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Abstract. We prove a version of “factorisation”, relating the space of sections of
theta bundles on the moduli spaces of (parabolic, rank 2) vector bundles on curves
of genus g and g — 1.

1. Introduction

Ia. Let X; be a smooth projective irreducible curve over C of genus g. Let
Uy, = Ux ,(d) be the moduli space of semistable vector bundles of rank 2 and degree
d on X. On %y, we have a natural (ample) line bundle, defined up to algebraic
equivalence, which generalises the line bundle on the jacobian of X, defined by the
Riemann theta divisor [D-N]. We call this the theta line bundle and denote it by 6,.
A section of 0% over %y, may be called a generalised theta function of order k.

We would like to study the space H°(%y,,0%) by relating it to the space of
generalised theta functions associated with a smooth curve of genus g — 1. Such
a relationship has been suggested by conformal field theory under the name of
“factorisation rule” or “glueing axiom”.

From the point of view of algebraic geometry it is natural to study this
relationship by degenerating X, into an irreducible curve X = X, which is smooth
except for a single node, so that the normalisation X of X is a smooth curve of
genus g — 1. We can then consider the space of generalised theta functions on
a suitable moduli space %y associated to X and then seek to relate this space
with a space of generalised theta function associated with the normalisation X,
The space %y is the moduli space of semistable torsion-free sheaves of rank 2 and
degree d on X and it carries a natural theta line bundle 6. If moreover
H'(6%) = H'(6%) = 0, one would have that dim H°(0%) = dim H®(0%).

Let then X be an irreducible curve over C of genus g, smooth except for one
node x,. We denote by X the normalisation of X, g =g — 1 the genus of X and
n: X - X the canonical map. Let {x;,x,} be the inverse image of x4 in X. The
factorisation rule is:

Ho(%x,ok) ~ @HO(%L{,O;J’
u
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where p runs through a certain indexing set depending on &, Y% is the moduli space
of parabolic vector bundles (of rank 2 and degree d) on X with parabollc structures
[M-S] at x; and x, (with weights depending on u) and 8, is a line bundle on
A% (the generalised theta bundle).

It is clear that to carry through the induction on g one has to start with moduli
spaces of parabolic torsion-free sheaves of rank 2 on a nodal curve X with
parabolic structures at a finite number of smooth points and prove a factorisation
rule for generalised theta functions on them, as well as a corresponding vanishing
theorem for H'. This is what is done in this paper.

1b. Statement of the main theorem

First, some preliminaries:

(1) Let X be an irreducible curve of genus g, smooth but for one node x,.
Choose a finite set {y;}; of smooth points on X. Let X be the normalisation of X,
7: X - X the canonical map, and 7 1(xo) = {x,X,}.

(2) Fixintegers d, k > 0, and also, for each i € I integers 0 < o; < f; < k satisfy-
ing the condition: dk + Z,-(ot,- + B;) is even.

(3) Define “weights” {(a;,b;)}; by a; = a;/k, b; = p/k. We construct in the
Appendix A the moduli space #x = ¥(X,d, {(a:, b;) }1) of (s-equivalence classes of)
parabolic torsion-free sheaves of rank 2 and degree d on X, with parabolic struc-
tures at the {y;};, semistable with respect to the weights {(a;,b;)},. The space
Uz = U(X,d,{(a;,b;)};) is constructed similarly. The definitions can be extended
to the case when a, = b, for g€ Q < I (§2c).

(4) For p=(a, /f) 0 < a < B <k let #% be the moduli space of semistable
parabolic bundles on X with parabolic structures at the {y;}; and weights
{(a;,b)};, and in addition, parabolic structures at x, and x,, both of weight
(a,b) = (a/k, B/k).

(5) We will define (§2), up to algebraic equivalence, a natural ample line bundle
6 = 0(d, k,{(a;,b;)},) on %y. Analogous bundles 6, can be defined on the %%
(Definition 5.5).

We have then the

Main theorem

(A) We have a (noncanonical) isomorphism:

HO(%X’ 9) ~ @HO(%A‘. 5 9;4)’
I
where p runs through the integers (,5), 0 £ a < f < k.
(B) Assume g = 4. H(%y,0) = 0.
The statement {A) is proved in §5b and (B) is a restatement of Theorem 7.
Ic. We give in this sub-section a proof of factorisation in the case of rank 1

sheaves. There are few technical complications here, and the main ideas of the proof
are best understood by studying this case.
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If X, is a (flat) family of curves such that X, = X, and the X,, for t % 0 are
smooth, there exists, for every integer d, a corresponding family of jacobians J % (of
degree d line bundles) specialising to the compactified jacobian of X (whrch we
denote by J%). The latter parametrises rank ! torsion-free sheaves on X, and is
a compactification of J¢, the moduli space of line bundles of degree d on X. In
particular, consider J% '. This has a canonically defined ample line bundle on it
— the theta bundle — which can be defined as Grothendieck’s “determinant bundle
of cohomology” [K-M] of any Poincaré bundle on X, x J% 9! We shall from now
on denote this bundle 8,, and set 6, = 6. Given a vamshmg theorem for
HY(J% ', 0%), we can compute dim H(J% ', 0%) for generic X, by specialising to
t=0.

Giving a line bundle N on X is equivalent to giving one, say L, on X together
with an isomorphism between L, and L, . To such an isomorphism we can
associate its graph, a one-dimensional subspace S of L, @L,, and in turn, the
quotient Q by S, thought of as a point of the prOJectrve space of L, ®L,,. This
motivates the following well-known construction. Let J% denote the jacobian of
degree d line bundles on X. Given a Poincaré bundle % on X x JE ' let P be the
projective bundle on J%~ ' associated to the vector bundle (wrth an obvious
notation) &, @ %,,. We have on P the tautological exact sequence of bundles
09— p*(:’fxl®$xl)—> 2- 0. Let n,# denote the sheaf on X xP, got by
taking the direct image of & by n XI5 ' and pulling back the resulting sheaf from
X xJ% '. We can think of 2 as a sheaf on X x P supported on {xo} x P. There is
an obvious homomorphism 7,.% — 2 and we define . to be the kernel sheaf. Thus
we have constructed a family of rank 1 torsion-free sheaves on X parametrised
by P.

There is therefore a morphism ¢: P— J% ' such that for any Pioncaré sheaf
A on X xJ% ' we have (Iy x ¢)* 4 = & up to tensoring by a line bundle from P:

p X gyt
ol
gt

One can, by functoriality of the determinant bundle [L, VI, §1], compute the
pull-back of 8 to P. Here it is important that we are working with line bundles of
Euler characteristic 0:

¢*0 = p*(det Ruy: £)® 2, (1.1)

where we use the notation det Rn;, .« for the determinant bundle of cohomology
of a family .o of sheaves on Z x Z, parametrised by Z, (see 1f.(2)). One can check
that this is independent of the choice of Z.

Let 9., 2, denote the two divisors in P given by %, and %, , respectively. It
isa fact that ¢ restricted to the complement of 2, U 2, is an isomorphism onto
IS e Jy and each of the 9; maps isomorphically onto the singular locus W~ of
J% i Also J% 7o ! is seminormal (see §4 below for the definition) and this allows us to
write the exact sequence of ¢ «-modules:

0 ¢ Op(— 2, — D) (Qf; 1= 0y — 0,
which yields
0> HO(¢p*0"( — 21 — 2,)) > H°(0") > H°("|4). (1.2)
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We will argue below that the last map is a surjection. Note that H°(8%j,) ~
H%(¢*6*|5,). Thus H°(6*) is an extension:

0 HO(¢*H(— 21 — D)) > H°(0") > HO($*0¥|5,) — 0.

Now, each of the cohomology spaces on either side of the middle can be computed
by taking direct images on J§~ ! Standard arguments, using the expression (1.1)
and also 0 (2)) = 0Q £ ', yield:

p4(@*6"(— Dy — D,)) = (det Rup LY@ L, £, ®p 2% ?
=(det Rm, ¥R %, ¥, ®S* XL DL.,)

= (det anfj{l g)k®$x1 gx1®{

where $*~2 denotes the (k — 2)th symmetric product. Slmllarly,
(p|@.)*¢*0k = (det RTCJ;{I g)k®$l;z.

We have thus found an expression Ho(J¢ !, 6%) in terms of line bundles on J4 '

We still need to show that the sequence (1.2) is exact on the right. For this
it suffices to show that HY(¢p*0*(— @, — 2,)) = 0. For this observe that
Rlp, (¢*0%( — @1 9,)) = 0and p 0 — 2, — 92)) is a direct sum of ample line
bundles on J4 '. A similar argument shows that H'(J% JL g4 =

As a sunple exercise let us compute the d1mens1on of Ho(J' g 1 ,0%). Choose
Poincaré bundle % which is trivial on (say {x,} x J% '. Then det Rn 1 & is in the
algebraic equivalence class of theta, and the £, are algebralcally equlvalent to the
trivial bundle. Thus

dim HO(JS 1,0 = (k — 1)k? + k7 = k?,

as expected.

1d. We describe briefly the main steps in the proof of the Main Theorem.

When comparing bundles on a singular curve X and its normalisation X, we use
a variant of a concept, due to Bhosle [B1], of a “generalised parabolic bundle on
X with a generalised parabolic structure over the divisor {x;,x,}”. Such a bundle
of rank 2 is given by a pair (E,Q) where E is a rank 2 vector bundle on X and
Q a two-dimensional quotient of E, @E,,. Given a generalised parabolic bundle
(GPB from now on) one obtains a torsion-free sheaf F on X which fits into the
exact sequence: 0— F - m, E— . 0 — 0, where , Q is the skyscraper sheaf on
X with support x, and fibre Q (it is easy to show that degree F = degree E). One
can define the notion of a semistable GPB, and prove that F is a semistable
torsion-free sheaf iff (E, Q) is a semistable GPB. All this goes through if there are
additional parabolic structures at the {y;};. There is therefore a morphism ¢:
P — AUy, where 2 denotes a suitable moduli space of generahsed parabolic bundles
on X. We will study this morphism in §4c, and see that it is in particular birational
—in fact 2 is the normalisation of %x. (One has in fact to allow for torsion at the
points x; so it is more appropriate to talk of generalised parabolic sheaves — this is
done in the main body of the paper.)
We will consider a certain locally universal family (parametrised by a variety
) of rank 2 vector bundles E on X with degree E = d, and parabolic structures at
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the {y:},: ¥z is a geometric invariant theory quotient of the semistable points of %
with respect to the action of a suitable reductive group and a certain linearisation
by a line bundle 0. Let p: #%— Ay denote the grassmannian bundle of two-
dimensional quotients of E, @E_, (the reason for the notation will become clear
later). Using the results of §4 (namely, “seminormality” of %y,) we then (§5b)
characterise the subspace

H@y,04 ) € HO R, p*0Q@L)™ = H(%p,0®p, L™, (1.3)

where L is essentially the line bundle O(k) along the fibres of the grassmannian
bundle, and {. }'™ denotes a space of invariants for the group action. The computa-
tion of p, L amounts to the following problem when is easily solved. Let Gr be the
grassmannian of 2 dimensional subspaces of C* m a positive integer: decompose
the representation of GL(4,C) on H°(Gr, ©(m)) into irreducible representations of
GL(2) x GL(2) = GL(4). The decomposition (A) follows from this. (Note that the
(1.3) refers to invariant sections on all of # and not just on the open subscheme of
semistable points — this is because of Lemma 4.15 below.)

We turn next to the vanishing theorem for H'. The map ¢: # — %y is finite;
and we will see that it suffices to prove the vanishing of H* for 6,, pulled back
to 2 and restricted to a “fixed determinant subvariety” #- < @, L eJ 4. We will
denote this pull-back bundle by ,. We consider a new set of data (d, k, &;, ;) such
that k =k + 4, and f — & = f — a + 2. Let 2 denote the corresponding moduli
space of GPS’s, we show that H (2, 05} = H'(2, 0582) where 05 is an ample line
bundle on # and @ is the dualising sheaf of 2. (This would be the case, for example,
if there is a common open set Z; in both # and £ such that the complement of 2,
in each of them is of high codimension and such that 05|, = 05,®.(_2|%. Actually,
we give a slightly different proof) A Kodaira-type vanishing theorem for 0;®Q
now yields the desired vanishing theorem (§5b).

We introduce the moduli spaces of parabolic vector bundles and define the
theta bundle in §2. In Appendices A and B we give a Geometric Invariant Theory
construction of the moduli spaces of interest. The construction of moduli Simpson
[Si]. The same method is used to construct the moduli space of generalised
parabolic sheaves.

We prove in §3 that %y is seminormal and in Appendix C that 2 is
normal and has rational singularities. These properties are essentially used in the
proof.

le. In a subsequent work we will remove the restriction on genus in the statement
of the Main Theorem (B). The results of this paper can then be used to give a proof
of the “Verlinde Formula” for the dimension of generalised theta functions on the
moduli space of (parabolic) bundles.

It should be mentioned that a factorisation rule for “conformal blocks”, defined
via representations of affine Lie algebras, has been proved in[ T-U-Y].

If. Notation
(1) We will let det Rmz, o denote the determinant bundle of a flat family &/ of

sheaves parameterised by Z . A convenient reference for the determinant bundle of
a family is [L] — our definition of the determinant bundle is, however, the inverse of the
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one used there. For example, if Z, is a projective curve, &/ a coherent sheaf on
ZyxZ, flat over Z,, and x€ Z,, we have

{det Rz o}, = {det HO(Z,, 52,)} "' ®{det H (Z,, o/,)}.

(2) Unless otherwise mentioned, X will denote an irreducible curve of genus g,
with one node xo, {y;}; a finite set of smooth points on X, and y yet another
smooth point. Let X be the normalisation of X, n: X — X the canonical map, and
17 (xo) = {x1, %3}

(3) We shall fix an integer d, the degree, another integer k > 0, and also, for
each i e I integers 0 < o; < ff; < k. We define n = d + 2(1 — g) and let [ denote the
number determined by

mke = 2kl1| + 21 = ¥ (o + By) (1.4)

We shall assume that the data are such that 1 is an integer, i.e. that dk + Y ; (o + ;)
is even. Let a; = a;/k, b; = fi/k, and set w = {(a;,b;)};. Finally, let i=n+ 2,
I=1+k

(4) At a point x € X we let ¢, denote the local ring and .#, the maximal ideal.
Given a coherent sheaf F on X, we mean by F, the vector space FQO,/.#,. The
slight ambiguity of notation should not cause confusion. We let T or F denote the
torsion subsheaf of F. By the degree of a torsion sheaf 1 on X we mean
dim HO(X, 7). We let h"(F) = dim H"(F).

(5) Given a vector space W we mean by , W the “skyscraper sheaf” supported at
the reduced point x, with fibre W. Note W = H°(,W). We will often write simply
W when we mean W.

(6) GIT is short for “geometric invariant theory”. The GIT quotient of a
G-variety V'is denoted by V//G. By a scheme we mean a (separated) scheme of finite
type over C. By a variety we mean a reduced scheme, which will be assumed
irreducible unless otherwise mentioned.

2. The theta bundles

It will be clear that the results of this section continue to be valid if the number of
nodes of X is any nonnegative integer as long as X is irreducible.

2a. Parabolic sheaves

Let F be a torsion-free sheaf of rank 2 and degree d on X — clearly such a sheaf is
a vector bundle outside the node x,.

Definition 2.1a. By a quasi-parabolic structure on F at a smooth point x € X we
mean a choice of a one-dimensional quotient F, — Q — 0 of the fibre of F at the
point x. If in addition real numbers (“weights”) 0 < a < b < 1 are given, this is
a parabolic structure.

We shall consider sheaves with parabolic structures at the points {y;},; the
weights will be w = {(a;,b;)}, and shall denote by Q; the quotient at the point y;.
Such a sheaf will be called a “parabolic sheaf”. The parabolic degree of a parabolic
sheaf F is by definition par degree F = d + Y ;(a; + b;); given a rank one subsheaf
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L < F such that F/L is torsion-free, its parabolic degree is by definition par
degree L = degree L + Y pea; + Y g b; where R = R(L) < I is the subset where
L, < ker(F, — Q;) and R® = R°(L) its complement. (We shall usually write simply
R when we mean R(L) etc.)

Note that equation (1.4) can be rewritten:

par degree F = 2(|I| + l/k — 1 + g), 2.1
where the parabolic degree i1s defined with respect to the weights w.

Definition 2.1b. A parabolic sheaf F is said to be stable (respectively, semistable)
with respect to the weights {(a;,b;)}, if for every such subsheaf L we have par
degree L < ., <3 (par degree F) - in other words, if

2degree L < d+ ) (bi—a)— Y (b — a). 2.2)
(resp <) R R
By a family of rank 2 parabolic sheaves parametrised by a variety 7 one means
a sheaf #  on X x T, flat over T, and torsion-free (with rank 2 and degree d) on
X x {t} for every point t € T, together with, for each y;, a quotient line bundle
2r,; of # iy The following theorem is proved in Appendix A.

