ,  (v, v) = 0  for all veg(/~). 

(ii) Let Q+- be opposing parabolic subgroups and V +- their respective uni- 
potent radicals. Let q• (resp. o -+) be the Lie subalgebra of 9 corresponding to 
Q+ (resp. V• Then V • is orthogonal to q +- (for ( , )) and ( , )  gives a non- 
degenerate pairing between o + and ~ . 

(iii) I f  ~ is the Lie algebra of a connected reduced unipotent subgroup scheme 
of G and B its reduced normaliser then o is orthogonal to the Lie algebra b of B. 
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Proof Let ~ c G  be a maximal torus over /~ and g(fl) the root space of fl, the 
highest root of G with respect to 7" and an ordering on the character group 
X(7") of T. Then dim ~(fl)= 1 and g as a G-module is generated by g(fl). Let g* 
be the dual of g as a G-module and g*(fl) the weight space corresponding to fl 
in g*. Then d img*(f l )= l  as well. Now any G-module homomorphism of g in 
g* necessarily carries g(fl) to g*(fl) and is determined by this element of 
Hom(g(fl), g*(fl)). One concludes that the space of G-invariant bilinear forms 
on g is of dimension 1. It is now clear that for a bilinear form ( , ) satisfying 
(i)-(iii) above, a suitable scalar multiple of it would be defined over k. Thus we 
can for the purposes of this lemma replace k by /~. Over /~, g~_Ch| where 
Ch is a Chevalley Lie algebra over Z. Let {E~Ic~E4~} w {H,I~eA} be a Chevalley 
basis of Ch. Let ~ denote the Killing form on Ch. Then we have for an integer 
C > 0  

O(E~,Etj)= C 6 ~a , c~, flecI), 

~/,(H~, Ha)= C. 2(a ,  fl>/(a, ~>, o~, fleA, 

if(H,, Eta) = 0, ~ A ,  fl~ q~. 

Where < , > is any Weyl group invariant scalar product on the Q-span of the 
{H~I~A}; the fact that all root lengths in A are equal has been used above. 
We now set (X ,  Y > = C - I ~ , ( X ,  Y) for X, YeCh. It is evident then that < ,  > 
defines a scalar product on /~ by extension scalars. Using extensions of Q 
which are unramified at p = C h a r  k of arbitrary degree, one sees that ( , > 
defines on Ch |  fp=algebr_aic closure of the prime field of p elements 
which is invariant under the fv-rational points of Chevalley group scheme. 
Zariski density of this group of points in G (identified with the Chevalley 
group scheme over/~ using the inclusion f p ~ k )  shows that ( , > is G-invariant. 
For standard parabolic subgroups of G (given by the Chevalley basis), the 
assertion in (ii) is immediate from the definitions. For  a general parabolic 
group the required assertion follows from the fact that any pair of opposing 
parabolic subgroups can be conjugated to a standard pair by an element of 
G(/[). The last assertion is a consequence of a theorem of Borel Tits to the 
effect that any connected reduced unipotent subgroup scheme V of G is 
contained in the unipotent radical of a parabolic subgroup, the latter contain- 
ing the reduced normaliser of V (Borel and Tits (1971)). 

5.32. Claim. Let x~U(k) be such that x 2 ~ l .  Let X be the image of x6U/U'  
~-g(c 0 (in a natural fashion). Then 

(i) (adX)2: g( -7) -~g(~)  is an isomorphism 

(ii) ad X ( g ( -  ~)) ~ r = 0 where c = centre of g 

(iii) ( , ) is non-degenerate on a d X ( g ( - 7 ) )  

(iv) ad X: m~g(ct)  is surjective. 

Proof Ad x = 1 + ad X +  ~p(X) where r g ~ g is an endomorphism carrying 
g ( - ~ )  (resp. m, and g(~)) into g(c~) (into zero); it follows that A d x Z = ( A d x )  a 
= l + a d X  2 (note that C h a r k = 2  and that a d X  and r commute: infact 
adXqg(X)=tp(X)  adX=0=q~(X)2) .  Since x2eU ' can be imbedded as the ele- 

ment (1 u~ in ak-subgroup isogenous to S L ( 2 ) o f G w i t h  T a s  the diagonal 
\u I.I 
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torus, it is easy to see from the representation theory of SL(2) that we have for 
Yeg(-~) .  

