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Geometric construction of cohomology for arithmetic
groups I

By
JOHN J MILLSON* and M S8 RAGHUNATHAN*

1. Introduction

In this paper we give a geometric construction of cohomology classes for uniform
arithmetic subgroups of Lie groups and prove that our classes are not the restric-
tions of continuous classes from the Lie group. We apply our theory to obtain
the following results:

(1) a proof that every unitary representation with non-zero cohomology, see
Borel [2], occursin L2 (I'\ SO (n, 1)) for a suitable uniform I', thereby proving for
the group SO (n,1) a conjecture which seems to be widely believed, though the
group SO (n, 1) represents the only case where it has been proved. In terms of
differential geometry we show that the n dimensional manifolds of constant nega-
tive curvature constructed at the end of Borel [4] admit finite covers with all
Betti numbers strictly between 0 and » not equal to zero—and hence arbitrarily
large by Borel [2];

(2) a proof that the recent vanishing theorem of Borel-Wallach [S], Casselman-
Schmid [6] and Zuckerman [13] is the best possible for the orthogonal groups
SO (p, q) for p>q and g even;

(3) the construction of algebraic cycles in compact quotients of the unit ball
in C* which are dual to linear subspaces of CP* but correspond to non-trivial auto-
morphic representations. We construct similar examples for some other bounded
symmetric domains, namely, those associated to SU(p, q) and SO (n, 2).

We remark that the identification of the local factors in the automorphic repre-
sentations of (3) appears to be an important problem.

We now describe our construction.

If I is a torsion-free discrete subgroup of a semi-simple Lie group G having no
compact simple factors and K is a maximal compact subgroup of G then I’
acts freely on the Riemannian symmetric space X = G/K and consequently the
cohomology of the quotient space I'\ X coincides with the cohomology of I
We deduce the existence of new cohomology for I” by constructing non-bounding
cycles in I\ X.

* Both authors were partially supported by NSF Grant - MCS-76-10435.
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104  John J Millson and M S Raghunathan

These cycles will be the projections under z : X —» I'\ X of the sub-symmetric spaces
of X which are fixed point sets of involutive isometries of X which normalise I
It is important to observe that the class of sub-symmetric spaces of X which are
fixed point sets of involutions is a proper sub-class of the totally geodesic sub-
symmetric spaces of X. To try to prove that for suitable I" the projection of an
arbitrary sub-symmetric space of X gives rise to a non-bounding cycle would be
unsuccessful as it would contradict the above vanishing theorem. In fact, the class
of sub-symmetric spaces of X which arise as the fixed point sets of isometric involu-
tions is characterised as the class of sub-symmetric spaces admitting complements.
By this we mean the following: Suppose O is the origin of X and X; a totally
geodesic sub-symmetric space of X passing through 0. Let P, be the tangent
space to X; at 0 and P, the orthogonal complement of P; in P, which is identified
with the tangent space of X at 0. Let X, be the image of P, under the Riemannian
exponential map exp : T'(X,0) » X. We say X, is a complement to X; if X; is
a sub-symmetric space of X. In case X; is the fixed point set of an involutive iso-
metry a; this is always the case, for if « is the geodesic reflection at O then X, is
the fixed point set of the involutive isometry g, = ;. Projecting X; and X, down
to I'\X we obtain two complementary dimensional closed cycles. By passing to
a subgroup I" of finite index in I” we obtain a new projection IT' : X — I'\ X.
We try to find I so that the cycles II' (X;) and IT' (X,) intersect transversally with
all intersection multiplicities positive. In this case the intersection product of the
two cycles is non-zero and consequently neither is a boundary. One of our most
important theorems, theorem 2.1, then asserts that if one can find such a sub-group
then there exists a further subgroup I'” of finite index in I" so that I1” (X;) is not
dual to an invariant form, where II” : X' - I'"\ X is the projection.

We would like to express our appreciation to W. Dwyer for the observation
at the beginning of the proof of theorem 2.1.

1. Orthogonal decompositions of symmetric spaces

We begin by establishing some notation which will be used in the rest of the
paper. X will denote a symmetric space of non-compact type which is assumed to
be conmected. G will denote the connected component of the identity of the
sometry group of X, G will be assumed to be linear and semi-simple. The
symmetric space X will be equipped with an origin 0. The isotropy at 0 will
be denoted by K; hence, X will be isometric to G/K equipped with a metric in the
usual way. & will denote the Lie algebra of G, k the Lie algebra of K and P the
orthogonal complement of k in < relative to the Cartan-Killing form. . will
denote the geodesic reflection at O.

The key notion in this paper is the following. Let X; and X, be two totally
geodesic sub-symmetric spaces of X whose intersection is precisely 0. Let Py
denote the tangent suace to X; at 0 and P, the tangent space to X, at 0. We say
that the pair {X;, X,} is an orthogonal decomposition of X if

@) P, and P, are perpendicular

(i) P =P D Pa
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We say that two orthogonal decompositions {X;, X;} and {XI, X7} are
equivalent if there is an isometry ¢ of X so that o (X)) = X] and ¢ (X;) = X?.

Remark : Since X is homogeneous there is no point in considering decomposi-
tions {X;, X,} so that X; N X, ={x} where x= 0.

Now we see orthogonal decompositions may be characterised infinitesimally by
the following proposition.

Proposition 1.1.

Let 7 € P be a sub-vector space. Then the following are equivalent.
(1) Y =expy is a totally geodesic sub-symmetric space
(2) =7 is a Lie triple system, that is if u, v, we, then [[u, v], w] €.

Proof : The proof may be found in Helgason [7], theorem 7-2, page 189.
Thus the infinitesimal equivalent of an orthogonal decomposition of X is an
orthogonal decomposition P = P; @ Py with P, and P, both Lie triple systems.
We now show how all such arise.