Theorem X1. There exists a (coarse) moduli space U*(X, d, ) of stable parabolic
sheaves F. We have an open immersion U5(X,d, 0)s¥(X,d, w) where U(X, d, w)
denotes the space of s-equivalence classes of semistable parabolic sheaves. The latter
is a projective variety. If X is smooth, then % is normal, with rational singularities.

We will set Uy = U(X,d, w)and U% = U°(X, d, w).

Remark 2.2. If M is a fixed line bundle on X, F+— F® M takes (semi)stable sheaves
to (semi)stable sheaves, and also preserves s-equivalence.

We begin by outlining the construction of the moduli space #(X, d, w) (see
Appendix A for details). Take d to be large; let Q denote the Quot scheme of
coherent sheaves (of degree d and rank 2) over X which are quotients of ¢", where
n=d + 2(1 — g). Thus there is on X x Q a sheaf %, flat over Q, and an exact

sequence ("> Fo— 0. Let #, be the sheaf on Q given by restricting #¢ to

{y:} x Q, and let Flag, , (%, be the relative flag scheme of locally-free quotients
of #, of rank (1,2) [EG A-1, 9.9.2]. Let £ be the fibre product over Q:

R = Xq Flag »(#,,)

iel

Let #° (respectively, #°) denote the open subscheme of # corresponding to
stable (respectively, semistable) parabolic sheaves such that H°(p) is an isomor-
phism. The variety % (X, d, w) is the “good quotient” [S1, Definitions 1.5, 1.6] of
R* by the action of SL(n) which, in fact, acts through PSL(n). We will denote by
¥ the projection #* — %y.

Choose an ample line bundle of degree 1 on X, denoted by ¢(1) from now on.
For large enough m we have a SL(n)-equivariant embedding £ G where

G = Grassp,, (C"Q@ W) x x {Grass,(C") x Grass; (C")},
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P(m) = n + 2m, and W = H°%(X, 0(m)). Each factor on the right has a canonical
ample generator of the Picard group. We give G the polarisation (using the obvious
notation):

l
m < x {(k = B, (B — )} 2.3

and take on £ the induced polarisation. We show that the set of semistable points
for the SL(n) action on £ is precisely #°°- #* is reduced and irreducible and % is
its GIT quotient. (The above polarisation is in general only rational since I/m need
not be an integer; we will see, however, that on £ it is indeed given by a line
bundle.)

2b. The theta bundle
The following Theorem characterises the theta bundle.

Theorem 1. (A) There is a unique line bundle 0, = 0(d,k,o;, B;) on Uy such that
given any family of semistable parabolic sheaves parametrised by a variety T, we have
PF0y, = 05, where

Os, = (det Riy F 1)@ @ {(27,) ™ * @ (det (F1),,) "} @ (det(Fr),)' (24)

and @ is the induced map T — %Uy.
(B) The bundle 0, is ample.

Proof of Theorem 1(A). We claim that 04, descends to #y. To see this we use
a result of Kempf [D-N] (Lemma 2.3 below).

The bundle 04, is a PGL(n) bundle: given A € C*, its action on the fibre of 05 .
at Fis given by the character Ar— A~k + 21+ LB — ) + 23,k ~ ) = 7° where we have
used equation (1.4).

We apply Lemma 2.3 to our situation, taking G = PGL(n). We first check the
condition () of Lemma 2.3 for a stable point F. By an analogue of [N, Theorem
5.3(iv)] and [S2, Proposition 9(d) ], the stabiliser of the G L(n)-action at such a point
is just the centre C* = GL(n), and the stabiliser of the PGL(n) action therefore
trivial.

We turn next to a semistable point F such that the orbit through F is closed.
At such a point F = L, ®L, where the L; are rank one torsion-free sheaves,
with

par degree L; = 4 (par degree F) (2.5)

Consider first the case when the (parabolic) line bundles L, and L, are not
isomorphic (this is necessarily the case when |I| > 0). Up to PGL(n) action we can
write O" = O™ @ O™ with O™ ~ H°(L;). The parabolic structure of F at the y; is
such that either

(1) (L,),,—0in Q;, in which case the weights assigned to (L,), and (L,), are b;
and q; respectively (we let Ry < I denote the set of such i), or
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(2) (L2),,—0in @, in which case the weights assigned to (L), and (L,),, are g;
and b; respectively (we let R, < I denote the set of such i).

(Note that Ry~R, =9, R{UR, =1, pardegree L, = degree L, + Yorbi +
Yx,@ and pardegree L, =degree L, + Y g b; + ¥ x,a;i) Then by [S2,
Proposition  25(ii})] the isotropy at F of the GL(n)-action is

C*xC* < GL{n,)x GL(n,). Given (A, 4,) e C* x C* its action on the fibre of
0%,. at F is given by

ATk LRI = T8+ DB — o) g~k T4kl = o f 4 Pah — )

_ 9 — k{par degree Ly) — k(1 — g) + 1 + k|I| — k(par degree L,) — k(1 — g) + [ + k||
= A‘l XAZ

04,0
= Ai A3,

where we have used equations (2.1) and (2.5).

If |[I| = 0 and the line bundles L; are isomorphic the isotropy subgroup for the
PGL(n)-action is PGL(2) which has no nontrivial characters so again we are done.

This finishes the proof of the claim.

Arguments similar to those in [D-N, §3] show that the line bundle 6«,, defined
as the “descendant” of 04, to %y, has the universal properties asserted in Theorem
1(A). O

Lemma 2.3. (Theorem 2.3 of [D-N]). Let V be a variety with a G-action, where G is
a reductive algebraic group. Suppose a good quotient - V — V//G exists. Let E be
a G-vector bundle on V. Then E descends to V//G iff the following condition holds:

(*) For every point y such that the oribit Gy is closed, the stabiliser of y acts
trivially on E,.

Remark 2.4. 1f there exist semistable parabolic bundles which are not parabolic
stable, and |I| > 0, then for ie ]

D= 25, ® (det(Fge),,)

is a PSL(n) line bundle which does not satisfy the condition () of Lemma 2.3 at
points with nontrivial isotropy. From this it follows that if |I| > 0, the genus ¢ is
large enough, and there exist semistable parabolic bundles which are not parabolic
stable, then the moduli space of semistable bundles is not locally factorial. To see
this note that the restriction of .%; to #°, which we denote by £}, clearly descends
to a line bundle &5 on #%; if #x were locally factorial £} would extend to %y as
a line bundle .#;, and its pull-back to %%, which we denote by £}, would be an
extension of #§ which does indeed satisfy (x). For large enough g codlmensmns are
high and all the above extensions would be unique, so that P = 2, (as line
bundles with PSL(n)-action). This yields a contradiction. (cf. [D-N, §7].)

Remark 2.5. (a) Note thatif F7p = Fr® 4 and 27 ; = 27, @A, with 4 a line
bundle on T, we have, by Eq. (1.4} and elementary properties of the determinant
bundle of family, a canonical isomorphism 0z ~ 8.

{b) When a Poincaré sheaf exists, formula (2.4) can be used to define 0,,.

(c) Different choices of y give algebraically equivalent bundles. We sketch the
proof: Let X' denote the smooth points of X, and consider the quotient
R x X8 5 g x X*¢. This is a good quotient by Lemma 2.6 below. Lemma 2.3,
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applied to a suitable line bundle on %% x X™*, yields, as in the proof of Theorem
1(A), a line bundle on % x X"™# that gives the desired algebraic equivalence.

(d) Similarly, given integers v; such that 0o+ v, <f;+ v, <k,
U(X,d,0) = UX,d, a; + vi/k,b; + vi/k), and 0(d, k, o;, ;) is algebraically equivalent
to 9(d, k, o + Vi,ﬁ,' + V,‘).

(¢) For meZ, F—»F®0(+ y) gives an isomorphism of #(X,d,w) and
U(X,d + 2,m), such that 6(d £ 2,k,a;, ;) pulls back to 6(d,k,a;, ;). Note that
=14k

(f) Suppose I} =0. Then Eq. (2.4) becomes: 04, =(det Rn; F)®
® (det(ZF 1),)*"™ where n is the Euler characteristic of #,, for t € T. Note that when
d is odd we have to take k even. If X is smooth the results of [D-N] show that the
bundles 6(d, 1) (when d is even) and 0(d,2) (when d is odd) are ample and in fact
generate the Picard group of the moduli space of bundles with fixed determinant.
(The first case is immediate; when d is odd one has to deform the bundle F of [D-N,
p- 55] to the bundle & @ O( — ny).)

Lemma 2.6. SupposeV — V//G is a good quotient and T is any variety with trivial
G-action. Then Vx T— V//G x T is a good quotient.

Proof. By [N, Proposition 3.10(b)] we can assume 7 and V are affine. The result
then follows from the fact ([M-F, Theorem 1.1]) that ¥ — V//G is a universal
categorical quotient (when the base field has characteristic zero.) [

Proof of Theorem 1(B). We will show that 0,_is the descendant of the ample line
bundle (A4) on & used to linearise the action of SL(n) (cf. [D, the proof of
Proposition 5.4]} if the line bundle @(1) on X is chosen to be O(y).

Note that the construction of Appendix A requires that for every semistable
point the map C" — HO(F) is an isomorphism. This implies that on %% we have (we
will drop the suffix specifying the parameter space, which will be #* below)

0y = (det ") * @ ® {27~ * @ (det £, ) ~*} ® (det F,).

On the other hand one can compute the restriction of the polarisation (A.4) to %,
this is

05 = (det Rig- F (my))" @@ {2 * @ (det F, )~}

Using natural isomorphisms we see that this equals 8, upto tensoring by a power
of the trivial line-bundle det 0"

Now, some multiple of the polarisation {A.4) descends as an ample line bundle
by general properties of GIT quotients. Thus some multiple of 8,, is ample, and
hence 84, itself. []

2¢. Parabolic weights

We have required 0 £ «; < B; < k so far, but the construction in Appendix A calls
for 0 < o; < B; < k. Also, in the statement of the decomposition theorems below we
will need to consider the case 0 < a; < B; < k. We extend the range allowed in the
Appendix (0 < o; < f; < k) to cover also 0 < o; < f8; < k as follows.
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Suppose «, = B, for g € Q = I. Denote by %°(X, d, ») to moduli space of stable
parabolic sheaves with parabolic structures at {y;},,, and parabolic weights
{(a;,b;)}1o- A similar convention holds for % (X,d, w).

(2) Secondly if B; < kVi we define o} = 1, B = f; + 1 whenever «; = 0. The
corresponding change in weights does not alter the notion of (semi)stability, on the
other hand it conforms to the convention used in the Appendix.

We need to be sure that the results above the theta bundle and its ampleness are
unaffected by these redefinitions. This is true because of the following,.

Remark 2.7. Suppose given smooth points z, indexed by g € Q, and integers /,, for
g€ Q. Let 0(d ko, f;,2,,1,) be the line bundle given by the construction of
Theorem 1(A), with (det (#;),) replaced by ®,cq(det(Fr), ) ® (det(F1),)' * "
where qugl = —ly. (Itis easy to check that the descent conditions are satisfied
with this change.) It is clear (as in 2.5(c)) that these line bundles are all algebraically
equivalent to 0(d, k, «;, B;). Moreover, these line bundles are also ample, because
they correspond to a different choice of the line bundle @(1) on the curve, the new
choice being such that O(l) = O(Y 1,24 + (I + Lo),).

3. Seminormality of %y

3a. Torsion-free sheaves on a nodal curve

Note that a torsion-free sheaf F on X is actually free outside x,, since dim X = 1.
Also, if rank F =2 and if F is not locally-free at x,, we have [S2, p. 164],
either FQ O, ~ O, D M, 01 FRO, ~ M, D M.,. (We denote by 4, the
maximal ideal at a point x.) This yields a decomposition of the space 2°:
RS =Ry U Ry VR, where

Notation 3.1. 2, consists of semistable quotients (" — F — 0 satisfying
FRO, =a0, ®2—a) A, (3.1)

By semicontinuity Ub<a=%b is closed in #. We will let # denote the set
U,,<1 A, and “/V the set #,, each endowed with its reduced structure. The sub-
schemes # and #° are SL(n)-invariant, and yield (by Lemma 4.14) closed reduced
subschemes of %y, which we denote by #” and #7' respectively. Note that the £,
are not necessarily saturated sets for the quotient map, for the condition (3.1) need
not be preserved by s-equivalence (see the ‘Remarque’ on p. 172 of [S2]).

We will prove that the spaces %y and #  are seminormal. This is a local
property of a variety ¥, which implies in particular that any (algebraic) function on
the normalisation 7 that is constant on the fibres descends to an algebraic function
on V. The method of the proof is to show that the variety #%, of which %y is a GIT
quoteint, is seminormal. A general property of GIT quotients then yields the
desired result. The seminormality of 2% in turn is proved using Seshadri’s descrip-
tion of its local structure. A similar proof works for #".

We summarise Seshadri’s description in the following theorem. First we make
a preliminary.

Definition 3.2. Given a scheme Z and closed subschemes Z,5Z,gZ, we say
that an analytical model at pe Z, is given by schemes Z55ZcZ" (with (Z)
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and Z) closed) and a point g in Z% if for some r and some s, we have a
diagram

(@Zz)p[[ul’ RS ] ur]]<—((b2,)p[[u1’ s ur]]‘—(@l)p[[ul, cees ur]]
~ ~ | ~
(02,),[[v1, ..., 0,110z} [ [y, .., 0,]3——02 )y [v1, - .., v,1]

Theorem 2. (1) &, is a smooth variety.

(2) Let peR\Ry. The analytical local model for R,cR* at p is
Spec A/(u,v) 5 Spec A where A = C[u,v]/(uv).

(3) Let X =(X;;) and Y =(Y;,) be 2x2 matrices of indeterminates. Let
A= C[X, Y]/I, I= ((X Y)ij’ (YX)lm)AJ = (},lm,detX) ﬁ(Xij,det Y) Let pbE .
An analytical local model for W' oW oR® at p is SpecA/X,Y)s
Spec A/J g Spec A.

Proof. This theorem follows from the results of [S2, Huitiéme Partie, III] and
properties of smooth morphisms (see §4d). [

The following lemma is implicit in [B1].

Lemma 3.3. Let E’ be a rank 2 (semi)stable parabolic bundle on X, of degree d — 2.
Then its direct image F = n, E’ is a (semi)stable parabolic sheaf of degree d on X,
such that F ® O, ~ My, ® M., We have E' = n*F/(T or n*F).

Proof. That E'—~F = n,E’, F—E = n*F/(Tor n*F) gives a bijection between the
set of isomorphism classes of rank 2 bundles E' on X with degree d — 2 and
torsion-free sheaves F on X with degree d and F @ O, ~ M, @ M, is clear from
[S2, Septiéme Partie, Proposition 10] (see also the proof of Lemma 4.6(4).)

We check that the (semi)stability of E’ implies that of F: Let L be a torsion-free
rank 1 quotient of F. One checks that L ® 0, ~ .#,,. As in the last paragraph, we
have L=m=n,L', with L' =7*LAT or =n*L) locally-free and degree L’ =
degree L — 1. One checks that L’ is a quotient of E’ and this gives par degree
L' > (esp > par degree E' and rewriting we get par degree L > (., »: par de-
gree F. The converse is similarly verified. []

3b. Seminormality

All rings considered in this section will be noetherian, with characteristic zero. The
basic references are [T] and [Sw]. We recall from [Sw]:

Definition 3.4. An extension A B of reduced rings is subintegral if
(1) B is integral over 4
(2) Spec B— Spec A is a bijection
(3) Vg € Spec B, k., > k, is an isomorphism, where k, = B,,/@B,,

Definition 3.5. If A 5 B, both rings reduced, we say A is seminormal in B if there is
no extension 4G C g B with C # 4 and A g C subintegral. We say A is seminormal
if it is seminormal in its total ring of quotients.

We will use the following characterisation of seminormal rings ([Sw,
Corollary 3.2]):
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Proposition 3.6. A reduced ring A is seminormal if Vb,c e A with b® = ¢? there is
a unique ae A with b = a® and ¢ = a°.

Remark. The uniqueness of a depends only on the fact that A is reduced,
and can be seen as follows. Given a;, i € {1,2} such that b = a? and ¢ = a} we
compute

(a, — a2)3 = 3a,az(a; ~ az)
= 3/4{(a; + a;)* — (a; — a;)*}(a; — a3)
= ~3/4x(a — ),

where we use ai — a3 = 0,and (a; + a,)*(a; — a,) = {a; + a;){a? — a3) = 0. This
shows, since A4 is reduced, that a; = a,.

Recall that given a variety ¥, with normalisation ¢: ¥ > V, the conductor € is
the Oy-ideal defined as the anaihilator of D, with D being defined by the exact
sequence of sheaves on 1: 0 —» 0 - 0,07 — D — 0. In fact € is a Op-ideal as well,
and the biggest such. Also, the variety defined by % is the non-normal locus W in
V' [B, Chapter 5, §1.5, Corrollary 5]. Let W be the set-theoretic inverse image of
Win V.