A d x Z ( y ) = y + w y  (eg(c0+g(_c0) 

whereweSL(2)  is the element (01 ; ) .  In particular AdX2:  g ( - c 0 ~ g ( c j  is an 

isomorphism. Since Adx(c)=0 ,  the second assertion follows from the first. If 
( [X,  Yo], IX, Y]>=O for all Yeg ( -~ )  for a fixed YoEg(-~), we have (by 
invariance of < , >) 

<Yo, AdX2(y)>=O for all Yeg( -c0 ;  

since < , > is a non-degenerate pairing of g(~) and g ( - c  0 and A d X  2 is an 
isomorphism of ,q(-c 0 on g(~), 110=0. Hence the third assertion. If 

adX:  m ~  g(c~) 

is not onto, we can find Y0eg(-e )  such that 

<Yo,[X,A]>=O 

for all Aem. Equivalently 

<[x ,  Yo], A> -- 0 

for all Aem. Rut then [X, 11o] must be orthogonal to all of g with respect to 
< , > and one sees that this means that IX, Yo]ec and by (ii), [X, Y0]=0; since 
A d X  2 is injective on g ( - c  0, Yo=0. This proves the claim completely. 

5.34. Consider now the action of M* on g(c 0. Let I(X) denote the isotropy 
group at X for this action of M*. Evidently I(x) is contained in I(X). The 
tangent map at 1 of the orbit map m~Adm(X) of M in g(~) is easily seen to 
be the map A--*[X,A], Aem of m in g(c0; this is surjective. Consequently as 
the map m~Adm(X) factors through M* - the orbit map m~m(X) of M* in 
g(c 0 is also of maximal rank. We conclude that I(X) is smooth. Further 
evidently the isotropy I,(X) group at X for the action of M on g(c 0 is smooth 
and isogenous to I(X). We will show that I1(X ) is reductive and hence con- 
clude that so is I(X). Let il(X ) be the Lie algebra of II(X); then for Aeil(X) 
and Y e g ( - c  O, we have 

<A, [X, Y]>=<[X,A], Y>=0 

since [X,A]=O. Thus i,(X) is orthogonal to adX(g(-c~)) with respect to < , >. 
Since dim g(+ ~) = dim ad X(g(- ~)), dim i, (X) >_- dim m -  dim g(~) we conclude 
that i, (X) = {re m] <v, A> = 0 for all A ead X(g(- c0). Since < , ) is non-degener 7 
ate on adX(g(-c~)) we see that < , > restricted il(X ) has precisely c for its 
kernel. This shows that I(X) is reductive and of dimension dim M-dim g(~). 

5.35. The group scheme I(x) is contained in I(X) so that i(x)ai(X); and I(x) is 
of dimension dimm-dimg(~). While i(x) has dimension _-> dim m - dim g(c 0 
-dimg(2c 0. Since i(X) is reductive, if i(x)consists of nilpotents we must nec- 
essarily have 

2 dim i(x) + rank I(X) <= dim I(X) 
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so  that  

r a n k  I(x) + 2 [ d i m  11t - d i m  ,q(c 0 - d i m  g(2  c0] < d i m  m - d i m  g (~z). 

T h i s  m e a n s  that  

2 dim 9 (2 c~) > dim nt - dim 9(~) + rank I(X). 

A simple computat ion now shows that 

2 dim g(2e)< dim m -  dim 9(~)+ 1 

except in the case when G has one of the following 2 Tits diagrams 

2F29 . -~,. 1 (A)  

E r a  7., : (B) 

When G has (A) for its diagram one is lead to r a n k I ( X ) < 2  and - since 
dim I (X)=  1 2 - r a n k  I (X)=2 .  Further one finds immediately that if i(x)consists 
entirely of nilpotent elements, dim i (x )<d im of maximal connected unipotent 
subgroup of I ( X ) < 6  while dim I (x)>6.  This shows that l(x) is the unipotent 
radical of a Borel subgroup of I(X), so that I(X) would be quasi split, a 
contradiction since I(X)~M*. Finally if G has the diagram (B) above one is 
lead to the unequality rank I ( X ) < 3  while dimension I ( X ) =  17; and one checks 
easily that there is no reductive group of rank3 and dimension 17. This 
completes the proof  of Lemma 5.20 and hence that of the main theorem of this 
appendix. 
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