Theorem 1.1

There is a one to one correspondence between equivalence classes of orthogonal
decompositions of X and conjugacy classes of involutive isometries of X. 'This
correspondence is obtained as follows: Given an involutive isometry a; of X fixing
0 put o, =oyu (note that o; and ¢ commute so that o, is an involution). Then
denoting by X the fixed point set of oy and by X, the fixed point set of a, we find
that {X;, X,} is an orthogonal decomposition.

Proof : Suppose that we are given @, as above. Then defining oy, X3, X, as
above it is clear that {X;, X,} is an orthogonal deccmposition of X.

To prove the converse consider the infinitesimal decomposition P = P; @ P,.
Then P, and P, are both triple systems. We define a linear map T on P by
T|Prt=+1, T|Py=—1 and T preserves P; and P,.

If we can show that T preserves the curvature tensor R at 0 then by Cartan’s

- theorem T will be the derivative of a global isometry ay evaluated at 0. Thus

we must show that for all x,y,z, we P we have
( Rpgypy Tw, Tz ) =( Ry, W, 2).

But using the well-known formula for the curvature tensor of a symmetric
space, see Helgason [7], theorem 4.2, page 180.

-Ra;,yz = [[x> LV], Z]a

decomposing x, y, z, w into P, and P, components, using that P, and P, are
triple systems and that the Cartan-Killing form is invariant the result is
immediately verified and theorem 1.1 is proved.

We will often denote the decomposition {Xi, X3} of X by ay, .. Here
01, 0y are a pair of commuting involutive isometries fixing 0 and satisfying
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Lemma 1.1

Two orthogonal decompositions (a1, a3), (a3, o) are equivalent if and only if there
exists an isometry ¢ of X fixing 0 and satisfying

(ﬁquS—l = G;.a

Podt = aj.

Proof : The sufficiency is clear. Suppose then that there is an isometry ¢ of X
satisfying

q“ (Xl) = X]'.a
4’ (X2) = 2'3

where X! and X7 are the fixed point sets of ¢} and a;. ¢ map X; N X, to X N

X; hence ¢ (0) =0. Denoting the tangent spaces of X; and X; at 0 by P] and
P; respectively we have :

d(ﬁ (Cpl) = ;.5
dp (Pg) = Ps,
d(pod™) |P] =+ 1,
d(gag™) | P, = — 1.

But doy¢t and a; both leave O fixed and have the same derivative at O.
Since they are isometries they must be equal. A similar argument establishes
that ¢o,p™ =a,. This proves lemma 1.1.

We define two subgroups of G

G, ={geG|ag01 =g},
‘G2 - {g E‘G ] O'zga'z = g}.

We will denote by G; and G, the subgroups of Gy and G, which preserve

the orientation of X; and X, respectively. It is also convenient to define
involutions

21 (g) = a1807y,
25 (g) = 0,80y,
0 (g) = 1gt.

Then § = X%, and is the Cartan involution associated to K. We will sometimes
denote the decomposition by {Z;,X,}.

Lemma 1.2

G, acts transitively on X; and G, acts tranéitively on X,.

Proof : Py =exp P, is contained in G and acts transitively on X;.

cont Similarly
Py = exp P, acts transitively on X,.

(Here exp is the exponential g~ G).

?!7
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Remark. In our applications G; and Gy will be replaced by smaller groups H;
and H,. These groups will be defined in Chapter 4. For the moment we let
H, and H, be subgroups of G; and G, respectively which act transitively on
X; and X, respectively. We let H{ and H} denote the identity components
of H; and H, respectively.

Lemma 1.3

Put K=G, NG, Then R=G, N K=G, N K and is a maximal compact
subgroup of Gy and G,. K is reductive but it is frequently not semi-simple.

Proof : K N G; is a maximal compact subgroup of G, because it is the
isotropy of 0. We have G, N G, S KN Gy because G; N G, must leave 0
fixed and consequently is contained in K. But suppose keG; N K. Then
0 (k) = k because k ¢ K and X; (k) =k because k ¢ Gy, hence X, (k) =k,
hence k € G,. Thisproves lemma 1.3.

Remark. Putting lemmas 1.2 and 1.3 together we see
Xl = GI/I‘&, Xg = Gg/ﬁ.

Proposition 1.2

Let G be a comnected simply-connected semi-simple real Lie group and let o
be an involutive automorphism. Then the fixed point set of & is a connected
subgroup.

Proof : In Helgason [7], theorem 7.2, page 272, the theorem is proved in case
G is compact. Now assume G is not compact. ¢ leaves invariant some
maximal compact subgroup K. Then we obtain a g-equivariant decomposition
G = KP. But the fixed point set of ¢ in P is clearly connected because if a
point x € P is fixed, since 0 is also fixed, the minimal geodesic joining 0 to x
is pointwise fixed. By the theorem referred to in the first line of this proof
the fixed point set of ¢ in K is connected (K is simple-connected because G
is) hence the fixed point set of ¢ in G is the product of two connected sets.
This proves proposition 1.2.

2. Discrete uniform subgroups' compatible with an orthogonal decomposition

Definition

We say a discrete subgroup I’ € G is compatible with a decomposition {a1, a2}
if oy and g, both preserve I'; that is,

O']_FO']_ I',
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108 John J Millson and M S Raghunathan
We define subgroups I3 and I, of I' by

I, ={yel|aya =17},

Iy ={y eI'|apa, = 7}.

Remark : @, and a, induce involutions of I'\ X which we‘ also denote bya,

and a;.

Proposition 2.1

Suppose that I' S G is uniform; then I'yis uniform in G; and I, is uniform
in G,.

Proof : We will need two lemmas.
Lemma 2.1 (Selberg)

Let G be a locally compact group and let I" be a discrete subgrqup. If I\G
is compact then for all pel.

Z () n I'\Z(p) is compact where Z (7) denotes the centraliser of  in G.

Proof : Let peI. Consider the map k:G— G givenby k(g) = gyg™. Then
k is continvous. Since k(I) c I, k(I') is closed and accordingly &kt (k (1)
is closed, that is, I'Z (p) is closed in G. Therefore INIZ () is a closed subset
of the compact space G and is compact. Hence Z(7) N I'\Z (y) is compact.