We have then

Lemma 3.7. If V is seminormal, then € is the ideal of functions vanishing on w.

Proof. Immediate from [T, Lemma 1.3]. O

Given a local ring A4, let A denote its completion w.r.t. the maximal ideal.

Lemma 3.8. Let V be an variety. Assume that Vpe V, @p[[ul, ooy Uy ] is semi-
normal for some n. Then V is seminormal.

Proof. 1t is enough [Sw, Theorem 1] to prove A[uy,..., u,] is seminormal
(where 4 denotes, as before, the ring of functions on V') and further, by [Sw,
Proposition 4.7] that A[uy, ..., u,], localised at any maximal ideal is of the form
o+ (uy —ay, ..., u,— a,), where #, is the ideal of functions vanishing at pe V,
and a; € C. We can, without loss of generality, assume a; = 0. The localisation of
A at such a maximal ideal is (O [uy, ..., 4]}y, v . . ) and its completion, by
[A-M, Exercise 10.5], is @,[[u,, ..., u,]]. The result now follows from the next
lemma. [

Lemma 3.9. LetA be a local domain, A its completion w.r.t. the maximal ideal. Then
if A is seminormal so is A

Proof. Let b,c € 4 such that b3 = c? (one can assume these are nonzero). Then
3a € A such that @3 = ¢, 4 = b. Thus @b = ¢ € A, which implies, by falthful ﬂatness
that 3a e 4 such that ab = ¢ € 4. One now computes: b*>(a> —b)=c? —c* =0
which yields b = a?, ¢ = a®. The uniqueness of a is clear. [J

Lemma 3.10. Let X = (X;;) and Y = (¥,,,) be 2 x 2 matrices of indeterminates. Let
A=CIX, YY1, 1= ((XY);, {YX)m). Then A is seminormal.
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Proof. We follow [S2, Theorem 30], where the proof, due to Cowsik, that A4 is
reduced is given. One finds [ = @ N @, N @3 where p; = (X};), g2 = (Y1), and
@3 = (I,det X, det Y'), and one checks that these are prime ideals. We claim now
that

(1) ¢, N g, is radical, and

(2) o1 @2+ @3 is radical
Granting this claim, Lemma 3.11 (below) finishes the proof..

We turn now to the claim. That @, n g, is radical is clear. On the other hand
we now show @ng@,+ @i=JinJ, where J =(X;,detY) and J,=
(Yim, det X).

That g, g, + @3 < J; nJ, is clear. Consider now an element in J, N J;:
o= Za,’inj + bdetY = Zcinij + ddet X. We write o = {Zainij - ddetX} +
{ddet X + bdet Y}. The second term is in g3, and the first term, which can also be
written Zcii Y, — bdet Y, is in g, M ,. It remains to remark that J, and J, are
prime — this is because (det X)is. [

Lemma 3.11. Let I, and I, be two radical ideals in a ring A such that 1, + I, is
radical. Then if A/I; is seminormal for i = 1,2 then so is A/(I; N 1;).

Proof. ([K-P, Lemma on p. 587]). Let b,c € A/I, n ) such that b* = ¢*. Then
da;€ A/L, i = 1,2 such that b = a}, ¢ = a? in A/I,.

On the other hand, by the Remark following Proposition 3.6, we have
a, — a, = 0in A/, + I,) (since A/(I{ + I,)is reduced). From the exact sequence of
A-modules

0= A/linhL—> A/l ® A/L; » AL, + L)— 0,

we see that in fact there exists an a in A/I; n 1, as required. [

Lemma 3.12. Let A be as in the statement of Lemma 3.10, ./ the maximal ideal
(Xij, Yim), A the completion of A, wxt. MA,. Then A[[uy, ..., u,]] is seminormal
for any n.

Proof. The proof of Lemma 3.10 goes through almost word for word. The only-
point to note is by [Z, Theorem 2] that the ideals g3 and (det X) remain prime
under completion, since each defines a normal variety. (That det X defines a normal
variety is well-known; g3, in Cowsik’s description, defines the cone over
P, x P, x P,, embedded in the complete linear system of (1) ® O(1) ® O(1) where
each 0(1) comes from one of the factors. The projective normality of P; x Py x P is
clear, yielding normality of the cone.) []

By Theorem X1 of Appendix A, %y is a variety. We can now prove (the notation
of §4c is used below).

Theorem 3. %y is seminormal.

Proof. By Lemma 3.13 below it suffices to show that #* is seminormal. We now
use Theorem 2. The points in %, are smooth and hence the local rings are
seminormal. Using the Theorem 2, Lemma 3.8 and 3.12 we see that the local rings
at points of £, and %, are seminormal as well. The Theorem now follows by [Sw,
Proposition 3.7]. O
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Lemma 3.13. A GIT quotient of a seminormal variety is seminormal

Proof. The result to be proved is: Given a seminormal domain 4 with a G-action,
the ring of invariants (denoted A¢ below) is seminormal. One needs to show that if
a€ A, with a? and a® in AC, then a e A€, One can assume a =+ 0, for if a = 0 the
result is trivially true. For any g€ G, (a — a,)(a + a,) = a* — a’ = a® — (a%), =0,
which yields a = + a,. On the other hand a® = a] which rulesouta = —a,. [

By Proposition 3.15 below # is a variety. We have
Proposition 3.14. The variety #  is seminormal.

Proof. The analysis proceeds as above. The local result to be proved is this: Let
X =(X;) and Y =(Y,,) be matrices of indeterminates. Let A = C[X,Y]/I,
I = (Y,,,det X)n(X;;, det Y). Then A4 is seminormal. But this is clear. [

Proposition 3.15. (1) #" is irreducible.
(2) #°' is irreducible.
(3) #°' is normal.
(4) W is the non-normal locus of Ux.
(5) #' is the non-normal locus of #". B
(6) The map E'v>F = n E’ gives a morphism U(X,d — 2,w)— #"".

Proof. (1-3) We will see below (Lemma 3.16) that the %, (a = 0, 1,2) are irredu-
cible. These statements are now easy consequences of Theorem 2, using general
properties of GIT quotients.

(4 and 5) The proof will be given in §4, immediately following the proof of
Proposition 4.11. N

(6) By Lemma 3.3 there is a morphism #(X,d — 2,w)— %, whose sct-theor-
etic image is #"'. Since %(X,d, @) and #°* are reduced this actually yields a mor-
phism #(X.,d — 2,w)-> %". O

Lemma 3.16. The %, (a = 0,1, 2) are irreducible.

Proof. In the course of the proof of Theorem X1 we show that #* is irreducible.
Hence so is its open subset #,. The cases a = 0,1 will be treated later, immediately
following the proof of Proposition 4.11. [J

4. Preliminaries
4a. Generalised parabolic sheaves

Definition 4.1a. Let E be a sheaf on X, torsion-free of rank 2 outside {x;,x,}.
A generalised parabolic structure on E over the divisor {x,,x,} is a two-dimensional
quotient Q of E, ®E,,.

The pair (E, Q) is said to be a “generalised parabolic sheaf” (GPS). We do not
define a generalised quasiparabolic structure since a certain choice of “generalised
weights” is assumed. We shall consider generalised parabolic sheaves E with, in
addition, parabolic structures at the {y;}, (ie. a one-dimensional quotient
E, > Q;— 0 of the fibre of E at each point y;, and weights 0 S a; < b; <1 as
before).
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Definition 4.1b. A GPS (E, Q) is said to be stable (respectively, semistable) with
respect to the weights w if for every nontrivial subsheaf E’ such that E/E’ is
torsion-free outside the reduced points {x,,x,}, we have

’

rank E

par degree E' <

(resp. =)

(par degree E) — (rank E’ —~ dimQF), (4.1)

where, for any subsheafl E’ we denote by QF the image of E, ® E,, in Q.

Note that in the above definition the parabolic degree of E' needs to be defined.
If E’ is torsion this is just its degree ( = length), otherwise E’ is actually a sub-
bundle of E outside {x;,x,} and the earlier Definition (2.1a) extends in a clear way.

Remark 4.2. 1f (E,Q) is a semistable GPS, TorE is supported on the reduced
subscheme {x,,x,} and (Tor E),, @ (Tor E),,5 Q. This follows from (4.1).

Theorem X2. There exists a (coarse) moduli space WS(X d, w) of stable GPS’s on X.
We have an open immersion P%(X,d,w)c P(X,d,w) where P(X,d,w) denotes the
space of s-equivalence classes of semistable GPSs. The former is a smooth variety; the
latter a normal projective variety with rational singularities.

This theorem is proved in_Appendix B. The definition of s-equivalence is given
there. We shall set #* = #°(X,d, ») and 2 = 2(X,d, w).

We make explicit the notion of a family of GPSs parametrised by a variety 7.
This consists of .

(1) arank 2 sheaf &7 (on X x T)flat over T and locally free outside {x{,x,} x T

(2) a locally-free rank 2 quotient 2, (on T) of (€1),, ® (€1)y,, and

(3) a locally-free rank 1 quotient 27 ; (on T) of (&7), foriel,
where we have set, for x € X, (£ )x = €7)( <5 (We will on occasion regard 27 as
a sheaf on X x T supported on {x,} x T\ Take now T = #’, the parameter-space of
the locally universal family of Appendix B

= Grass, (€, ® &,,) Q{ X QFlagu,z,(é”yx)},

iel

where Q is the Quot scheme of rank 2 degree d quotients of ¢%. The degree d is
assumed large (We have let & = &4 ; we will similarly let 2 = 24.) The polarisa-
tion on £’ is defined in Appendix B (equation B-2). The moduli space # is the GIT
quotient of R by SL(A). (We have SL() rather than SL(n) because we are
considering bundles of degree d on X rather than on X.) We will denote by ¥’ the
projection R P

Notation 4.3a. Define J# to be the set of (closed) points (0" — E — 0, Q) in %,
where C; » H°(E) is an isomorphism, H'(E( — x; — x; — x)) = 0 for x€ X, and

(T) Tor E is supported on the reduced subscheme {x,,x,} and (Tor E),, ®
(Tor B),,5 0.

Requiring that H'(E( — x; — x, — x)) = 0 ensures that H'(E) = 0, E is generated
by sections, H°(E)— E, ®E,, is onto, and E(— x; — x;) is generated by
sections.

It will be clear from Appendices B and C that @’ssqoméf qapenj’.
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Notation 4.3b. Define Q; to be the open subscheme of Q consisting of locally-free
quotients O > E — 0) such that

(1) C*— H°(E) is an isomorphism, and

(2) H! (E(—xl—xz—x))—OforxeX

Notation 4.3¢c. Let % be the inverse image of Q; by the projection %' — Q. This is
a grassmannian bundle over %, where

‘@F = XQF Flag(l. 2) (éayx).
iel

We let p denote the projection 7% > # . Note that Z = #. On &) 7, consider the
morphism of vector bundles &, — 2 glven by the generalised parabolic structure.
The zero scheme of this morphlsm is denoted by ¥ 1,r(¥" for ‘“vertex”). The
determinant of this map defines a subscheme which we denote %, . The sub-
schemes ¥7; p and &, p are defined similarly. Clearly ¥7; ;G 2, 5, j = 1,2. As a set,
91, r consists of pairs (E, Q) such that the map E, — Q is not of maximal rank and
¥"1,r of pairs such that the map E, — 2 is zero. Note that O(%; )=
(det 2)(det &, ).

Notation 4.3d. The schematic closure of 9 pin # is denoted P{. The 9; j are
reduced and irreducible divisors and so the @f are also reduced prime divisors. The
subscheme 77/ is defined as the schematic of ¥ pin #.

Notation 4.3e. We define & to be component of #\#r parametrising sheaves
with non-zero torsion at x,. We take & to have its reduced structure. 29 is defined
similarly.

We quote from Appendix C the

Proposition C.7. (1) The Qf are reduced, irreducible, and normal.
(2) The .@’ are reduced, lrreduable and normal.
(3) The ‘Vf are smooth. We have "I/f NP D) =
(4) The closed orbits in 9! and @‘ are contained in 9f NG

Notation 4.3f. The closed subschemes 9{ AR’ and ¥ In R’ are SL(A)-invari-
ant, and therefore yield (by Lemma 4.14 below) closed subschemes of 2 which we
denote by 2; and ¥7; respectively.

Proposition C.7 has the following

Coroliary 4.4. (1) The 2; and the ¥; are reduced, irreducible and normal.
() 7, r\{@l NG} =
(3) 9 is also the quonent of (@')ss

4b. The map ¢

Given a GPS on X one obtains a sheaf F on X which fits into the exact sequence:
0-F->nE~,Q—0, where ,Q is defined as in Notation {f(5). (Note:
T E ® o k(x9) = Ex, ® E,,). We will often omit the subscript xo and simply write

when we mean . Q. The sheaf F has, of course, a natural parabolic structure
at the {y,},.
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Remark 4.5. Since n is a finite morphism, y(E) = y(n,(E)), and y(F) = y(n(E)) —
%(x,@) = x(E) — 2, which, rewritten in terms of degrees, becomes degree F +
2(1 — g) = degree E + 2(1 — ) — 2. Thus degree F = degree E. Note that the
computation also gives, for any coherent sheaf E on X, degree n E = de-
gree E + rank E).

Lemma 4.6. (1) Let (E,Q) be a GPS, and F the associated sheaf on X. F is
torsion-free iff the condition (T') of Notation 4.3a holds.

(2) If Eis avector bundle and the maps E,, — Q isomorphisms, then the associated
F is a vector bundle. Otherwise F is not locally free.

(3) If F is a vector bundle on X, there is a unique GPS (E, Q) which yields F by the
above construction. Infact E = n*F.

(4) If F is torsion-free but not locally free there is a GPS (E, Q) that yields F, with
E a vector bundle and the map E,c2 — Q an isomorphism. The rank of the map E, — Q
is then

MTIFFR®O,~ O, ® M,,, and

QR OIFFRO, ~ M., ® My,
The roles of x, and x, can of course be reversed.

(5) Every torsion-free rank 2 sheaf F on X comes from a pair (E,Q), with
E a vector bundle.

Proof. Many of these results are in [B1]. For completeness we sketch proofs. For
any sheaf 4 on X define Q4 by the exact sequence 4 - nen*A - . 04— 0. (The

map a is generically an isomorphism and hence an injection when A4 is torsion-
free.)

(1) It is clear that the assumption (T) is equivalent to: Torn,E

= n,(Tor E))G 0.

(2) If the maps E, — Q are isomorphisms, this gives an isomorphism between
E,, and E,,, which can be used to show that F is locally free. That otherwise F is
not locally free follows from (3).

(3) We show next that if F is a vector bundle the GPS(E, Q) is uniquely
determined. In fact E is just n*F and Q = Qp. To see this, consider

0 — F — na*F — Q) — O
=1 b el
0 — F — nE -~ 0 — 0

If F is locally n,n*F is torsion-free and the map b is an injection. Thus ¢ is an
injection and therefore an isomorphism because dim Qr = 2 = dim Q. The Snake
Lemma now yields the isomorphism n, n*F = 7 E from which it easily follows that
E = 7*F.

_ {4) Define the vector bundle E by the exact sequence 0 — Tor n*F — n*F —
E - 0. Consider the diagram

0 — F — m*F —— {(QF) — O
L L L
0 — F — mE — 0 — 0

where d is an injection (as in the above cases) because F is torsion-free, and Q is
defined to make the second sequence exact. The vertical arrows are clearly surjec-
tions, so we see that , Q = . (Qr)/{n,(Torn*F)}. Local computation show that in
case (2) Q = 0, and increase (1) dim Q = 1. In both cases it is easy to manufacture
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a GPS as required. We describe the case (2) which is less involved. In this case

F = n,E, with degree E=d — 2. Take E = E(x;), Q = E,,®(Qx),;", and the

maps E, — Q as follows: the map is zero for j = 1 and the residue map for j = 2.
%) Th1s follows from (3) and (4) O

Proposition 4.7. (1) If F is semistable then (E, Q) is semistable.

(2) If F is a stable vector bundle the GPS (E, Q) (which is unique by Lemma 4.6(2)
is stable.

(3) If (E, Q) is (semi)stable then F is (semi)stable.

Proof Given a subsheaf E’ of E recall that we denote by QF the image of E,, ® E,,
in Q.

(1) Suppose F is semistable. Given a sub-sheafl E’ of E define the subsheaf F' of
F via the commutative diagram

0O — Fr¥r — F — .0 — 0

1 7 )
0 — F — m,E — (0") — 0
with the vertical arrows being inclusions. It is now easy to verify that the criterion
(4.1) is satisfied and (1) is proved.

(2) It could happen in the above proof that E’ is a nontrivial subsheaf of E but
F’=0or F’' = F. This is why stability of F does not guarantee stability of (E, Q),
but only semistability. If F were a vector bundle a nontrivial subsheaf E’ yields
a nontrivial sub-sheaf F’, whence the claim in part (2) of the Proposition that (E, Q)
is stable if F is a stable vector bundle.

