A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectrum of CF$_3$I···PH$_3$ between 6.5 and 18.5 GHz. The complex was stabilised by supersonic expansion of a gas sample containing small percentages of CF$_3$I and PH$_3$ in a balance of 6 bar of argon. The observed spectrum is consistent with a C_{3v} prolate symmetric top structure which displays evidence for internal rotation of the PH$_3$ subunit about the principal axis. Over two hundred hyperfine transitions across eleven $J''' \rightarrow J'$ transitions have been assigned to the internal rotor A-state allowing the rotational (B_0) and centrifugal distortion (D_J and D_{JK}) constants as well as the nuclear electric quadrupole coupling constant of iodine ($\chi_{aa}(I)$) to be assigned for this state. For the E-state, the additional distortion terms D_{Jm} and D_{JKm} have been determined. The length of the halogen bond between the iodine and phosphorus atoms and the force constant of this bond have also been determined.