Remark : The proof of this lemma is taken from Mostow [11], page 62.

The next lemma is hardly more than an observation.

Lemma 2.2

Let G be a topological group and I" a discrete subgroup. Let G, be a subgroup
of G of finite index in G. Then I' is uniform in G if and only if I'N G, is
uniform in G,. _
Proof : It is clear that if I' N G, is uniform in G, then I' is uniform in G.
To prove the converse it is sufficient to show that I' N G\ G, is closed
in I'\G. This is equivalent to showing I'G, is closed in G. But I'G, is just
2 union of a finite number of copies of G, hence a finite union of closed sets
proving lemma 2.2. ,

Now we are ready to prove proposition 2.1. Consider G = Aut G. We
have a mnatural projection II: G — Ad G and Ad G is a subgroup of finite
index of Aut G. II(I) is a uniform discrete subgroup of Ad G hence of
Aut G. Consider the subgroup I of Aut G generated by II (I') together
with a; and @,. Clearly I is uniform but it is also easily seen to be
discrete as a; and o, normalise I. Thus we may apply lemma 2.1 to conclude
that the centraliser of a;in I is uniform in the centraliser of &y in Aut @
which we denote Z(ay). But by lemma 2.2, Z(@m) N I' N Ad G is
uniform in Z (6;) N Ad G since Z (1) N Ad G is of finite index in Z (ay)

(here we use that Ad G is normal in Aut G). From this we see that

=¥
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the inverse image of Z (a;) N I" N Ad G is uniform in the inverse image of
Z (1) N Ad G which we denote (Gy),. But G; has finite index in (G,
and

F]_ = GJ_ ﬂH’l(Z(G'l)n F'mAdG).

We apply lemma 2.2 and obtain that I is uniform in G, and of course
the same proof applies to Iy in G,.

It is not generally the case that Y, =I'\X; and Y, =I,\X; will be the
images of X; and X, under the quotient projection II : X — I'\X. However,
somewhat surprisingly, this is always the case if I" acts freely on X.

Proposition 2.2 (H Jaffee)

With the above notation if I' operates freely on X :
I (Xl) = FI\XD
IT (Xz) =TI 2\X2-

Proof : Suppose there exist x,e X,, x,€ X, pe I’ so that px, =x,. Then let
v =7ya,9ta,. Then since ayyta,el, vel. But vx, =x, hence vy =1.
From this it follows ayy~ta, = y1 and accordingly y eI',. A similar argument
establishes II (X;) = I''\ X;.

We receive then (assuming I” is compatible with {ay, a,} and acts freely) a
compact locally symmetric space Y containing two totally geodesic comple-
mentary dimensional totally geodesic submanifolds ¥; and Y,. It will be very
important to us that Y;, Y, and Y are orientable.

Lemma 2.2

@) Y is orientable.

(i) If I ©G, then Y; is orientable.
Proof : (i) is obvious since I" is assumed to be contained in G which is
connected. (ii) follows immediately from proposition 2.2. We note then if G
is simply-connected then from proposition 1.2 it follows that Y; and ¥, are

orientable.
In fact we may generalise this last remark considerably.

Proposition 2.3

Suppose G has a finite linear covering group H with the property that g, lifts
to an involution a; of H with a connected centraliser H;. Then there exists an
arithmetic subgroup I of I' so that I, & G, where I3 is the centraliser of o
in I".

Proof : Let A be the kernel of the projection IT :.H — G. The finite central

extension A — H — G induces an extension A — I'— I We claim that this
extension splits over a subgroup I” of I' of finite index. Indeed, since H is

linear we can find a congruence subgroup I of I’ containing no elements of




110 John J Millson and M S Raghunathan
finite order and mormalised by a; hence A N I" ={l}. Put I" =1II (f’).

_ Clearly I'" is an arithmetic subgroup of I. Noting that I:I"'> I is an
isomorphism we see that A — II"% (I') — I is split. Now we claim that II

maps the centraliser of &, in I onto the centraliser of ay in IT". Since the
first centraliser is contained in the connected group H;, this will complete the

proof of the proposition. Suppose yeI” satisfies aiys; =yp. Lety be the
element in I lying over . Then II (gypay~) =1 and since aypayiel” we
must have a;7g, =y and the proposition is proved.

Corollary. Suppose the universal cover G of G is linear. Then there exists
an arithmetic subgroup I” of I" so that I S G, and I € G,

Remark : In case G is the group of analytic automorphisms of a bounded sym-
metric domain then G is not linear. However if a; is complex linear (and

consequently @, =ig; is also complex linear) then G; is a group of analytic

automorphisms of the sub-domain Gy/K and consequently every element of
G, is orientation preserving hence Gy =Gy (and G, = G)).

Lemma 2.3

There is a one to one correspondence between Y; N Y, and the set of I} X I, equi-
valence classes of triples

T={( %)Xy X Xp X I'|Px, =%x}.
I', x I, acts on this set by

(yla )’2) ° (xla Xas 7) = (ylxla PoXo, Pay );1—1)_

Proof : Let (%1, X5, 7) be an equivalence class representative then yx; = x, hence
II(x) = (x)eY, N Y, Now suppose y€Y; N Y, then there exists x; € X,
X3 € X, so that IT (x;) ==y =TI (x,) hence there exists y € I" so that yx; = x, hence
y corresponds to the triple (x;, x5, 7). Now let x;eX;, x;eX, be two other
choices so that II(x}) =y =TI (x;). Then there exists y* so that " x] = xj.
By proposition 2.2 there exists 75, 7. so that pux] =x;, P.%; =x, hence
Py (X)) = 7' (x}) hence pyy’ 7 =y establishing lemma 2.3.

Proposition 2.3

Let (%, Xy, 7) € T, then the connected component of Yy N Y, passing through
y =TI (x,) is just the image of y (Xy) N X, under II. Leta} = ya;y~L. Then
the intersection component containing IT (x;) is a locally symmetric space
ANA/B where A4 is the centraliser of a; in G, B is the centraliser of o7 in

K and A is the centraliser of ¢} in I%.