(3) Suppose now that (E, Q) is a (semi)stable GPS. Note that by Remark 4.2 F is
torsion-free. Let L’ be a rank 1 sub-sheaf of F such that F/L’ is torsion-free. Define
the sheaf Ky to be the kernel of the composite map n*L'( - n*n, E)— E; let E’
denote the image. Consider the commutative diagram of sheaves on X:

0 — F I, ek —— 0 — 0
i 1 T
0 — L — ma*l — (@) — 0

The second sequence is left exact since L' is torsion-free. The first vertical arrow is
an inclusion, and the quotient F/L’ is torsion-free. This yields, for the subsheaf E’ of
E, the equality , (0%) =, (Q.)/{nK,}. We have the following sequences of
inequalities, each of which implies the next, and the first follows the semistability of
(E. Q)

2(par degree E’) < par degree E — (2 — 2dim QF)

2(par degree n*L.’ — h°(K,)) < par degree E — (2 — 2dim Q%)
2(par degree m,n*L' — 1 — dim K,) < par degree E — (2 — 2dim QF")
2(par degree L’) < par degree E + (2 — 2dim Q¥
+ h%K;) - dim Q,)
= par degree E
= par degree F
(In case (E, Q) is stable all the inequalities are strict.) This proves (3). [
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Remark 4.8. #° is nonempty iff ¥% is nonempty. (This follows from
Proposition 4.7.) In this case dim # = 4§ + |I| + 1 = 4g + |I| — 3 = dim U.

Definition 4.9a. We now define a morphism & — %y. For any family of GPSs as
above we construct a family #; of sheaves on X parameterised by 7: % is defined
by the exact sequence

0—’ yT—?(TCXIT)*(gT—'? QT_’O (42)

where 2 is regarded as a sheaf on X x T supported on {x,} x T. Now (1 x T7), &7
is flat over T since &1 is flat and = is finite, 27 is locally-free on T and hence fiat, and
therefore so is % ;. If, further, the family consists of semistable GPSs, by the above
Lemma and the universal property of %y, we get a morphism ¢: T— %y. This
applies in particular to T = £'", and the resulting morphism clearly induces
a morphism ¢: - %Uy.

Definition 4.9b. Define on 2’ a line bundle 8’ by
=(det Rngp &Y @ (det 2@ ® {2/ *®(det &, )"} ® (det &,)".

As in §2 one can check that 8’ is the (restriction of) the ample bundle on #' used to
linearise the action of SL(f), and that this descends to an (ample) line bundle 6,
on 2.

Definition 4.9c. The variety Ry is a locally universal family of (ordinary) parabohc
bundles on X. We let 8 be the line bundle on %F defined by the data (d, k, o;, ;) as in
§2b:

= (det Rn,6)® ® {(2)~*® (et &, )} ® (det 8,),
where [ = [ + k. B
Recall that ' denotes the projection £ — 2.
Lemma 4.10. (1) Let 77, = (det 2)(det &)~ for a point x € X. Then
0" = p*0 @7k

(2) 05 = ¢*0a,.
Proof. The first claim is easily checked. From the exact sequence (4.2) we get
det Rny & 1 = (det Rap(n, 7)) @ (det 2r)
= (det Rn;&7) ® (det 2r).

From this and (2.4) we see that (¢ o 17//)*0 is equal to the restriction to R of §'. This
proves (2) [

Some of the notation of the next proposition is defined in §4a and §4b.
Proposition 4.11. (1) The map ¢: P — Uy is finite and surjective.
(2) Each of the @; maps onto W'. This is a finite map.

(3) 2\(2, v D,) maps isomorphically to Ux\W .
(4) Each of the ¥"; maps isomorphically onto W'
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(5} 2, D, maps to W',

(6) Let 29 = D\(¥;0(Dy N D). Then 29 maps isomorphically onto W\W"'.
(7) # is irreducible.

(8) 2 is the normalisation of Ux.

(9) Each @; is the normalisation of W'

Proof. (1) Finiteness follows from Lemma 4.10(2) and ampleness of 8, and 0,.
Surjectivity follows from Lemma 4.6(5) and Proposition 4.7(1).

(2) Consider_the morphism ¢4-. Using Lemma 4.6 and Proposition 4.7(3) we
see that Z; r N '™ maps onto ¥ set-theoretically; hence so does @1 N #'>. Thus
2; maps set-theoretically into #”. Since both schemes are reduced in fact this is
a morphism. Finiteness now follows from (1).

(3) By Lemma 4.12(1) below and Corollary 4.4(3) ¢(P\(D; v D)) = Ux\W.
On the other hand ¢z glu%)has a section. To see this, note first that
VYU \W) = R,. Now, given a vector bundle on X the pull-back to X has
a canonical generalised parabolic structure which is semistable iff the bundle is
semistable (Proposition 4.7(b)). This gives a map from ™' (#x\#") to # which
induces a section (#x\#") — P\(D, v D,). Since £ is irreducible, so is its open
subset P\(Z; N 9,) and we conclude that QSL;,\{@,U 2, 1S an isomorphism.

(4) One verifies as in part (2) that V Ing™ maps onto #”, inducing a mor-
phism ¥"; - #”. As in the proof of (3) we can see that this map has a section. (We
use Lemma 4.13 below.)

(5) One checks as above that (91 O @2 s RS maps to #'. Now as in the
proof of the irreducibility of # (Lemma C.2) it is possible to show that the
(@1 FO 92 #) is dense in (2, N 92) This yields the result.

The proof of (6) is similar to that of statement (4), we use Lemma 4.12(2). The
claim (7) follows from (2) and Proposition 4.4(1). The statements (8) and (9) are
consequences of the normality of 2 and &; and statements (1-3) and (6). O

Proof of Lemma 3.16 (continued). We have in the above proofs used the following
facts:

{1) One can construct a family of torsion-free (but not locally free) semi-
stable sheaves on X parametrised by 9; p n#'*. This family contains every such
sheaf.

{2) One can construct a family of torsion-free semi-stable sheaves F on X (with
FRO, ~ M, D M) parametrised by ¥"; p A R'*. This family contains every
such sheaf.

The parameter spaces are in both cases reduced and irreducible. The irreduci-
bility of £, (a = 0, 1) now follows by a standard argument. []

Proof of Proposition 3.15 (4 and 5). We prove (4) first. Consider the map ¢:
P — 9. By Proposition 4.11(8) this is the normalisation map, and by
Proposition 4.11(3) the non-normal locus of %y is contained in #". Since #” is
irreducible it suffices to show that the non-normal locus is nonempty (i.c. that the
map ¢ is not an isomorphism) unless ¥  is empty. Suppose then that #  is
nonempty. Then so too are the divisors @; in & (by 411(2)). f 9. D, is
nonempty, %’ is nonempty and the proof of part (5) below shows that ¢ is not an
isomorphism. If @, n @, = ( the inverse image of a point on #” is not connected,
and we are again through.

We turn to (5) next. Consider the map &;— # . This is the normalisation of
W by Proposition 4.11(9), and an isomorphism outside #* by Proposition 4.11(6).
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On the other hand by parts (4) and (5) of the same proposition, Corollary 4.4(2),
and Zariski’s Main Theorem it is clear from points on #°’ are not normal. []

Lemma 4.12. Let (E, Q) be a GPS, and F the associated sheaf on X.

(1) If F is s-equivalent to a non-locally free sheaf, then (E, Q) is s-equivalent to
a GPS (E,,Q,) with E, not locally free.

2y If F is s-equivalent to a non-locally free sheaf F, with
Fi®0,, ~ M, D M, then(E, Q) is s-equivalent to a GPS (E{, Q) with E, having
a torsion subsheaf of degree 2.

Proof. We consider (1) first. If F is not locally free, either E is not torsion-free and
we are done, or E is torsion-free and one of the maps E, — @ is not in isomor-
phism. In the latter case we are again done by Proposmon C.7(4). Suppose now
that F is locally free. Then we have the following situation:

**There is an exact sequence 0> L;— F— L, —» 0, with L, torsion-free,
2 par degree L, = par degree F for g = 1,2, and neither L, locally free.

(One can check, by tensoring with 0, /.#,, that if one of the L, is not locally
free then neither is.) It is clear that in case (2) also condition (x*) holds so that we
can now combine the two proofs.

Write L, =n,L where L) is a line bundle on X with degree L} =
degree L, — 1. There is a map of sheaves L'y — E on X which is generically injective
and hence everywhere injective since L) is a line bundle. Let LY be the quotient.
Consider the commutative diagram:

0 0
7 i
0 — L, — mJLf{ — Q" — 0
1 1 =1
O — F — nFf —» .0 — 0
1 i
Ly — =L}
7 T
0 0

It is easy to check (in the notation of Appendix Bb) that
Hel(L1,0)] = ugl(L1,0")] = ugl(E, Q)]

Note that L7 is a rank one sheaf and dim Q = 2. We leave it to the reader to
check that such a semi-stable GPS must be s-equivalent to one with a torsion
subsheaf of degree 2.

Lemma 4.13. Let T be a variety,  a sheaf on X x T, flat over T, such that forteT
the sheaf %, on X is torsion-free of rank 2. Then & is torsion-free on X x T. Suppose
Surther that 30 £ a £ 2 such that Vte T we have #, @ O, ~ a0, ® (2 — a) M ,. By
“flat” we shall mean “flat over T”. Then

1) (axIpy*&F is flat.

(2) If a = 0 there exists a vector bundle & on X x T such that F = (mx Irp)y 6
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_ {3)_If a =1 there exists a vector bundle & on X x T and a line-bundle quotient
2 0of &, ® &, such that the following sequence is exact:

0 F = (nxIp)é >, 2~0.

Proof. It is possible to prove, as in [S2, Huitiéme Partie, pp. 180—~182] that & is
a subsheaf of a locally free sheaf. This implies it is torsion-free.

Consider now the sequence & — (nx I )*(n x I+)*# — 2, —» 0 which defines

2,. Since i is generically an injection and & is torston-free i is an injection.
Specialising, we see that dim h°((2,),) = 4 — a and hence constant. Since T is
reduced 2, is flat. This show (n x I }*# is flat.

Next, consider the map (z x I;)*F — (n x [ )*F ® 23(xy + x,). By specialis-
ing as before one sees that the cokernel is flat, and hence also the image and kernel.
Let & be the image. One can now show that & is a vector bundle, and we have an
exact sequence of flat sheaves 0 = Tor (n x It *F - (n x I+)*F > § > 0. We now
repeat the construction of Lemma 4.6(4) “over” T to prove (2) and (3). O

[t is worth pointing out that the varieties #~ or #” could a priori be empty; also
it could happen that %y = # . In fact we always have ¢ + % + % (Remark 6.19).

4c. Some general results

We collect here some general statements needed elsewhere in the paper. The
following fact about GIT quotients is standard.

Lemma 4.14. Let V be a projective scheme on which a reductive group G acts, £ an
ample line bundle linearising the G-action, and V> the open subscheme of semistable
points. Let V' be a G-invariant closed subscheme of V'™, V" its schematic closurein V.
Then

() V==V, and

(2) V'//G is a closed subscheme of V*//G.

Proof. (1) See the last paragraph of the proof of [M-F, Chapter 1, §5]. (2) Clearly
we can take I to be affine. Then this is a consequence of “algebraic fact number 3
on p. 29 of the same reference.

Lemma 4.15. Suppose V, G, and V' are as in the statement of the previous lemma.
Let W be an open G-invariant (irreducible) normal subscheme of V containing V'*°.
Then HO(V'S, @)™ = HO(W, &)™ where ( )} denotes the invariant subspace for
an action of G.

Proof. Assume first that } is irreducible and normal. In this case we will show that
any invariant section on ¥* in fact extends to V (cf. [S1, Theorem 4.1 (iii)). This is
clear if D = V\ V™ has codimension > 1. Suppose otherwise and for simplicity
assume there is only one irreducible component D,. Consider an invariant section
son V*, and assume it has a pole along D,. By the definition of semistability there
is an invarjant section s, on V, vanishing on D,. For some integers /, m the section
sts™ will extend to D, and be nonvanishing there. This will contradict non-
semistability of points on D;. This shows that in fact s extends to V; it is clearly
G-invariant there. In case there are more than one component, we work by
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induction on the number of such components. Write D = | |D,. As above we can
find an invariant section regular along D, and nonzero there. If this section is
everywhere regular, we have the desired contradiction. If not the polar divisor of
the new section has fewer components and induction is possible.

In general, we replace V by the irreducible component ¥, containing W, and
endow ¥, with its reduced structure. Using [M-F, Chapter 1, §5] (Theorem 1.19
and the remarks in the last paragraph) we see that V'{ = V"*. The argument of the
previous paragraph, applied to the normalisation of V; (again using the above
results) finishes the proof. [

Lemma 4.16. Let V be a normal variety with a G-action, where G is a reductive
algebraic group. Suppose a good quotient . V- U exists. Let & be a G-line bundle
on V, and suppose it descends as a line bundle & on U. Let V" < V' < V be open
G-invariant subvarieties of V, such that V' mapsonto U and V" = n~ YU") for some
nonempty open subset U" of U. Then any invariant section of & on V' extends to V.

Proof. (cf. the proof of [Lu, Lumme 1.8].) Clearly we can assume U and V are
affine, and & is trivial. A_nowhere vanishing section of % pulls back to a G-
invariant trivialisation of . Thus we can assume . is the trivial line bundle with
the trivial action of G. Let k[ V] denote the ring of regular functions on a variety V.
Suppose f is an invariant regular function on ¥’ which does not extend to V. Then
fek[V"]% = k[U”] ([N, Theorem 3.5(iii)]) and can therefore be written as
f=g/h, with g, hin k[U] = k[ V]°. Since U is normal, there exists a codimension
one subset F <= U such that hlr = 0, and g|r & 0. Let ye F such that g(y) + 0 and
let xe ¥’ such that n(x) = y. Then 0 % g(y) = g(x) = f(x)h(y) = 0, which is a con-
tradiction. O

The next result is from [Kn] — we have retained the notation of that work, and
there should be no confusion with notation used elsewhere in this paper.

Lemma 4.17. Let X be a normal, Cohen—-Macaulay variety on which a reductive
group G acts, such that a good quotient m: X — Y exists. Suppose that the action is
generically free and that dim G = dim X — dim Y, and further suppose that

(1) the subset where the action is not free has codimension = 2, and

(2) for every prime divisor D in X, n(D) has codimension < 1. Here D need not be
invariant.

Then wy = (n,wx)® where wy, wy are the respective dualising sheaves and the
superscript ( ) denotes the G-invariant direct image.

Proof. This follows from Satz 5 of [Kn], noting (again in the notation of that
paper) that condition (1) implies that D, = 0, and condition (2) that D, = 0. The
result is stated in [Kn] for the case when X is an affine variety, but this is not
necessary, because under our hypothesis there is a canonical morphism
(myox)f > wy. O

4d. Smooth morphisms

We shall use the following device (cf. [S2, Huitiéme Partie]) to analyse singularities
of a variety V. We shall find varieties W and V' and smooth morphisms f: W— V
and f': W— V', such that the singularities of V' are easy to analyse. Recall that
a smooth morphism of schemes f: V— W is one which is flat and has smooth
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scheme-theoretic fibres. Equivalently, for every pe V, the completion of the local
ring O, is isomorphic, as a O, ,ralgebra, to Oy, [[x4, . . ., x,]] for some n. There
is a lifting property which characterises smooth morphisms; see [Mu, 2.1]. We have
the following well-known result, see for example [Ma, Theorem 32.2 (i)]:

Lemma 4.18. Let f: W— V be a smooth morphism. Then W is reduced (respectively,
normal, Cohen—Macaulay, Gorenstein) if and only if V is.

We will also need

Proposition 4.19. Let V, and V, be varieties over C and, for j = 1,2, letv;e V;. Let(;
be the respective local rings. Suppose that the completions O; are isomorphic. Then if
V, has rational singularities at vy, then so does V at v,.

Proof. Let Ky denote the Grauert-Riemenschneider sheaf [G-R] on a variety V,
obtained as the direct image of the canonical sheaf of a desingularisation of ¥ and
let 2y denote the dualising sheaf of V. By [K] V" has rational singularities if and
only if

(1) ¥V is Cohen-Macaulay, and

(2) the canonical map i: Ky — @y is an isomorphism.

Now, condition (2) is equivalent to:

(3) i*: K — Q% is an isomorphism,
where for a coherent @, sheaf F, F*" denotes the analytic sheaf obtained on the
analytic space V" associated with V. Moreover for normal ¥, K3" has an intrinsic
characterisation in terms of ¥*"; in fact, it can be defined as the direct image of the
presheaf of square-integrable holomorphic forms of top degree of the complement
of the singular set [G-R, §2 2, p. 2711.