Proof : Let y' be in the connected component of ¥; N Y, containing y. Then
according to the correspondence of lemma 2.3 there exist x; €X;, x,eX, and

&

e
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el so that p'x; = x; and II (x}) = II (x,) = . But there is a path
ael, N Y, joining y to ', hence under the correspondence of lemma 2.3
there must exist paths a, ()eX;, a,(1)eX, and y(f) in I" so that Iloag; =
II,0, =a. Since I' is discrete we must have y (f) =y all ¢; hence PX, =X,
proving that the connected component of Y; N Y, containing y is contained
in IT(y (X)) N Xp).

To prove the converse it is enough to show that yp (X1) n X, is connec-
ted. To this end let x,, x, € y(Xy) N X,, then there exists X1, X, € X; with
?(%1) =5, p(x}) =x,. But then the minimising geodesic joining x; to x)
is sent to the minimising geodesic joining X, to x; and accordingly the
latter geodesic is entirely contained in the intersection.

The above description of the intersection component containing IT (xy)
follows immediately from the Jaffee lemma.

Remark : Every isolated intersection has multiplicity 4- 1 or — 1 since ¥; N Y,
is totally geodesic.

We see that the connected components of ¥; N Y, are indexed by the I, Iy
double cosets of those p which appear in the third component of the
triples in T. Choose a set of representatives for the Iy, I'y double cosets
of these elements of I, 7, 9s,...,7, and put I ) ={re 7057, i =1}
(We will sometimes write I for I(I").)

Lemma 2.4
There is a one to one correspondence between I and the Iy X Iy orbits of
' HY KHe.

Proof : Suppose y eI, then there exists x, e X; and X,€X, so that yx; = x,.
Choose h, € H® so that %,-0 = x; and hye HY so that 5, 0 = x,, then
0(y) = hz* phye K hence ye HYKH?,

Conversely, given y e Hy KH? we may choose %, &, so that / ' 9 € K hence
0 ="hy0 and x, =1h,-0 we have px, = X;. This proves lemma 2.4.

We now establish a formula for the multiplicity of an intersection corres-
ponding to yel Given y el we may associate § (») €K as above. In what
follows we will write & for & (p).

Proposition 2.3

Let e, €5,...,¢, be a frame for T(Xi,0) and €411> Cpigy..., €, be a frame for
T(X,,0). Consider the real number e(y) defined by

M=l AeN-..hNe) eaAe A ... \e)

where (,), is the Riemannian inner product on k-vectors at x. e(y) satisfies
thend, (ex A ea A ... Ae)Aea A ... A ee=¢c(MNesANeA ... \e,. Then

(@) e(p) =0 if and only if the intersection is degenerate,
(b) «(y) is positive if and only if the intersection multiplicity is - 1,
(¢) € () is negative if and only if the intersection multiplicity s — 1.
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Notation : Iff: X — Xisa smooth map and v, A v2 A ... A v,is a p-vector

tangent to x then f, (vaA v A ... A v)=Ffv1 A five A ... A fyv, 52
p-vector tangent to f(x).

Proof : w =), (es A es A\ ... A ¢) is the positive orientation of X; at x;
and 7= (), (€1 A €ia A ... A e,) is the positive orientation of X, at x,.
Thus the intersection will be positive, negative or degenerate according to
whether the » vector y, (w) A = is a positive, negative or zero multiple of
the volume element of X at x,. But up to a positive scalar multiple

this volume element is just (%), (ex A e; A ... A g,); thus, we must evaluate
the sign of the inner product

(e @) A7, () (er Aea A .o A €)X,

But %, is an isometry of the Riemannian metric on n-vectors; hence, the above
inner product is the same as

() (P @Y A T)es Aea A oo A e

= (55 (GR)e (er A oo A e A (B (s A oo Ae)ser A v A iy
=) (e A o AG) Nee Ao New e A A g

=(®e (et A - Ae) A A oo Ay e A .o A ey

= <(7).

This proves proposition 2.3.

We warn the reader that in the degenerate case ¢ () =0 is not necessarily the
intersection multiplicity.

Note that the value of e (7) does not depend on the choice of 7 and h, because

any two choices of , differ by multiplication by an clement of K N G (which does
not change ¢ () as K N G, preserves P, and P, and their orientations) and the

- same is true for h,. Now we prove a lemma which is critical for us.

Lemma 2.5

If p,7" el are in the same G,, G; double coset in G then e (7) = € (7).

Proof : Suppose ' = hjyh} and we choose k., i, so that A1 y'h =3 (y) ek,
Then putting h, =h;=* k), and h =hi h, we have It phy =K ph b =
s(Mek '

Case 1. The intersection corresponding to 7 is nondegenerate. In this case there
is a unique x; (up to action by I';) and a unique X, (up to action by I}) so that
PX; = X,, for if there were x} and x, inequivalent under I'; and x, and x} corres-
ponding then the minimal geodesic joining x; to x; in X; would be carried onto
the minimal geodesic joining X, and x} in X, and consequently the intersection
would be degenerate. Now we have A7t yh; o 0 =0 consequently the choice of
hy ="t h; and My = k] R is a correct choice to calculate ¢(y) as in propo-
sition 2.3.  But for this choice we have & (y) =5 (') hence ¢(p) = «(7’) in the
non-degenerate case. ;
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Case 2. The intersection corresponding to 7 is degenerate. In this case there is
an entire geodesic in X; which is carried into a geodesic in X,. But there y’ will
carry h;=* of this geodesic into 7 of the image geodesic in X,. Thus e (y) =0
if and only if (") =0. This proves the lemma.

Corollary

Suppose y is in the trivial G, G, double coset; that is, y € G,G,: then
«(y) =41

We shall use the following notation in the rest of this paper. If G is an
algebraic group over a number field £ and F is a field containing E then G (F)
will denote the group of F-rational points of G. More generally, if R is any ring,
then G (R) or (G) will denote the group of R rational points of G, assuming this
makes sense. Also if Oy is the integers in E we will often denote G (0y) by ®.