Since @, = 0, and 0, is Cohen— Macaulay and normal 1t follows that so is
0, [Z-S]. By [GAGA, §2, Proposition 3] (9J = (Oj". Since (9“" (9’"‘ there are
neighbourhoods of v, in ¥, and v, in ¥, which are analytically isomorphic [A,
Corollary 1.6, p. 282]. Using the intrinsic characterisation of K3" it follows that i is
an isomorphism. [

5. The decomposition theorem

We assume k > 0. Let #,(Z’) denote the ideal sheaf on Z of a subvariety Z'.
(We omit the subscript Z when it is superfluous.) When Z’ is of codimension one
(not necessarily a Cartier divisor) we set Oz(— Z') = Fz(Z').

5a. A decomposition theorem on &

We prove first a decomposition theorem (Theorem 4) for H 0(2, 0). This will be
used in the proof of the vanishing theorem in §6; the results proved here will be of
use in the next subsection as well.

For j=1,2 let E; be two-dimensional vector spaces. Let Gr denote the
grassmannian of two- dlmensmnal quotients E; @ E, ’ Q. We define two divisors

D, and D, in Gr. Let I; denote the line bundle (detE) ! ® det Q. This has
a canonical section det PIE Its zero-scheme is the divisor Dj; thus [; = O(D;). One
checks easily that the divisors D; are reduced, irreducible and normal. AS a set
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D; = {P|(ker P)n E; & {0} }. The action of GL(E) x GL(E,) on Gr lifts to the I’s,
and (forme 2) Ho(l"') and H°(I7| p,) are GL(E;) x GL(E,) modulus. We have then
(with { denoting the one-dimensional representation (detE,)” ' ® detE,):

Lemma 5.1. For me Z we have natural isomorphisms of GL(E ) x GL(E,) modulus:
(1) H°(I7p, np,) = S"ET ® S™E,.
(2) H°(I?|p,) = @q 0n...ml™ q®SqE*®SqE2
(3) H(IT)= Byp=0.....m (-B ..... p P I®SIET ® SUE,)
(4) All the corresponding first cohomology groups vanish for m = 0.

Proof. We use the notation H'({%|,,) = 4}. We will use the following easy facts:
(a) The canonical bundle of Gr is 17 *{?, I, is ample. Note that this gives
(b) H'(I9) = {H> (I #)}* =0 for g > — 4.
(c) Also, H°(l;) = C®{® ET ® E>.

Consider the exact sequence:

014 185 4] >0, (5.1)

This, together with (b), shows:

(d) for g > O there is an exact sequence 0 » H°(19" ") —» H°(14)— H°(!4|p,) - 0.

Let IT denote the product of two projective spaces corresponding to E; and E,,
and q, q, denote the respective tautological quotient bundies. Then D; "D, ~ IT
and Qlp, np, ~ q1 @ q,. The assertion (1) of the Lemma follows.

Consider now, for any integer g, the exact sequence:

0— IIHDI(— (D1 Dy))— l‘{lD, g l'{ lpy~p,— 0.
We can rewrite this:
(On Dl) 0—-)C@l’{’lal‘{—-»(detE‘)*qq‘{qg—-»O

The long exact cohomology sequence now gives:
P
n=0) 0-{®@4_, - 43> ATET®SIE, > {® 4514} -0.

The map P is trivially onto for ¢ £ 0. From (c) and (d) it follows that P is onto
for g =1, and therefore it is nonzero for all g > 1. Since SET ® SUE, is an
irreducible GL(E,) x GL(E,) module the map is onto (and in fact has a canonical
splitting, because by induction AJ_, does not contain the representation
SET ®S'E,). This yields (2). We also see that for all g, we have 4}_, ~ 4}, which
yields A} = 0. Together with (b) this proves (4).

Assertion (a), together with (1), now gives (3). [

Recall that p denotes the projection 9 — Ay The decomposition of HO(2, ()g:)

is obtained by considering the projection p. We set, for xeX,
1x = (det 2)(det &)~ ". Thus #,, -—(@, r). We also set (det&,,) ! ® (deté,,)=¢
and ¢; = (det&,)” 1®(deté*’,cj)

Lemma 5.2. Let m be an integer. Then
O Ifmz=0.

Px(%Ip,s) = 69 é"‘ 1Q SI6* ® SiE,,.
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O[herwise P*(’];”llgfl.r) = 0'
(2) Rlpy(n%,15,,) = 0.
@) If mz 0.

p*r’;"lz @ < @ ép-q®sqgtl®sqéz’x2>.
p=0 m \q

Otherwise p, .y, = 0.
(4) Rlpunt, =0.

Proof. Immediate corollary of Lemma 5.1. O

Lemma 5.3._The_following maps are isomorphisms:

(1) HY (@', 0V —» HY (RS A R, 0™, and

(2) HO(Dy, 0™ — HO(D" 0 Dy, ).
Proof, (1) We_use Lemma 4.16 with the identification V= RE, U= 2P,
n=y,V =R Ry, and U" = P\(2; v Z,). To show that P\(2, U D,) is
nonempty it suffices, by Proposition 4.11(3), to show that % ,\#" is nonempty. This
is true by Remark 6.19 below. To show that #* n %, maps onto 2 we use
Corollary B.17. .

(2) We use normality of 2, (Proposition C.7(1)) and Remark C.5(¢). O

Proposition 5.4. There exists a canonical isomorphism

HY2,0,)~ @ @ HF 0@ Q1R ®SIE,,)™.

(5.2)

Proof. We have HY(#, ) = HO(F#™, )™ = HY(#™ ~ #p,0')™ where the sec-
ond equality follows from Lemma 5.3(1). On the other hand, by Lemma 4.15 and
C3 HOG™, §')™ = H(#, 0')™ so that we can write H)(®, 0,5) = H* (R}, 0')™.

Recall Eq. (4.4): on #; we have 0 =0® n. Taking direct images on % and
using Lemma 5.2.3) we get Eq.(5.2). O

Definition 5.5. For ji= (o, ), 0<a S f Sk, let %‘,‘f be the moduli space of semi-
stable parabolic bundles on X with parabolic structures at the {y;}; and weights
{(a;, b;)};, and in addition, parabolic structures at x; and x, both of weight
(a, b) = (o/k, B/k). Let 0; = 0(d, k, o;, fi» X2, 1) be the line bundle on %% defined as
in Remark 2.7, with @ = {2} and [, = —k + f + «

Theorem 4. We have a (canonical) isomorphism:

HO(2,05) ~ DH%, 0;) -
i

where i runs through the integers (o, ), 0 S £ S k.
Proof. We first rewrite (5.2) as follows, substituting p=f,9q=f —
HY2,0,)~ @ @ H G 08 Q@ ®SP 61 @5  6,)™.

{=0,..., k) @=0,..., B

(5.3)
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Note now that the bundles $%¢,  are direct images of line bundles on the projective
bundle P(&,); thus the cohomology groups on the right hand side of (5.3) can be
written as sections of suitable line bundles §; on R where

A+ = xgFlagy.2(6,)x xg Flaga,y(&,).
iel Jj=1,2
(Recall that for a 2-dimensional vector space Flag, 2 is just the projective space.

Thus % is the fibre product of two P! bundles over A ) In fact one checks easily
that

ép’ = é@ @mel)(ﬁ —0)® 0}7(63‘2)([3 - )
® (det&,,) f® (det£,,) * ® (det &) .

Each é is the restriction to @F of a line bundle linearising the SL(i)-action on
the projective variety A" where #* is the analogue of 4, for parabolic bundles on
X with parabolic structures at {y,} 19 {x1, x2} and the moduli space %% is the GIT

quotient of the semistable points (.@ i g;g* There is a small point to be checked
here, namely, that the integers n, m involved in the GIT construction of 2 and
% x can be made to work for these additional moduli space as well. But this is clear
since the index /i runs over a fixed finite set depending only on k.

The variety #; is normal (in fact smooth) so that Lemma 4.15 applies, and we
can conclude

HG(2, 0, ~ )P HOY&E, 0,0 ~ D HO@E, 0;). (5.4)
I “n

This finishes the proof. I

We close this subsection with two results which will be used in the proof of
Theorem 5.

Proposition 5.6. Let m 2 0 be a integer. Consider the inclusions of sheaves:
(1) on '%F’ ’7::1("‘ gl F)"‘) r’xl’
() on '%Fa (- 91 F— 92 = ﬂxl, and

(3) on Jl Pl @ I3, F(Vl Eu(gl Fﬁgz F) = mls, .
Each of the above sheaves has R! p4(*) = 0. The induced inclusions of the zeroth
direct images by p (which are therefore vector bundles) have a SL(#)-invariant
splitting.

Proof. The cases (1) and (2) are an immediate consequence of Lemma 5.2.
We turn next to (3). Considser

(on Dy5) 0— 4 ® 4, (V1 p) = 10— Nl — 0.

We have, using the fact that on ¥ ,det 2 ~ det &,,, the equality 7, |7, , = &l -
By Lemma 5.2 therefore

Pt ® I5,,(V1e)= @ " "RSEE®SE.,,

Rip ((n® F4,,(¥1.6) =0



Factorisation of generalised theta functions. 1 593

Consider next
(on QLF) ~
0=, @ I5,,(¥1.pV (D1 r Dy )= i, ® Fo, (V1 r) > 1%, [61.rn8,, =0,

where we have used the fact that (‘I}LF e (921,p N QZZ,F)) = (. As in the foregoing
proofs we see that

D TRSEL®S = 0L ® I, (V 1r (G r 0D r))
1
—»p*(r]z = @ ém*n@snév:l ®Snéax2:

splits, and R'p, (17, ® F5' " (¥ 1 (D1 r 0 Dr ) =0. [

Lemma 5.7. The following maps are surjections:.
(1) H°(05)— H(05ls,) ,
) HO(Q.@) - H0(09|@1 ok
(3) HO(G.M@‘) - Ho(eglﬁ 021n22)2
Proof. Let us deal with (1) in detail. Consider the diagram'

Ho(é/ss, é/)inv HO((@[)SS )mv

e T fT
HO(%. (5!)inv HO(QZ{’ ér)inv
b d]

HO@, 0™~ H(Dy5, 0™

We need to prove that a is surjective. The maps e, f are equalities because of Lemma
4.15. The map b is an isomorphism by Lemmas 5.3 and 4.15. The map d is similarly
an isomorphism, so that the result follows by Proposition 5.6 which states that c is
surjective.

The statements (2) and (3) are proved along similar lines. There is a complica-
tion in case (2) because D, U D, is not normal. In this case we have an analogous
diagram, with 9/ replaced by Qf V) 9f etc. {(We will continue to use the same
letters to denote the maps,) We can no longer assert that { and d are equalities. But
given a section g of H °((9f yPu (@ JYs. @'y™, it certainly extends to sections ¢; on
@,f which are equal on (9 ys m(@ ¥*. By seminormality of 9, e @2 r. a fact
easily checked, this yields a section there. The rest of the proof goes through as
before. [

5b. The decomposition theorem on U x

We start with a general result relating sections of a line bundle on a semi-normal
variety to those of the pull-back on the normalisation.

Proposition 5.8. Suppose given a seminormal variety V, with normalisationo: V — V.
Let the non-normal locus be W, endowed with its reduced structure. Let W be the
set-theoretic inverse image of W in V, endowed with its reduced structure. Let 4 be
a line bundle on V, and let A~ be its pull-back to V. Suppose H°(V, /")~ H°(W, A")
is surjective. Then
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(1) There is an exact sequence
0— HO(V, / @ £(W)) > HO(V, /) > HO (W, /) > 0.
Q) If H{(W, &'}~ HY(W, A") is injective so is H'(V, /") > H'(V, A).
Proof. Consider the commutative diagram of sheaves on V:
0> W) - Op - Oy -0
= l~ ! !
0—- 0, FW)> 0,04 > O3 - 0

where the equality is a consequence of Lemma 3.7. Note that the vertical arrows are
inclusions. Tensoring by 4" and using the projection formula we get

0> H/RFIW) - & - Ny -0
= ! !
0— J*(./V®f(l/f/)-—> a*jf - j/!W -0
Taking cohomologies gives
0> HYN ®FI(W)) — HYAN) - HY N |y & H (N ® F(W))
=1 ! el =1
0~ HYAN @ F(W) » HUA) » H (N |y) > H' (N ® F(7)
where we have used the fact that o is finite to 1dent1fy Hl(o *(/V ®RF (W))) with
H! (./V ®F (W)) By assumption b is zero. Since c is an injection we see that a is
zero as well. This implies the first part of the Proposition.
Continuing with the two cohomology sequences and using the above results we

also get
0- H WV @IW)) » H'(N) > H (N |y) »

=1 ! d
0— H\A @ F(W)) » H'\(A) > H (N ly) >
This implies the second claim. [J

The subvarieties #~ and #' of %y are defined in §3a. The seminormality of
%y and ¥ and in particular, its main consequence, as stated in Lemma 3.7, will be
used repeatedly below. Recall also (Lemma 4.10(2)) that 8, = ¢*0,,.

Proposition 5.9. There exists a (noncanonical) isomorphism:
HUx, 04,) ~ H(0p( — 21 ~ 2,)) ® H (D1, 05(— 22)) .

Proof. We use Proposition 5.8(1). By seminormality of % 5 and Proposition 3.15(4)
we have an exact sequence

0 H'Op( = D1 — 92)) > HO0u) > B0y )0, (559)

(Proposition 5.8(1) applies because of Lemma 5.7(2).) Again, by seminormality of
W and Proposition 3.15(5) we get

0 H(05® F4,(¥10U (D110 D2))) > HW, 9%) — HO(W"
(Proposition 5.8(1) applies because of Lem,ma 5.7(3).

6, )0 (55b)
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On the other hand, by Corollary 4.4(2) we have on # an exact sequence
0 H(0,® F4,(¥1 V(211 2,))) > HY(D1(— D), 05) + H'(V,0,) - 0,
(5.5¢)

where the surjectivity on the right follows from Lemma 5.7(3), again using 4.4(2).
By Proposition 4.11(3) we have H°(v", 0,,) = H°(#°, 04,), and this, together
with Egs. (5.5) yields the desired resuit. [

We can now prove the

Theorem 5. Let n, = (det2)(det&,)™" for a point xe X, and & =y,n.,'. Then
there exists a noncanonical isomorphism

H°@WUx, 0)~ D @D HY% 0@ @t

(P=0,...,k~1) (@=0,....p)
® S16% R S1€,,)" . (5.6)
Proof. By Proposition 5.9 and Lemma 4.15
HOWWUx, 04,) ~ H(H,0' ® O(— D; — D)™
@ HYS].0' ® O(— (@)~ DH))™.

We have applied Lemma 4.15 with the identification W = 4#; note that the Lemma

applies since, for example, sections of 8’ ® O(~ 2, — 2,) are also sections of 6".

By Lemma 5.5 the sections on the right are determined by their restrictions to
¥ and 2 p respectively. Now use Lemma 5.2. [0

Proof of main Theorem (A). This follows from Theorem 5 exactly as Theorem
4 follows from Proposition 5.4. []

Remark 5.10. For j = 1,2, let #r; denote the frame-bundle of &, , thought of as

a principal GL{2)-bundle. The bundle Ry 5 Ay can be regarded as associated to
the principal GL(2) x GL(2) bundle Fr; x 4, Fr,. The various (zeroth-) direct
image sheaves that we encounter can be thought of as vector bundles associated to
representations of GL(2) x GL(2). In particular equation (5.6) can be rewritten in
terms of vector bundles associated to Fry X 4, Fr,:

HO(#x, 0y,) ~ DH Fr 0 @ & ® E® (£50)* ® £4)™,
u

where u runs over (highest weights of} irreducible representations of GL{(2),

= f), 0Sa < f<k and &% is the bundle associated to Fr; through the
representatlon with highest welght u. (The representation correspondmg to (o, B) is
(det 0)®*Symm # ~*(¢) where g is the defining representation of GL(2).

6. The vanishing theorem

Consider now a family X, of smooth curves degeneratmg, as in the Introduction, to
Xo = X. Clearly, to be able to assert that h®(#x,, Oy, ) = h°(¥x, 04,) We need
a vanishing theorem.
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6a. A vanishing theorem on U3

We will first prove a vanishing Theorem for % 3. This will (with the replacement
XX ;) prove the constancy of h°(#y,, 0,) for t + 0. It will also be needed in the
next subsection.

_ We begin by computing the dualising sheaf of % 7 using Lemma 4.17. The space
Ry is defined in Notation 4.3c; %y is the good quotient of the open subset of
semistable points 2. We will denote by l// the projection R~ Usz.