We assume now that we are given an orthogonal decomposition {a1,05} of GIK
and a compatible uniform torsion-free arithmetic subgroup I of G. We assume
I' € SL (N, Og) where E is a finite algebraic extension of Q. For anyideal ¢ in
O; we define the congruence subgroups.

F(@={yel:y=1mod al,
I(a)={rely:y =1modal,
Iy(a) ={yecl,:y =1moda}.
We define the manifolds
Y (@) = I'(a\ X,
Yy (a) = I (@)X,
Yy (a) = I (@) \ X
We also define finite groups
v =TT (a),
y1 = In/T (a),
We = /T (a).

We now prove one of our main theorems.

il

Theoremn 2.1

Assume that all intersections of ¥; and Y, are of positive multiplicity. Then there
exists a prime p in E'so that the cohomology class corresponding to ¥; (p) under
Poincaré duality cannot be represented by an invariant form.

Proof : We begin with the observation due to W. Dwyer that if the cohomology
class dual to Y, (p) could be represented by an invariant form then the homology
class carried by Y1 (p) is invariant under the deck transformations of the cover-
ing I1: Y(p) » Y. This follows immediately from the naturality of the Poin-
caré duality map combined with the fact that the deck transformations preserve
the orentation class of Y (p).

P.(A)—8




114 John J Millson and M S Raghunathan
The following lemmas then complete the proof of the theorem.

Lemma 2.6

There exists p a prime ideal in E and yel so that aw.yay™ - is not
congruent to an element of I'; modulo p.

Proof : Suppose first that we can choose y € I' so that u =a,ya5y™" ¢ I,. Then
we claim that there exists p so that g,pa,p* is not congruent modulo p
to any element of Ij. Indeed choose a rational representation p of G on a
vector space V so that G, is the isotropy of the line throughwv e V. Then
p(Wv is not on the line through v because u ¢ G,. We may then complete
{v,p (W v} to a ratiomal basis for ¥. Now let pbe any prime so that p does
not divide either the numerator or the denominator of this discriminant.

We now prove that there exists y e I" so that aypa,y~t ¢ Iy. Suppose no such
y exists. We define a map ¢ :Gc — Geby ¢(g) =axga,g~t. Since ¢ (I E I}
and I' is Zariski dense in G¢ we must have ¢ (Gc) € (Gy)c and hencedd (g) S
g1 where for x e g we have d¢ (x) =a,xa, — x. Now we note that Ada, induces
the identity on k; since Ada, is the Cartan involution of g;. But if ;e Py,
vy € Py and x = [vs, vp] then do (x) = —2x ¢g;. With this last statement we
obtain a contradiction and the lemma is proved.

Lemma 2.7

Let y be as in lemma 2.5 and let 5 be the deck transformation of the covering
IL : Y(p) = Y represented by y. Then 7Y, (p) and Y; (p) are not homologous.

Proof : Al intersections of Y1 (p) and ¥, (p) are positive since every intersection
of Y1 (p) and Y, (p) lies over an intersection of ¥; and Y,. Also ¥, (p) pro-
jects to Y3, which does not bound, hence 5¥; (p) does not bound. Thus to show
that Y;(p) and 7Y, (p) are homologically independent it is sufficient to
show that the intersection number of 7¥; (p) and ¥,(p) is zero. We show
in fact that a,(nY: (p)) N 7Y, (p) =¢. Since any point in 7Yy (p) N ¥, (p)
is fixed by o, this will show that this latter set is also empty. :

Let a 1y —»y denote the involution of y induced by a,. Thus a(n) =
ayya, where _____ denotes reduction modulo p- Letv denote the class of 4
in y/y; and B the involution of y/y; induced by a. By the choice of y we have
B #v. But we claim a; (nY. (p)) = a(y) Y1 (p). Indeed let xe Y;(p),
then aynx =aaa0ex = a(n) daxea(n) Y1 (p) since g, stabilises Y; (p). But
a(n)# n and hence 7Y, (p) and a () Y; (p) are disjoint and lemma 2.7 is
proved. With this the proof of theorem 2.1 is completed.

3. The Galois cocycle associated to an intersection

We assume in this chapter that we are given an orthogonal decomposition
{X1, X;} of the symmetric space X and a compatible uniform torsion-free
arithmetic subgroup I'C G. We assume I' c GL (W, E) where E is a totally
real number field and that the groups G, H; and H, of Chapter 1 are the
real rational points of groups M, M, M, defined over E. ’

e
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Let p be a prime ideal in E. We have defined the congruence subgroup
I (p) of I' of level p. We have also defitned a finite set, I (I" (p)), in
chapter 2. We will abbreviate I (I" (p) to I (p) and, as before, we will
abbreviate I (I) to I. It is false that I (p) S I However, let us define
oI, 3I(p), again following notation established in chapter 2 (above proposition
2.3) by:

01 ={8y, ..., 6y, |y},

8I(p) = {671, ..., 0y, | 7, € 1(p)}.
Lemma 3.1
0I(p) € 4L

Proof : Let p elI(p). Then there exists p, € I, but not necessarily in
I; (p), and po el so that p,pp,€l. But by lemma 3.1 § (2971) =6 ()
hence & (y)edl

Our strategy in the rest of the paper is to try to pass to a congruence
subgroup of I, I' (p) so that 8I(p) is contained in the comnected compo-

nent of the normaliser of K. We now begin our programme of trying to
decrease 1.
Theorem 3.1

For all but finitely many primes p we have p e J (p) implies » e (Hy)c

(Hi)c—recall (H,)c is the complexification of H, and (H;)c is the
complexification of H;.

Proof : The theorem will follow immediately from the next two lemmas.
Lemma 3.2

The double cosets (Hy)cy; (Hi)c (7, € ) are closed in (G)c.

Proof : By a theorem of Birkes [1] it is sufficient to show that the double
cosets H,p,H; are closed in G. Note that Hyp,H, is closed in G if and only
if Hyy Hypr* is. Now we will prove H,H, is closed in G and the proof will
be valid for H,y,H;y7*. Let v be an integral vector in V (a representation
space for M) so that M, is precisely the isotropy of ». Consider the
orbit of v in Vg. It is enough to prove that the image of H, is closed in
Gv. But I'w is discrete, hence closed in ¥, by Borel [3], 7.13 and H, =
QT with @ compact hence Hyv = QI is closed in Vg proving lemma 3.3.

Lemma 3.3

There exists an (M,)c X(My)c invariant element f of E [G] (the ring of
regular functions on M) so that

f®) =0 xe(H)c(H)c,
fx) =1 (Hx e)cy;(H)e y;el’,
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where I' is the set of elements y, €I so that
(Hy)c 7; (Hi)c # (Hc (H)c-

Proof : It follows from Borel [3], 7.6, that such an f exists with f e C [G].
However, the regular functions in F [G] invariant under (M,): X (M,)z span
the regular functions in C[G] invariant under (H,)c X (Hi)c. Thus for each
V;(jel) we may find f; so that

@ f;eE[G],
() f;(x) =0 x € (Hy)ey (Hi)c# () %j (H)c, yel
(i) f,(x) =1 xe(H)¢y, (Hi)c-

Then f= Y f; satisfies the conclusions of lemma 3.4.
I’

Theorem 3.1 now follows easily. If p is a prime which does not divide the
denominators of f then we claim that if yeZ(p) then pe(H)c (Hy)c. Suppose
that yeI(p) and y ¢ (Hyc (Hy)c. Since p e I' there exist y,e€l, and p, eI} s0
that 7,yy. €1, hence ye(Hy)ecy, (Hi)c for some jel. But then we have
f(» =1. However,y =1 mod p so we musthave f(y) =0 mod p which
contradicts f(p) = 1. Thus theorem 3.1 is proved.

We will now rename I' (p) as I" and I (p) as I for a chosen so that the
conclusions of theorem 3.1 are satisfled. Thus y el implies y € (Hy)c (Hy)c-

If pel and pe H H? then the intersection number corresponding to y has
multiplicity 4 1 according to lemma 3.1. Thus we must study the problem.
Given y e I', satisfying y e (Hy)c (Hy)c can we obtain y € HyH;. This problem is a
problem in Galois cohomology which we now treat.

Theorem 3.1 allows us to associate a Galois cohomology class a (y) €
HY(E, M, N M,) to every intersection y € I. Indeed, by theorem 3.1 we may
write 9 = 881 With g, eM;(C) and g, eMy(C). Now ifoeGal(C, E) then
a (y) =7 and consequently

810 (8)™* = g5 a (g2).
We define the value of the Galois cocycle a(y) at a, to be denoted a,, to be
this common value. We then have the following standard lemma.

Lemma 3.4 A

We may write y = with e My (E) and p,e M, (E) if and only if the
class of the cocycle a(y) in H(E, M; N M,) is trivial.
Since we have identified E with a subfield of R we have a map

HY(E, M, N My) > H'(R, My 0 M),).

7 We let o € H* (R, My N M,) be the image of . Then we have the following

standard lemma,

Lemma 3.4B

We may write y = hohy with A e M; (R) and %,€ M, (R) if and only if the
class of a in H'(R, M; N M,) is trivial.

.
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Remark : In this case the intersection corresponding to 7 is isolated. We note
that a is in the kernel of the mapping

HU (R, My 0 My) » H' (R, M;) X HL(R, M),

induced by the inclusions,

Proposition 3.1

Let P denote the set of finite primes of E and for pe P let Ep denote the
completion of E at p. Then we may assume « is in the kernel of the map

HY(E,M, N M)~ II H(Ep, My N M,).
pe?P ‘
Moreover, if all elements of I' satisfy the congruence 7 =1 mod 5 for some
ideal 5 then for every finite prime p we may write y =uu; with u, and )
in the set of p-adic integral points of M, and M; respectively and satisfying
ﬂzr—ﬁﬂlal mod a.

Proof : Since the second part of the statement of the theorem implies the first
we prove this part. Note first that if we may solve y = uf" u™ mod p» with u™
and p p-adic integral matrices congruent to 1 modulo s* (depending on 7) for
every n, then, since the set of p-adic integral matrices is compact we may find (by
taking a limit) p-adic integral matrices z;, u, congruent to 1 modulo a so that
? = /. Hence if the second statement does not hold for some finite prime r
then there exists n so that y =% usp; mod p* for any p-adic integral matrices u,, 11y
congruent to 1 modulo a. Now consider the congruence subgroup I’ (p™) of I.
We claim that there is no 9" e I'(p™) which lies over y. Indeed suppose such a y’
existed. Then 9’ = popy, with p,el%, 7€l and 9, =1 mod 4, 7, =1 mod &
and y" = 1mod p". Consequently y = y;* y;* mod p* but taking u, = y7* and
M =yt we obtain a contradiction. In this way we eliminate all intersections
not satisfying the conclusion of proposition 3.1.

Theorem 3.2

Suppose the following two hypotheses are satisfied:
() AR, My, 0 M) - H* (R, H)) X H (R, H,),
is injective—under this assumption we obtain that a is trivial.
(2) The Hasse principle holds for M; N M,; that is, the map
HY (E,M; N M,) - I‘;[ HY(E,, My N M,)
induced by the various completions is injective (the inverse image of the base-

point consists of a single point) then we may write each y in 7 as a product
y = mymy With m, € My (E) and m, € M, (E).

Proof : Since a is trivial we may write y = hylty with Ay e H, and % ¢ H,. But
if M71is a conjugate of M; then M7i (R) is compact and consequently the mapping

ﬂlgR, M? N M;i) — H*(R, M;;) is injective? see Serre ];12], page III-—367
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theorem 6. Consequently a is trivial at all the infinite completions of E. But
by proposition 3.1 we know « is trivial at all the finite completions of E; hence,
by the Hasse principle @ is trivial and we may write y = m,m; with my e M, (E) and
my & My (E).