Notation 6.1. Let Det denote the morphism R — J& given by the determinant of
the universal quotient bundle. This induces a morphism %3 /3 — J%, which will also
be denoted det. Let % denote a Poincaré line bundle on X x J% % and let 0, denote
the line-bundle on J% defined by

0, = (det R, £) @ (det £,) 4+ 179, (6.1)

Proposition 6.2. Assume § = 1. Let Qxz be the canonical bundle of X, and suppose
Qi = 00 40 2,) Let Qg, denote the canonical bundle of Ry. We have

Q3! = (detRrgé)* @ ® {22 @ (det £,,) ™"}
® ® {det&,,) '} ®(det&,)*" 72 @ (Det*0,)” . 6.2)

Proof. %’F is a fibre- product of P!-bundles over Q, and we first need an expression
for Q4,. (The spaces Q and Q; are defined in §4.a.) On X x Q, we have an exact
sequence of vector bundles 0 —» # — ¢" — & — 0, and the tangent space at a point
0 K->0">E—-0Qis H°(X K* ® E). From the properties of Q, (the Notation
4.3b) it follows that

Q' =detRaz (R EF)Q® (22 ®@(det8,) '} .

We now use a variant of the method of [D-N] to evaluate det Rng(6 ® &*).
Consider on 9?F the projective bundle P associated to the vector bundle ((r, ), &)*.
We have on X x P an injection of sheaves 0 —» Op(— 1). Let D’ denote the (reduced)
subscheme where this section vanishes. Its projection to P, which we will denote by
D, is an irreducible divisor. {One sees this by intersecting with the fibre over a point
of #r — see [D-N, Lemma 7.3 and Corollaire 7.4]). Outside D’ we have an exact
sequence of vector bundles 0 — @Op(— 1) > & — det & ® Up(+1) — 0, which yields,
outside D,

(1) an isomorphism det Rnp& = det Rnp L @ (£ 1det &) 1 "9 @ Op(— d)

{2) an isomorphism det Rnp(6 ® £*) = det Rnpd @ det Rrpé* @ Op(— 24d).
(We have written Det* ¥ = &).

By duality det Rzpé* = det Rzp(§ ® Qx). From this and the exact sequence
0>8->E® 2~ Py, ®(Qs);,,» 0 we get detRnpd* = det Rnpé ® ®,
{(det&. ) '}

Thus we have an isomorphism outside D:

det Rip(6 ® €*) = (det R1p€)* @ ® {(det£,)™ "}
4

® (det Rmp L) 2 ® (L' @ det )17,
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If we now use the fact that %~ ! ® det & on X x P is a line bundle pulled back from
P we get (6.2) outside D. (That is, the line bundles on the two sides of (6.2), when
pulled back to P, are isomorphic outside D.)

We now claim that the map Pic(%)— Pic(P\D) is injective; this will clearly
finish the proof. To see the truth of the claim, one uses the fact (cf. [D-N, Lemma
7.3]) that each fibre of the morphism P\D — %5 is the complement of an irredu-
cible divisor on a projective space so that any nowhere-vanishing regular function
on the fibre is a constant. (This shows that if the pull-back of a line bundle is trivial
then the line bundle itself is trivial, for a nowhere-vanishing section of the pull-back
descends to a nowhere-vanishing section of the original bundle) [

Lemma 6.3. Assume § = 2. Then (1/7* Q4ea)™ = Qq - where Q- is the dualising sheaf
of Ux.

Proof. Consider the action of PSL(#) on A, We will see (Lemma 6.14(1)) that if
g = 2 the complement of the set %£° of stable points has codimension > 1. Since
R*— Y% is an étale locally trivial PSL(7)-bundle we see that the conditions of
Lemma 4.17 are satisfied; and this implies the above result. [

We can now prove
Theorem 6. Assume § = 3. Then H (WU z, 04;) = 0.

Proof. We use the following device: we consider a new set of data (d, k, «;, ;) such
that k =k + 4, and_f; — &; = i — o; + 2. Let @ denote denote the new set of
parabolic weights, 0 the line bundle on # defined by the new data, % ; the
corresponding moduli space, and 0,;; the “descendant” of 0;. Recall that the
parabolic data do not quite suffice to define ();, but a choice of degree 1 line bundle
on X is also needed (see Remark 2.7). We make this choice so that

0, = (det Rnz,8) " * @ @ {(2)"* @ (det £, )7}
®® {(deté”y_)’}‘*ﬂ-*l}@(deté»y)zng-ur.

We shall assume that the integers n, m in the construction of % 3 are chosen so
that they work for % ¢, ; as well, so that %z  is the quotient of the semistable points

9?3—? of % with respect to the new polarisation. Using (6.2) we see that on @F we have
0=0,® Q2 ® (Det*0,) 2. (6.3)

Since #* is a dense open subset of Ay this continues to hold in A,
We now write

H' W%, 0a7)s

H 1 (éss’ é)inv

H' (A3, )

H'(9, 05 ® Q4, ® (Det* 0,) %)™

H W56 Ous s ® (Y1) 24,)™ ® (Det*6,)"2)

? Hl(%f,u’n 0%?.6 ® "Q%Z.s ® (Det* 0y)—2) 5
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where ,; ; is the dualising sheaf of %y ; and |//w the quotient map RE - Usg %6
The second equality holds because of the Lemma 6.14(2) below, using a Hartogs-
type extension theorem for first cohomology. The third uses Equation 6.2, and the
fourth Lemma 6.3. The first and fifth equalities follow from the fact that for good
quotients the space of invariants of the cohomology of an invariant line bundle is
the same as the cohomology of the invariant direct image. This fact is easily proved
(as pointed out by J.M. Drezet) by taking an invariant affine cover and applying
Reynold’s operator to Céch cochains.

We will prove below (Lemma 6.4) that 0, ® (Det*6,)”* is ample. Since
Uz, has rational singularities a Kodaira-type vanishing theorem [S-S, Theorem
7.80(f)] now applies and we can conclude that H' (%, 0,;) = 0. O

Lemma 6.4. 0,; ® (Det*0,)"2 is ample if k > 4.

Proof. Consider the morphism Det: %z — J&, and let A%, and let % denote the
fibre above L. One has a 2%-fold covering W xJ%— ;. We will show that
a7 ® (Det* 0,)~ 2 is ample when pulled back to this finite cover.

One can show by a standard method (as for example, in [S2, p. 53]) that % is
unirational. Hence its Picy is trivial, and the pull-back bundle is therefore a product
of line bundles coming from the two factors. It suffices to check that the restriction
to each factor is ample. The restrlctlon to the first factor is 6, and clearly ample.

Write the restriction to J$ as M, ® M,, where M, the pull-back of 0,; and
M, is the pull-back of (Det* 6,)"2 Now 0, is essentially the theta bundle on J%,
and ample. We will identify J and J%, and also work up to algebraic equivalence.
One checks (using well-known properties of theta bundles on abelian varieties) that
M, is algebraically equivalent to 6, 3. Also, M, is algebraically equivalent to 62*.
(Consider a family E ® & of parabolic bundles, for E a fixed parabolic bundle, and
then deform E to a bundle of the form Oy @ Ox(} 4=+, ....a x4).) Clearly M; ® M, is
ample if k >4. O

.....

6b. Vanishing Theorem on Uy

We turn now to the vanishing theorem for %y.
Theorem 7. Assume g 2 4. Then H (%Ux, 6) =0
Proof. This is a consequence of the next lemma and Theorem 8§ below. [J
Lemma 6.5. H' (%, 04,) injects into H' (2, 05).

Proof. By Proposition 5.8(2) it suffices to prove that H!(#, fl,,) injects into
HY(2,uU 2,, 04). For this it clearly suffices to show that H(%", 8,,) injects into
H'(2,, 85). Again using the Proposition 5.8(2) we se that it is enough to show that
HY (W, 8,,) injects into H* (¥, U(2, N D,), 05), and as above it is enough to
show that H'(#7', 0,,) injects into H'(¥7, 0,). This is clear because the map ¢:
¥ — W' is an isomorphism. [

6c. A vanishing theorem on P

We are left with the task of proving
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Theorem 8. Assume § = 3. Then H (2, 05) = 0.

This in turn is proved along the lines of Theorem 6. There are complications,
however. First, it takes more work to prove a formula for the dualising sheaf.
Second, one cannot prove the analogue of Lemma 6.4.

Proposition 6.6. Let Q5 be the canonical bundle of X, and suppose Qg = O(Y 4eq 24).
Let Qg denote the canonical bundle of &y. We have

Q3" = (det Rz 6)* ® ® {2} ® (det 1) '} ® (det 2)* (det &,,) 2 (det &,,) 2
Q@ ® {(deté.,) '} ®(det &, 22 @ (Det*4,) 2. (6.5)
q

Proof. 9?} is a grassmannian bundle over QZ’F. Now use Proposition 6.2. [

We need an expression for the canonical bundle of #. (By Proposition C.3 5 is
Gorenstein and has a canonical bundle). The idea is to find an extension of the
right-hand side of (6.5) to # as a PSL(7) line-bundle, and then to argue that this
gives the canonical bundle.

Remark 6.7. (a) We hayve, on X x #' a surjection (" — & — 0. The kernel X" is
flat over &', and since X is smooth, it is locally free (this needs an argument using
[N, Lemma 5.4]). On s we have the identity (for xe X\ {x;, x;})

det#, ®@det &, =detO" ~ ©.

(b) In the definition of & (4.9b) we can replace the term (det &,) by
®Rgeoldet £, ) ® (det £,)' % (cf., Remark 2.7) as long as for every g€ Q we have
z,8{x |, x, }. Using (a), we can in fact replace any (or all} of the factors (det &, )= by
(det2¢".,)"", and, after this change, allow z, to be one of the points {x1,x3}. Tt is
clear that all these choices give algebraically equivalent ample line bundles on Z.

Proposition 6.8. Let Q,, denote the canonical bundle of . We have
Q' = (detRny€)* @ @ {27 ® (det £,,) '} ® (det 2)*(det A, ) (det H )

R ® {(deté,,) '} ®(det§,)*" 272 @ (Det* 0,) ", (6.6)
q

where the vector bundle A is defined in Remark 6.7(a) above.

Proof. Let Q' denote the RHS of (6.6). By Proposition 6.6 the isomorphism
Q = Q,, holds outside the 2. We will check that it extends to each 2j.

For definiteness take j = 1 and for simplicity of notation suppose there are no
ordinary parabolic points. The proof will use the methods of Appendix C (to which
we refer the reader for unexplained notation) to determine Q,, in a neighbourhood
of a suitable point of 2. Since 2 is irreducible, it will be enough to show that the
isomorphism (6.6) extends to one such neighbourhood.

Consider then a point (07 — E — 0, Q) in & where

(1) E has torsion at x, (i.e. the point lies on ),

(2) E is locally free at x,, and

(3) the maps E,, — Q are onto for both j = 1,2, .
Define the vector bundle E to be the kernel of the map sequence E — ,,Q — O(E is
a vector bundle because of condition (3) in the definition of 5#). The conditions (2)
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and (3) will continue to hold in a neighbourhood U;. On X x U, one can define
a locally free sheaf & by the exact sequence 0 » & —» & — ,, 2 — 0 where (where x, 2
is the sheaf on X x & got by pulling back 2 from £’ and then restricting to
{x1) x #’). Suppose the vector bundle E is stable (such points certainly exist). Then
this will continue to hold in a open set U, with (E, Q)e U < U; < #. Note that on
U we have an isomorphism of vector bundles &, ~ 2.

We construct another space E as follows. For simplicity assume that the degree
d is odd so that a Poincaré bundle exists for stable bundles of degree d — 2. (An
argument with etale open sets is needed otherwise.) Denote this bundle by & this s
a vector bundle on X x”llx(d —2).0n X x@(X d— 2) consider the bundle of
extensions E whose fibre over, E’is Ext! (xz(Exl) E’). On X x E there is an universal
extension 0 — & — &' — ,,(£4,) = 0. N

There is a morphism H: U — E such that H*E =EQ@ N, H*E = ER N . for
some line bundle .4#" on U. One checks easily that

(1) H is a submersion,

(2) the fibres of H are PSL(#) orbits, and

(3) PSL(n) acts freely on U.
From this it foilows that Qy = H*Q;.

We now proceed to check that H*Qg = Q. One easily computes:

H*Q; '@ Q = (deté,) * ® (det A, ® (det A',)?
= (det&,,)* ® (det A ,,)%

We will now show that det o, = (det é;xz)' ! Consider the commutative diagram
of sheaves on X xU:

- 0 (b)

where the (b) is the pull-back of (a) by the inclusion & — & — this defines X' One
sees casily that o' is a vector bundle. We have therefore the equality of line
bundles on X x U: det A" ® det & = det ', which yields the equality of line
bundles on U: (det X),, ® (det &),, = (det #'),,. On the other hand we get from
the exact sequence 0— A — OF - ., 2 0 the exact sequence of bundles on
U0- 2®(Q5)x,— A x,— 0" - 2 - 0. This shows that (det '), is trivial. [J

We next prove the analogue of Lemma 6.3

Lemma 6.9. Assume G = 2. Then (117; Q)™ = Q, where Qyp is the dualising sheaf
of 2.
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Proof. We check that the conditions of Lemma 4.17 are satisfied. By Corollary 6.18
and Remark 6.19 there exists stable bundles on X. By Proposition 4.7(2), there exist
stable generalised parabolic bundles on X. Thus there exist stable points in #’, and
the action of PSL(#) is therefore generically free. We now check conditions (1) and
(2) of 4.17.

(1) By Lemma 6.15(1) below one sees that in %’“5\91 v 92 the nonstable locus
has codimension = 2. We next show that each of the (@f y° or (@’)ss contains
a GPS with no nontrivial automorphism. Take j= 1 for definiteness. Let E' be
a stable (parabolic) bundle on X of degreed — 2, let E = E’ ® ,,C and define the
GPS structure on E as follows. We take Q = C?, the map E,, — Q to be the obvious
projection, and the map E,, — Q any isomorphism. This yields, after an identifica-
tion H(E) ~ C*, a point on @ as required. Next consider E = E’(x,), the GPS
structure being given by taking Q = E}, ® (25);,", the map E,, — Q being zero,
and the map E,, — Q the residue. This yields a point on 92{ with no nontrivial
automorphisms.

{2) If a prime divisor is not contained in the nonstable locus its projection will
have codimension one. If it is contained in the nonstable locus, by (1) it will have to
be one of the (9{ )* or (25)°. We have already seen that the respective images of
these in & are the ;. [

Consider the local universal family A of Appendix B. The open subscheme
H of A is defined in §4a (Notation 4.3a).

Lemma 6.10. There is a morphism Det: H# — J 4 which extends the determinant
morphism on the open set Rr.

Proof. The determinant of &4, can be defined as the inverse of det 4, where the
vector bundle # is defined in Remark 6.7(a). This gives a morphism from #’ to
J. O

Restricted to " the map Det clearly factors through the quotient by the SL(#)
action and yields a morphism £ — J%, which we again denote by Det.

Lemma 6.11. The determinant morphism on the open set of stable torsion-free GPSs
extends to a flat morphism Det: Z — J%.

Proof. Note that J% does not act on 2. However, J x does. Given a GPS (E, Q) and
a line bundle M on X, the action is defined by

(E,Q)—>M=+(E, Q) =(EQm*M,Q ® My,).
We have DetM*(E Q) = Det(E, Q) ® (n*M)*. Now the pull-back map JX - J%

and the squaring map J % — J % are surjective and J (,)( acts transitively on J%. By
generic flatness it follows that the map Det: 2 — J%is flat. O

Let #* denote the (reduced) fibre over L e J%. Similarly let 2" be the (reduced)
fibre of Det above L. Clearly #* is the GIT quotient of #°™. L All the propertles of
# and @ continue to be valid for #* and #*; the proofs require only minor
modifications. We have

Proposition 6.12. The dualising sheaf of P" is the restriction of Qg to L.

Proof. We first note that 2" is the scheme-theoretic fibre above L. For, by Bertini,
the scheme-theoretic fibre is reduced for generic L, and then we can use the
argument of the proof of the previous lemma to extend this to all L.
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Next we use the following fact: Suppose f: V' — U is a flat map of varieties, with
U smooth, and V" Gorenstein. Let V, be the scheme-theoretic fibre above peU.
Then the dualising sheaf of V), is the restriction of the dualising sheaf of V. This in
turn is proved by repeated use of Bertini (on U) and the adjunction formula. [

Proposition 6.13. (1) We have a (canonical) isomorphism:
HYP", 05) ~ DH((U5)", 05) -
i

where [l runs through the integers (¢, ), 0 a < B < k.
(2) Assume G = 3. Then H'(#", 0,) = 0.

(We have used the obvious notation (%%)" for the fibre above L of the determinant
morphism from %% to J 4. The morphism itself will be denoted Det; below.)

Proof. The first claim is proved exactly as Theorem 4. The proof of the second
statement is along the lines of that of Theorem 6. Restricted to s# % we have the
following equality (the analogue of (6.3)):

élzé;‘;@Qx,

for a suitable é;,, where we have to use Remark 6.7(b) to define this latter line
bundle. The rest of the proof proceeds as before except that an analogue of Lemma
6.4 is not needed. Note that »# has rational singularities, and is in particular
Cohen—-Macaulay, so that Hartogs-type extension theorems for cohomology are
applicable. [

Proof of Theorem 8. Consider the map Det: 2 — J%. Proposition 6.13 shows
that R*(Det),(65) = 0. On the other hand the decomposition theorem for 2
shows that R°(Det),(05) = (P;R°(Det;),(0;). By Theorem 6 we have
HY(R®(Det), (0,)) = 0. O

6d. Codimension computations

We have to do a number of codimension computations. We do the first in some
detail.