Remark : In the special case that both H, and H, are connected then M is
sufficient to guarantee that all intersections of Y; and Y, are isolated of
multiplicity -+ 1.

4. Applications

We will apply our results to three cases. In all three cases we begin with a real
quadratic field E =Q (4/m) where m is a rational prime.

In the first case we let D be a division quaternion algebra over E so that
D ®g R is the Hamilton quaternions H. We define a hermitian form H on Dn

by the formula
H(q1, @55 9) = QG+ o + @18, — /M (@12 G pia + ... + 4,3,),

where g denotes the conjugate of the quaternion q. We assume p = gand choose
an integer k satisfying 0 < k < p. We let M be the special unitary group of H;
we let My be the subgroup of M fixing the first k& coordinates and we let M, be
subgroup of M fixing the mext p — k coordinates. Then M, M; and M, are
algebraic groups defined over E and -

M R) = Sp(p, 9);

M;R) =Sp(p — k, ),
Since H is anisotropic with a positive definite conjugate it follows by a standard
argument, see for example Millson [10], page 239, that M (Oy) is a uniform discrete
subgroup of Sp(p, 9).

In the second case we let F be a quadratic extension of E so that F®:R =C.
We define a hermitian form H on F* by the formula

H(z1, 2555 2) =2iu + ... + 2,2, —/m (o1 2y + ... + Z,2,),

where z denotes the conjugate of z by the non-trivial element of the Galois group
of Fover E. The definitions of M, M; and M, are now as in the previous case,
We now have :

M (R) =SU (», 9),
M;(R) =SU(p — k, g),

Again we find that M (Og) is a uniform discrete subgroup of SU(p, q).
1n the third case we let M be the orthogonal group of the quadratic form f
over E defined by

‘;f(:xl,x?,...,x,‘_‘):xi-‘]— K +x§*\/m(x§+1+...+x§).
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The groups M; and M, are defined to be the subgroups of M; and M, leaving
fixed the first k coordinates and next p — k coordinates respectively. In this
case we have

M (R) = SO (p, 9),
M; (R) = SO (k, 9)-

We find that M (O;) is a uniform discrete subgroup of SO (p, ).

The first two cases can be settled by the remark following theorem 3.3. The
mapping H, N H, — H; is the inclusion of one unitary group into a larger one,
consequently by Witt’s theorem the mapping H!(R, M; N My — H' (R, M) is
injective. Since H, and H, are connected we obtain the following applications
(note that our construction may be repeated interchanging the roles of p and g).

Theorem 4.1

There exists a uniform discrete arithmetic subgroup 7 C Sp (p, q) so that H* (I, R)
contains a cohomology class which is not the restriction of a continuous class
from Sp (p, q) for any integer k strictly between O and 4 pg and divisible by either
4p or 44.

Theorem 4.1 (bis)

There exists a uniform discrete arithmetic subgroup I C SU (p, g) so that H* (I, R)
contains a cohomology class which is not the restriction of a continuous clags of
SU(p, q) for any integer k strictly between 0 and 2pg and divisible by either 2p or
2q.

Remark : In the case ¢ =1 the symmetric space we are looking at is the wnit
~ ball in C", the cycles are quotients of sub-balls dual to linear subspaces of CP™
This justifies the statement (3) of the introduction.

The remaining case of M (R) = SO (p, q) is considerably more difficult. The
difficulty is that we cannot find a simple algebraic subgroup N acting transi-
tively on X; so that N (R) is connected—note that the group SO (p, q) has two
components. Our first problem is to ensure that the manifolds ¥, ¥; and Y, are
orientable. To do this we must ensure that I'; and I, are contained in the
connected components of the identity of G, and G, respectively. We will show
in fact that there exists an ideal s in E'so that y = 1 mod 5 implies that 6 (»n=1
where 0 is the spinorial norm which we now define as it will play a major role
in what follows.

Definition : Given a quadratic form f on a finite dimensional vector space over
a fleld K we definea homomorphism 6 : O(f) » [K*/(K*)?] as follows. Given
ue O (f) write u as a product of reflections u =r,r, ... r., where r, is reflection
in the vector x;. This can always be done—see O’Meara [9], 43.3. Then

0 () = f(x) f(xa). .. f(xn) med (K¥).

We define O’ (f) to be the subgroup of SO (f) consisting of elements of spinorial
porm 1. ‘We remark that if SO(p,g) is the group of orientation. preserving
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isometries of a quadratic form over R of signature (p,q) then the connected
component of the identity of SO (p, q)is just 0’ (r,9). We note ue o' (, @) if and
only if we may write u = Tadleg + -+ Tay With f(x) £(x2) ... £ (%) > 0. If qg=1we
see that ue O (p, 1) if and only if # maps the half-space x, > 0 into itself.

We will use the following notation. If ? is a p-adic integral matrix and
bis an idealin O then y =1 mod b means y=1 mod p'") where v is the p-adic
valuation.

Proposition 4.1

Let Q be a quadratic form over a number field E Let S ={p1, Pas- - -» P}
be a finite set of primes of E and let G (Os) be the group of S integral matrices
over E that preserve Q. Then there exist infinitely many relatively prime ideals

O in Oy with the property that every element of G (Os) congruent to 1 modulo a
has spinorial norm 1 in E.

Proof : We denote G (Og) by I.

We first consider a prime p in Eso that pis not a divisor of 2 and so that p
doesnot divide the discriminant of Q. In this case if £ denotes the completion

of E at p we obtain a form Qp defined over Ep with orthogonal group O (Op)-
We have inclusions

I (§)———=0(Qg)

V"

r

We denote the p-adic spinorial norm by 0p. The following lemma was kindly
provided for us by T. Tamagawa.

Lemma 5.3

If ye I (p) then in O (Qp) we may write y = Tay 0Ty 0...0r, with Q(x)a p-
adic unit, 1 <j < m.

Proof : The proof is by induction. We establish the case n =2 and the induc-
tion step with the same argument. Let yeli(p) and suppose xe Ep* with
O(x) a p-adic unit. Let y = px. Let p =rggor, then px =1y and hence
7y (x) =x. But Q(x+ ) =40 (x) mod p and accordingly is a unit.

Let Up denote the p-adic units. We have established that there exists a homo-

morphism ﬁp satisfying

i
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But since p = 1 mod p we have 4 (y) is a square modulo p hence a square in
Up by Hensel’s lemma. We obtain then
Lemma 5.4

The restriction of p-adic spinorial norm to I7(p) is trivial.
We are now ready to finish the proof of proposition 4.1. We know

H(Fl)g’(—E—:T:j'{z

is a finitely-generated abelian group of exponent 2. Let Uy, Us,. .., 4, be a set of
generators. Then u €0 (I')) has the form

U=uhufs . .. ur

with ¢; either O or 1for1 < j <r. Since i, is not a square in E there exist infinitely
many p-adic fields Ep so that u, is not a square in Ep. Let Ep, be such and satis-
fying further that u, is not a square mod Ep, for k # j, one of these for each j
between 1 and r. Then by construction we have an injection i

* % *
E E E
6 (r)— o f’ x f?‘zxmx i )
\ //(591) (EZ)7 (EZ)
E%
(72

Indeed u =uf ... upr =x*mod p;... p; < uf=x* mod p, for all j.
Lemma 5.5
(B
0 (Fl (pli p2= v '7pr)) ZW.

Proof : Suppose that ue0 (I'y (p1, po, ---» p,))- Toshow u is 1 it is sufficient fo
show i(x) is 1. But we have a commutative diagram

r
k ver )
n (gl’ ’gr \\ "ET 9;(5"!
j=1
g* i r E'S;

(E%2 T =7

and by lemma 5.2 each 0p | I'(ps, ..., p,) is trivial.

Corollary 1

There exist infinitely many relatively prime ideals 5 in O so that y=1 mod 4
implies 6 () = 1.

We will choose an ideal a satisfying the conditions: y =1 mod » implies y
is not of finite order, 8 () =1 and so that theorem 3.1 is satisfied. a will
henceforth denote such an ideal and I'={pe @ : p = 1 mod a}.
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Corollary 2 |

Y, Y;, and ¥, are orientable.

We are now ready to apply our general theory. M; N M, is an orthogonal
group and consequently satisfies the Hasse principle. The mapping
H, N H, » H, is the inclusion of an orthogonal group into a bigger orthogonal
group, consequently, by Witt’s theorem the mapping H!(R, M; N M) —» H!
(R, M) is injective. We apply theorem 3.2 and find that by passing to a
deeper congruence subgroup which we will continue to denote by I' we
obtain, if yeI(I') then 9 =mym, with m, € M; (E) and m, e M, (E).

We now prove the first claim of the introduction. For this we use the
groups discussed under case 3 at the beginning of this chapter with ¢ =1
and k any integer strictly between 0 and p. We will verify that Y, N Y, is
a single point. Indeed let p, m,m, be as above. We will show that the
equation y = mym, determines all the entries of m,. Of course, mye; = ¢, for
k< j<p-+ 1. Moreover

ve; = mome; =mge, for 1 < j< k.

Thus it is immediate that m, is determined by 9 on all basis vectors with
the possible exception of the last vector e,.;. We suppose that Myl = U.
Then u is in the orthogonal complement of the vectors pe;, ye,, ..., ye, in the
space spanned by e, e, ..., e, €,,5. Consequently u is determined up to a
scalar multiple which is either -+ 1 because

F @) =f(mae,0) =f(epun) = — Jm.

In other words u is determined up to multiplication by -1 by the above
k linear equations and the quadratic equation f(¥) = —./m. We denote this
set of k + 1 equations by *. Now given any prime p we have the decompo-
sition y = vplp of proposition 3.1. But an argument identical to the above
shows that Vpepi is determined up to sign by the same system *. Consequently
u = £ vge,1 and consequently u is integral. We have found then that m,
is in fact an integral matrix in M, (0). We reduce m, modulo s and find that
since ye;=¢, mod al <j<p we must have me,; = +¢,,; mod 5 but the
determinant of m, is 1; hence, m, =1 mod 5. This result combined with
- results in Borel-Wallach [5] proves the first claim of the introduction.

We now prove the second claim of the introduction. We use the groups
Mi, M,, M discussed under case 3 at the beginning of this chapter with g
arbitrary and k =1. From our general theory, given pel we may write
?=mym with m, e M, (E) and my € M (E). Since 6 () =1 we have
8 (my) =06 (my). Thus either 8 (m,) and 6 (my) are totally positive or we may
rewrite 7 =my 7m0, with 8 (m;) and 8 (m)) -totally positive, 7, the diagonal
matrix with first entry —1, p+ qth entry — 1 and the rest + 1 and 7, the
- diagonal matrix with second diagonal entry — 1, p+ qth entry — 1 and the
rest +1, We now examine under what conditions y corresponds to a positive
intersection. In case 6 (my) and 6 (m,) are both positive then y e H} H? and of
course e (=1 To compute e (y) in the second case we have only to computc

ol LT 0 A = A
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_%?:-&zglinant of the action of 7,7 on P;. But it is easily seen that tar; = — 1
mt’ﬁ‘%ndd ansgquently has detfarmmant (— 1)¢. This completes the proof of
a G‘t“;xm letlm in the 1ntrod}10tlon.. .

{n. 2) If"?'tlon W1tl:1 the third claim of the introducm_on.we note that for
Usiry - T any choice of k, the cycles ¥; and ¥, are projective varif::ties. Since
ain nj .rwltt.’s theorer.n) we have s]flown_that all intersections are 1solated,. we
Ny fbe})raac cycles in all even dimensions which correspond to non-trivial
TTOTPhic representations.
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