Lemma 6.14. (1) The complement in #* of the set %* of stable points has codimen-
sion Z g if {1| >0, and codimension =z g — 1if |[I1|=0

(2) The complement in Ry of the set A of semistable points has codimension

29
Proof. The dimension of #; is easily computed to be 4§ — 3 + |I| + dim PLS(#).
(At a point 0 » K — 0" - E - 0 of Q; the tangent space is H°(X, K* ® E). Using
the exact sequence

0> HYE*®E)-»C®C'-> HK*®E)-> H'(E*®Q E)> 0
and Riemann-Roch we get dim H*(K* ® E) = 4§ — 3 + (7% — 1))

We first prove (1). Consider a semistable, unstable bundle E. It is an extension
0- L;— E— L,— 0, with par degree L, = 1/2 (par degree E). (Equivalently,
2degree Ly — d = Y ge (b — ;) — ¥ g(b; — a;).) We will now describe a (countable)
number of quasi-projective varieties parametrising such bundles. (For the present
we do not require a variety to be irreducible.)
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For g = 1,2, let d, be integers such that d, + dz = d, and let I = Ry UR, be
a decomposition of I such that 2 d; —d =z, (b; - a;) — Y g, (b; — @;). Let h > 0
be an integer, and let v = (d,, Ry, h). Choose Pomcare bundles F,on X x J 4 Let
F = J% xJ%and let £ denote the line bundle % %, on X x #. Let 7 dendte the
projection Xx §— F.

We define a variety V(v) = V(d;, Ry, h) as follows.

(a) We first define varieties V,(v):

(1) If h = 0, set V,(v) = #. Define the bundle &, on X x Votobe & B &Ls.

(2) Write SuppR*n, % = U,,>0 Vi(v) with V;(v) denoting the locally closed
subscheme of # where R'm, & s locally free of rank h. Let ¥,(v) be the projective
bundle P({R'n,#}*) on V| (V)eq. On X x V,(v) there is an universal extension
0> &L (—-1)—-¢&,->Z,-0.

(b) Let V3(v) be the fibre product

X VZ(VP((énv)y,)'
ieRy

The sub-bundle &#(—1)s & yields, for each i€, a divisor in V;.

(c) Let V(v) = V(d,, Ry, h) be the complement of the union of these divisors for
ieR,.

Each V(v) parametrises a family of parabolic bundles E, which occur as
extensions 0— L; — L, — 0 (the extension being split if # = 0), with parabolic
structures at the { y;}z, given by the sub-bundle L, . The dimensions of the V(v) are
easily bounded. These are:

() dim V(y) =29 + |R,} ifh=0,

2) dim ¥V, £2g+ h — 1 + |R,| otherwise.

Let V(v)** be the open set of semistable parabolic bundles, and let F(v) be the
frame-bundle of the direct image of & on_V(v)*.

There is a map from each F(v)to 9255\@5 and the union of the images covers the
latter set. We now estimate the dimension of the (closure of the) image of F(v). We
have ([H, Exercise 3.22]) dim Im F(v) = dim F(v) — e where e is the infimum of the
dimensions of the irreducible components of the fibres. Since the E are generated by
sections, any automorphism of E acts nontrivially on the frames of H°(E), and we
compute

(1) ez 2+ dimh, if h=0and

(2) ez 1+ dimhy ifh>0,
where hy = HO(L¥ L ). In any case the codimension of the image is bounded below
by 4 — 3+ |I| + dlmPSL(n) {2§ + |Rz| + h — ho-— 24 dimGL(n)} =2§—2
+ |R{| + ho — h. By Riemann-Roch thls is equal tog—14+|R,|+2d,—d=
§—1+4|Ry| + Y r,(bi — @) — Y r,(b; — a;). This gives the required bound on the
codimension.

We turn now to the second assertion of the lemma. The analysis is exactly as
above, except that we replace the equality 2d; — d = Y g,(bi — a;) — Y g,(b; — @)
by 2d; —d > Y p,(b;— a) — Yr(bi—a) O

Lemma 6.15. (1) The complement in 9?"55\9?1 U D, of the set R* of stable points
has codimension = § + 1 if |1} > 0, and codimension Z g if |I| =

(2) The complement in # of the set &> of semistable points has codimen-
sion = g + 1.

Proof. The dimension of J# is easily computed to be 4g—3 + [I| +4 +
dim PSL(7).
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We first prove (2). Consider a point in #\%'*. To such a point there corresponds
a GPS E with a rank subsheaf L contradicting semistability. We can assume L is
rank 1, and that E/L is torsion-free outside {x;, x,}. We have

d—2+4Yb—a;— Y b —a; < 2degree L — 2dim Q" 6.7)
Re R

In fact E/L can be assumed torsion-free. Suppose it is not, and let L' > L be the
inverse image in E of the torsion-subsheaf of E/L. Clearly the sets R and R® are the
same for L and L. Now if (degree L’ — degree L) — (dim Q" — dim Q%) < 0 we
have degree L' — degree L = 1 and dim Q% = 2, dim Q" = 0, which is not possible.
This shows that L’ satisfies (6.7). Thus E is an extension 0 > L; - E — L, —» 0 with
L, torsion-free (i.e. a line bundle) and L, satisfying (6.7).

Fix an integer r, with 0 < r £ 2. Fix two nonnegative integers s, s, with
sy +s,=s<r For g= 1,2, let d, be integers such that d, + d, + s = d, and let
I =R, UR, be a decomposition of I such that 2 (dy +s)—d—2r> —2+
sz(bi — @) — Y g,(b; — a;). Letr' = r'(r,s)be defined by v = 0if r = 2,/ = 1 + s
fr=1land ¥ =4+ 2sif r=0.

Let h >0 be an integer, and let v = (r, sy, 52,dy, Ry, h). Choose Poincaré
bundles #, on X x J%. Let ¢ = J%x J% and let ¥’ denote the linc bundle
(L5 %, on X x ¢. Let 7 denote the projection X x ¢ - #.

We define a variety V(v) = (r, 51, 52, d;, Ry, h) as follows.

(a) We first define varieties V,(v):

(1) If h = 0, set V,(v) = #. Define the bundle &, on X x V, to be ¥ D &5

(2) Write Supp R'n, " = [ Ju>0V1(v) with V;(v) denoting the locally closed
subscheme of ¢ where R'n, %" is locally free of rank h. Let V,(v) be the projective
bundie P({R 7% }*) on Vi(¥)ea. On X x V(v) there is an universal extension
0— LU(—-1)> &, — Z£5— 0.

In both cases let &, = &, ® ,,C* @ ,,C*

(b) Consider the bundle of two dimensional quotients 2 of &, @ &, such that
the map ,,C** @ ,,C*> > 2 is an injection and the map £, ® £, ® ., C* D ,,C”
— 2 has rank r. Let V3(v) be the fibre product

2X { X vz(vP((é” | )}
The sub-bundle Z,(—1)s & yields, for each iel, a divisor in Vj.

(c) Let V(v) = V(r, sy, S3, dy, Ry, h) be the complement of the union of these
divisors for ie R;.

Each F(v) parametrises a family of generalised parabolic sheaves
E=E ®,C"®,,C? where E’ occurs as an extension 0~ L) —» E'— L) — 0
(the extension being spht if h = 0), with parabolic structures at the { y; }x, given by
the sub-bundle L. The dimensions of the ¥(v) are easily bounded. These are:

(1) dim V(v) =2+ |Ry|+ 2s + 4 —7r'(r,s) ifh=0,

(2) dim VW 2§ +h— 1 4+ |Ry|{ 4+ 25 + 4 — #'(r, 5) otherwise.

Let V/(v)* be the open set of semistable parabolic bundles, and let F{v} be the
frame-bundle of the direct image of & on V(v)*™

As in the proof of the previous Lemma we take into account automorphisms,
and find that the codimension is =g — 1 + |Ry| + 2d; — d + r' + 2s, and hence
strictly greater than §— 1+ |Ry|+ Y g,(bi— a;) — Yg(bi—a) +2r =2 + 7.
This proves (1). (Note that the sheaf E’ @ .,C* @ ,,C** has an automorphism
group of dimension = dimaut(E’) 4+ 25 + s.)
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The assertion (1) is proved similarly, the only change being that the inequality
in (6.7} is replaced by an equality. This however does not affect the final bound. O

Remark 6.16. Tt is not true that #=\#" has codimension 2 §. Points on the
9; are never stable. The above codimension bound breaks down because one
cannot assume that the sub-sheaf contradicting stability is rank 1.

We need next to consider two sets of parabolic weights w and '. Write o < o’
if the indexing set I of the first set of weights is a subset of the indexing set I’ of the
second set {y;}; < {y:};- compatibly, and the two sets of weights agree at the
points { y;};. We have

Lemma 6.17. Suppose g >0 and w < w'. Then

) if A%, ) is nonempty so is U%{d, &').

(2) if X is irreducible with a node and there exist w-stable non-locally-free
sheaves then there also exist «'-stable non-locally-free sheaves.

Proof. We prove (1). The other statement has a similar proof.

Clearly it is enough to consider the case I’ = I U {0}. For simplicity we assume
that a Poincaré family & exists on X x %#%(d, ®). (By working with an étale open
set in %y one can avoid this assumption.) Consider the projective bundle
P = P(#,,). This parametrises a (4g — 3 + |I’|-dimensional family of parabolic
bundles with weights «’. We will show that there exist «’-stable bundles in this
family.

Let (F, Q;, Qo) be a bundle in the family which is not «'-stable. Then it has a line
sub-bundle L such that L,, = ker(E,, — Qo) and

Y (b — ;) = Y (b — a;) — (bo — ao) S 2degree L —d < (b —ay)
RC

R® R’

- Z(bi - a;)

where R = R(L) c I is the subset where L, < ker(F, — Q;) and R°® = R°(L) its
complement. As in the proof of Lemma 6.14 we find that such bundles (F, @i, Qo)
are parametrised by a (finite) number of subvarieties of P (labelled by (R, d,, h)), of
dimension < 2g + [I| — |R,| + h — 1 — hy. The codimension is therefore greater
than

29— 1+ |Ry|+ ho—hy =g+ |Ry| +2dy —d 2 g + |Rs| + X (b — @)
Rz
- Z(bi —a;) — (bo — ao)-
Ry

Grouping the terms on the right as {|R|— Y k(b —.a,-)} + Y ro(bi — a;) +
{g — (bo — ao)} we get a positive lower bound on the codimension. I

Corollary 6.18. Suppose X irreducible with one node. Then there exist stable (non-
locally-free) sheaves on X except when g = 1, d even, |I| = 0.

Proof. 1t is well-known that %x(d, w) is nonempty when X is smooth, {I] =0,
g = 2. Now suppose X irreducible with one node. Using Lemma 3.3 we get stable
non-locally-free sheaves when

(1) I=0,g23.
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If g=1,|I| =0 and d is odd, we get stable sheaves by taking a nontrivial
extension 0 » 0 - E —» L — 0 where L is a rank one torsion-free sheaf of degree 1.
This covers the case

2) Il =0,g=1,d odd.

Further, if g = 1 and d is even, one constructs a stable parabolic bundle with
parabolic structure at one point y, as follows. Take two different rank one
torsion-free sheaves L, and L, (one is then necessarily locally free), let
E=L,®L,, and take a quasi-parabolic structure E, — Q, - 0 such that
(L:)y, = ker(E,, > Q,), i = 1,2, and arbitrary weights a, < b;. This yields a stable
parabolic sheaf with

B)ylll=1,g=1,deven.

The above constructions of course work for nosingular X as well, and again
using Lemma 3.3, we can add the cases

@ |1l=0,g=2,d odd.

) |Il=1,g=2,d even.
where again we get non-locally-free sheaves.

The case

6 |I|=0,¢g =2,d even,
can be covered by taking a suitable extension 0— L, — E— L, — 0, with
degree L, = —1, degree L, = + 1. We omit the details.

We now use Lemma 6.17 to finish the proof. [

Remark 6.19. Note that since stability is an open condition, if stable non-locally-
free sheaves exist, stable locally free sheaves also must exist. Thus Corollary 6.18
implies that if X is a nodal curve,

O+ W + Uy, (6.3)
except possibly when g = 1, d even, |I] = 0. In fact in this case it is easy to see
(normalising d = — 2) that %y = (X x X)/ ~ where ~ is the involution exchang-

ing the two factors, and that (6.8) holds in this case as well.

Appendix A. The moduli space of parabolic sheaves

There exist two constructions of parabolic moduli spaces on curves — that of [M-S]
and that of [B2]. Neither works in the case of a singular curve. We present in this
Appendix a construction of the moduli space, which generalises the work of C.
Simpson, and is applicable when the underlying curve has a nodal singularity (and
presumably more generally). This approach to the construction of parabolic
moduli spaces arose out of conversations with A. Ramanathan.

For ease of reference we have tried to make this Appendix self-contained, at the
risk of some repetition.

Unless otherwise mentioned, X will denote an irreducible projective curve of
genus g over C, smooth but for one node x,. Let Ox(1) be an ample line bundle on
X of degree 1, { y;}, a finite set of smooth points on X. Let d denote an integer, the
degree (to be chosen below). Fix another integer k > 0, and also, for each iel
integers 0 < o; < B; < k. We set n=d + 2(1 — g) and let [ denote the number
determined by

nk = 2|11+ 21 = ¥ (s + Bo).- A1)
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We assume that the data are such that [ is integer, i.e. that dk + ) ;(o; + f;) is even
Let a; = oy/k, b; = fi/k. Set w = {(a;, b;)}};. Note that 0 < g; < b; £ 1. The usual
range assumed is 0 < g; < b; < 1. (This is not a significant difference since the
definition of stability only involves the difference b; — a;. However, the construc-
tion below certainly requires a; > 0.)

We wish to construct the moduli space %y of s-equivalence classes of semi-
stable rank 2 torsion-free sheaves on X with parabolic structures at the { y;}, (with
weights w). It will be clear from the construction that it works for an irreducible
curve with an arbitrary of nodes. In particular X could be smooth.

Definition A.la. Let F be rank 2 torsion-free sheaf on X. By a quasi-parabolic
structure on F at a smooth point x€ X we mean a choice of a one-dimensional
quotient F,— Q — 0 of the fibre of F at the point x. If in addition real numbers
(“weights™) a < b are given, this is a parabolic structure.

We shall refer to a torsion-free sheaf with parabolic structures at the { y;}; (with
weights w) as a “parabolic sheaf”.

Definition A.1b. A parabolic sheaf F is said to be stable (respectively, semistable)
with if for every rank one subsheaf L of F such that F/L is torsion-freec we have

par degree L <  j(par degree F').

(resp.£2)

The parabolic degree of F is by definition par degree F = d + Y i(a; + b;); given
a rank one subsheaf L < F such that F/L is torsion-free, its parabolic degree is by
definition par degree L = degree L + Y gea; + . gb; where R c I is the subset of
iel such that L,, < ker(F,,— @;) and R® its complement.

Remark A.2. The condition for (semistability can be written

2degree L < d+Y.(bi—a)— Y. (bi—a). (A2)

(resp. <) Re R
In particular this implies
2degree L < d + |1}. (A.3)

Theorem X1. There exists a (coarse) moduli space U*(X, d, w) of stable parabolic
sheaves F. We have an open immersion U*(X, d, o) ¥ (X, d, w) where U (X, d, w)
denotes the space of s-equivalence classes of semistable parabolic sheaves. The latter
is a projective variety. If X is smooth, then % is normal, with rational singularities.

(The notion of s-equivalence of parabolic sheaves is defined as in the case of
vector bundles, using [S2, Troisiéme Partie, Theorem 12]. In the notation of that
theorem we say that two parabolic sheaves F, and F, are s-equivalent if
Gr(Fy) = Gr(F))

The rest of this Appendix will be devoted to a proof of Theorem X1. By Remark
2.2 we are free to choose d as large as we wish.

Lemma A.3. There exists an integer N > 0 such that for any semistable parabolic
sheaf F of rank 2 and euler characteristic > N,

(1) F is generated by its sections, and

(2) HY(F)=0.
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Proof. One imitates the proof of [N, Lemma (5.2) ] and uses equation (A.3). Note
that the constant §' in the statement of the quoted lemma can be majorised by g [N,
page 165]. [

Remark A.4. The method of proof shows the following: Suppose F is a rank
2 parabolic sheaf (not necessarily semistable) such that for every torsion-free
quotient F — L — 0 we have h°(L) =2 N,/2 — |I|. Then H*(F) = 0.

Choose d large enough that for any parabolic semistable F of degree d, H°( F)
generates F, H'(F) = 0. (One can do this without loss of generality because of
Remark 2.2). Let Q denote the Quot scheme [ G ] of coherent sheaves over X which
are quotients of ¢, where n = d + 2(1 — g), with Hilbert Polynomial P equal to
that of any such F, i.e. P(m) = 2m + n. Thus there is on X x Q a sheaf %, flat over
Q, and a surjection 0" — %4 — 0. The Quot scheme is a projective scheme [G]:
there exists an integer M, (n) such that for m = M, (n) we have (denoting the vector
space H°(Ox(m)) by W)

(1) for every point ¢" — F — 0 in the Quot scheme, if we let K be the kernel, we
have H'(K(m)) = 0, so that the map C"® W — H°(F(m)) is onto, and

(2) the map Q — Grasspu, (C"® W) given by (1) is an closed embedding.

We define another (complete) scheme Z# as follows. For i€ I, consider the sheaf
#,, on Q given by restricting %, to {y;} x Q, and let Flag,, ,(#, ) be the relative
Flag variety of locally-free quotients of &, of rank (1, 2) [EGA-I, 9.9.2]. The
scheme £ is then a fibre product over Q:

R = 'xIQFlag(J,z)(fy.)~

Notation A.5. A (closed) point of % will be given by a point 0" £ F — 0 in the Quot
scheme, together with quotients F-25Q, . — 0, where Q, ; is a skyscraper sheaf
supported at the (reduced) point y;, with h°(Q, ) =r, ¥ = 1, 2, the p, ; satisfying
kerp, ; = kerp, ;. We let p,, denote the map 0"(m)— F(m).

We have a SL(n)-equivariant embedding # G where

G = Grassp(m(C"® W) x x {Grass,(C") x Grass, (C")}.

Each factor on the right has a canonical ample generator of the Picard group. We
give G the polarisation (using the obvious notation):

Ly x {(k = B), (B — a)}. (A4
m i

This gives a linearisation of the SL(n) action.

Let 9 denote the subset of closed points of # such that the corresponding
parabolic sheaves are semistable (in particular torsion-free), and the map
H®(p): C" > H°(F) is an isomorphism. We will prove below that for large enough
choices of n and m these are precisely the semistable points for the action of SL(n)
on £ (in the sense of Geometric Invariant Theory) w.r.t. this polarisation. This will
yield the existence of % and also show, incidentally, that semistability is an open
condition for parabolic sheaves and that #* is (the set of closed points of) an open
subscheme.
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At a point (P, {(P,,;, P, ;)} € G we shall denote by (U, {(U,., U;.))},) the
respective quotients. Note that if the point (P, {(P; ;, Py ;)};) is the image of
(p, {{p2,5> P1.:)}1) €& then P = Ho(p,,), P, ; = H%(p, ;) and HY(Q, )= U, ;.

We have a straightforward generalisation of [ N-T, Proposition 5.1.1] (see also
[Si, Proposition 4.37) whose proof we omit:

Proposition A.6. A point (P, {(P,.i, P1.:}}1) € G is stable (respectively, semistable) for
the action of SL(n), with respect to the polarisation (A.4) (we refer to this from now on
as GIT-stability), iff for all nontrivial subspaces H < C” we have (with h = dim H)

(hP{m) — ndim P(HQ® W)) + Z(k — B)(2h — ndim P, _{(H))

!
m
+ X (B — ) (h — ndim Py (H)) < 0. (A.5)

(resp. <)
Notation A.7. Given a point (p, {(pa.;, p1.;)}1) € Z (as in A.5), and a subsheaf F’ of
F we set QF;=p, (F) Similarly, given a quotient FHG -0, set
G/T(kerp, ;) = Q/p, i(ker T) = Q7.

Lemma A.8. Suppose (p, {(pa2.i» P1.1)}1) € R is a point such that F is torsionfree and
let m be a positive integer. Then F is stable (respectively, semistable) iff for every
subshear 0 + F' % F we have:

[ -
o G (F) P(m) — ny(F'(m))) + Lk = B (2 (F)) = nh®(Q%:))

+ 2B — ) (((F) —nh™QF)) < O (A.6)

(resp. <)

Proof. For any subsheaf F’ of F let LHS(F’) denote the left-hand side of (A.6).
Assume first that the inequality holds for every proper subsheaf. Let F’ be a proper
nonzero subsheaf such that F/F' is torsion-free. For any such F’ (which is necessar-
ily of rank 1) we have by Riemann-Roch,

LHS(F) = L (4(F)(2m + n) — nlm + 1(F) + x(F')(:z;(k B+ X(Bi ai))
- n(g(k ~ B0+ TP oc,-)) - g(;wi — ) = X a,.))
= 12(F) = )+ Q2(F) n)(ij B+ 3505~ a»)
(S-S )

(2degree F' — d)(Zl + 2k|I| — z(ﬁi + a,.)>

[\ AR

(S0 - S )

= %«{(2 degree F' — d) + Y.(bi — a;) — D (bi — a,»)},
3 T
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where in the last step we use (A.1). Comparison with equation (A.2) shows that F is
(semi)stable if (A.6) is satisfied.

Suppose now that F is (semi)stable and F’ is a proper subsheaf. The above
computations yield the desired inequality when F/F’ is torsion-free. Suppose now
that F/F' is not torsion-free. We will show that LHS(F’) < 0. Write
0— F - F' -7 -0 where  is torsion, F'oF and F/F' is torsion-free. Let
T=9+ Z T ; where 7 is the subsheaf of 5~ determined by the requirement that
its stalk at y; is the same as that of 7. Clearly LHS(F') < 0. We will now show that
LHS(F') — LHS(F") <

LHS(F') — LHS(F') = — %(ho(f)ﬂm +n) — nh®(9))
- h"(./f)(z;(k — B+ ;(ﬁi - a,))
- n{zi(k — B)(h°(Q5) — h°(Q%.1)
+ (B~ ) ((QF0) — h°(Qf‘,i))}
< —nkh®(F) — ny BT ) {k = (k= B) — (B — )]

= — nkh®(F) — nY k(T ),

where we have used h°(QF ) — h°(QF ;) £ h°(J;). Since by assumption «; > 0 we
have the required inequality. []

The next two lemmas are generalisations of [ Si, Lemmas 2.8 and 2.9] respec-
tively.

Lemma A.9. There exists M,(n) = My(n) such that for M = M,(n) the following
holds. Suppose (p, {(p2.:, P1.:)}1) € & is a point such that H°(p). C"—> H°(F) is an
isomorphism and, for every subsheaf F’' of F generated by sections we have

)
- (W°(F") P(m) — ny(F'(m))) + Lk — B)(2h°(F') — nh®(Q73.3)

+ 2B — @) (h°(F) = nk®(Q7)) < O (A7)

(resp. £)

Then the point is GIT-(semi)stable.

Proof. For H = C" let Fy denote the subsheaf of F generated by H, define K by
the exact sequence: 0 —» Ky —» H® Oy — Fiy — 0. Now, for all points of Q and all
subspaces H the sheaves Fy run over a bounded family, as do the sheaves Ky.
Therefore we can find M,(n) such that for m = M, (n) we have h'(Fy(m)) = 0 and
W {(Ky(m)) = 0 for all such Fy and K.

Note now that

(1) dim H < h®(Fy),

(2) P, ((H)) = H°(Q5%) and
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(3) dim P(H® W) = y(Fy(m)) for m = M,(n) (by the previous paragraph).
The Lemma now follows from Proposition (A.6) [J

Lemma A.10. There exists My(n) =2 M,(n) such that for m = M;{(n) the following
holds. Suppose (p, {(P2.i» P1.0)}1) €& is a point which is GIT-semistable then
C"— H°(F) is an isomorphism, and for all quotients F L G > 0 we have

(= 2h°(G) + nr(G)) + Y(k — B)(— 21°(G) + nh®(Q5.0))

+ 2(Bi — a) (— h°(G) + nh%(QF.)) < 0. (A.8)

Proof. Denote by H, the kernel of the map C"— H°(F). Note that P, ;(H,) =0,
and P(H,;® W) = 0. But this implies, by (A.5), that H; = 0. This proves that
C"— H°(F) is an injection.

Suppose now that G is a quotient contradicting (A.8), ie.

1(2h°(G) + nr(G)) + Y(k — B)(2h°(G) + nh*(Q5.1))

+ (B — o) (= B(G) — nh%(QF ) < 0. (A9)

Let H be the kernel of the map C"— H°(G) and let F' be the subsheaf of
F generated by H. From (A.9) we conclude that h°(G) < 1, and from this and the
definition of H and F’ that

(1) dimH 2z n — h°(G) > 0,

(2) r(F')+r(G)< 2, and

(3) h(Q7) + h(Q5 )=,

(4) hO(Q% ) = dim P, ((H).
Combining these inequalities with (A.9) we get (with h = dim H as before)

=12k — nr(F')) — Y (k — B;)(2h — ndim P, (H))

- Y(Bi — o) (h — ndim Py (H)) < 0.
For large m = M(F') we can replace the first term by I[/m(h P(m) = ny(F'(m))),
which equals I/m(h P(m) — ndim P(H® W)) provided m = M,. Since the F”s

range over a bounded family we can fine M;(n) = M,(n) so that M3(n) = M(F")
for all F’s. Now, if m = M;(n) we have

- é (hP(m) — ndim P(H® W) — ¥ (k — ;)(2h — n dim P, ,(H))

~ 2B — @) (h — ndim Py «(H)) < 0.

But this contradicts (A.5) which holds by GIT semistability. Thus (A.8) is now
established.
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Let now L be a rank 1 torsion-free quotient of F. Then we have, by (A.8),
h°(L)z n/2 — |I|. This implies, since n > N,;, that H'(F)=0 and therefore
h°(F) = n. (See Remark A.4). This proves that the map C*"— H°(F) is an isomor-
phism. [

We now state the analogue of [Si, Theorem 27:

Proposition A.11. There exists an integer N > 0, and given n > N and, an integer
M(n)>0 such that for m= M(n) the following is true. A point
(p, {(p2,i> P1.:) }1) € & is GIT-stable (respectively, GIT-semistable) iff the quotient
F is torsion-free and a stable (respectively, semistable) sheaf, and the map C* - H°(F)
is an isomorphism.

We will need the following

Lemma A.12. There exists N, = Ny such that the following holds. If F is a semistable
parabolic sheaf with Euler characterstic n > N,:
(1) VF' = F we have

2R(F') = r(F')n) + Y(k — B) (2h°(F') — nh°(Q5.,))

+ 2 (Bi — ) (W°(F') — nh®(Q5 ) < 0. (A.10)
(2) If, for some F' < F, equality holds in (A.10) then, for any m = 1,

l .
oy () P(m) — ny(F'(m))) + Yk = B)(2x(F') = nh®(Q%.:))

+ 2B — @) (u(F) — nh®(Q1))) = 0. (A11)

Proof. Let F;denote the terms in the canonical filtration [ H-N] of F’ (the filtration
being defined ignoring parabolic structures), let Q; = F}/F;_,. Let u(F) denote the
slope (degree F)/(rank F). Then h°(F') < Y ,h°(Q)), u(Q;) < u(F) + c|I| for some
constant c¢. Also, by [Si, Corollary 2.5] we have, when h°(Q;) > O the inequality
h°(Qy) < r(Q:)(u(Q;) + By) for some constant By. Let v = inf{ u(Q;)| k*(Q;) > 0}.
Then h°(F') £ (r(F') — 1)(u(F) + ¢|I| + By} + (v + By). If v £ u(FY— C(C to be
fixed below) this yields #°(F’) < r(F')2n + B, — C for some constant B,; thus for
such F’ the left hand side of (A.10) is less than or equal to

h°(F')<2l + 2k |1 = (B + ozi)> — nlr(F")

< <r(§’) n+ B, — C><2l + 2k|I} — Z(Bi + oc,-)> — nlr(F')
<2(B, - C) + <2k|1| -2+ oc,-)>(n +B, - ()

= nk(B, — C) + n<2k|1| =SB+ oc,-)) using (A.1)

= nk(By — C)



Factorisation of generalised theta functions. I 613

where the last equality defines B;. Choosing C > B, we get the desired inequality
{(which is in fact strict — this will be relevant for the proof of part (2) of the lemma)
for subsheaves F' satisfying v < p(F) — C. On the other hand we can arrange (by
taking n = N,, N, large enough) that all stable bundles ¢ with rank £ 2 and
u(Q) Z u(F) — C have H'(Q) = 0, yielding, for F’ contradicting v £ u(F) — C, the
equality x(F'(m)) = h°(F'(m)) for m = 0. Then (A.6) implies (A.10) for such F’. Part
(2) of the lemma now follows easily. [

Proof of Proposition A.11. Choose N = N, where N, is determined by the above
lemma. The proof of the “if” part is now similar to the proof of [ Si, Theorem 2],
where the first step of the proof has been isolated in Lemma A.12.

We sketch the proof of the “only if” part. Suppose (p, {(p2.;,P1.:)}1) € R is
a point which is GIT-(semi)stable. Note that by Lemma A.10, C"— H°(F) is an
isomorphism. Let t=Tor F, G = F/t and apply Lemma A.10, noting that
h(G) = n— h°(r), h°(QS,,) = 2 — h®(Q% ;) and K(QF ;) = 1 — h%(Q1 ;). We get

k(1) < Z(k — B)h®(Q%,: + (B — «)h°(Q75.1)

from which one can easily conclude (since ; > 0) that 7 = 0.

Proof of Theorem X1. The proof of the first part of the theorem (existence of %) is
now similar to the proof of [ Si, Theorem 27]. That % is projective follows from the
GIT construction. The other properties of % follow from the corresponding facts
about #%, again by GIT. Consider for example the case when X is smooth. Define
Q; to be the open subscheme of Q consisting of locally-free quotients 0" — F — 0)
such that

(1) C"— H°(F)is an isomorphism, and

(2) H'(F)=0.
Let % be the inverse image of Q by the projection £ — Q. This is a bundle over
Qs

Ry = x o, Flagu, 2 (F,,)
iel
The projection % — Qy is smooth, and Qy itself can be proved to be smooth (in
particular irreducible) as in [ N, Remark 5.57. Thus £ is smooth, and hence so is its
open subscheme %*. This yields irreducibility and normality of %; it also follows
that % has rational singularities [ Bo].

For X anodal curve, #* can be similarly proved to be reduced and irreducible
defining Qy as above, but replacing “locally-free quotients” by “torsion-free quo-
tients”. In this case Qp is not smooth. That it is irreducible can be seen as before.
That it is reduced is the main result of [ S2, Huitiéme Partie, H1], where in fact it is
proved that given q € Qy the completion ¢, is reduced. [J

Appendix B. Generalised parabolic sheaves

Ba. The moduli space of generalised parabolic sheaves

The notation of the previous Appendix holds. In addition let X be the normalisa-
tion of X, § = g — 1 the genus of X, and n:X — X the canonical map. Let {x,x;}
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be the inverse image of x, in X. Set /i = d + 2(1 — §), and define [ by

iik = 2k|I| — 2T — Y (o + By).
(Notei=n+2,and T=1+k.)
We wish to construct the moduli space 2 of s-equivalence classes of semistable
rank 2 sheaves on X with parabolic structures at the {y,;}, (with weights w) and
a generalised parabolic structure over {x;, x,}.

Definition B.1. Let E be a rank 2 sheaf, torsion-free outside {x,, x,}, with para-
bolic structures over {y;},. A generalised parabolic structure on E over the divisor
{xy, x, } is a choice of a two-dimensional quotient Q of E; ®E,, Wedonot define
a generalised quasiparabolic structure since a certain choice of “generalised
weights” is assumed. A parabolic sheaf with, in addition, a generalised parabolic
structure over {xy, x,}, is a generalised parabolic sheaf (GPS). A GPS E is said to
be stable (respectively, semistable) with respect to the weights w if for every proper
subsheaf E’ such that E/E’ is torsion-free outside {x,, x, }, we have

’

rank E

par degree £ < 5

(resp. <)

(par degree E) — (rank E' — dim Q%)  (B.1)

where, for any subsheaf E' we denote by Qf the image of E;,, ® E}, in Q.

Theorem X2. There exists a (coarse) moduli space P(X,d, ) of "stable GPSs on X.
We have an open immersion #°(X,d,w)c P(X,d, w) where P(X,d, w) denotes the
space of s-equivalence classes of semistable GPS’s. The former is a smooth variety; the
latter a normal projective variety with rational singularities.

B.2. Outline of Proof of Theorem X2

(1) Lemma A.3 is replaced by the following result: There exists an integer N} >0
such that for any semistable generalised parabolic sheaf E of rank 2 and euler
characteristic > N| we have H' (E( — x; — X, — x)) = 0, x € X. This ensures that
HYE)=0, E is generated by sections, H°(E)— E, @®E,, is onto, and
E{ — x, — x,) is generated by sections.

(2) Let P(m) = 2m + #i. Define

R = Grass,(&,, D) x 5{ xgFlagu. 2 (8,)}
iel
(3) Define
G’ = Grassp(m (C"® W) x Grass;(C*® C?) x x {Grass,(C") x Grass (C")}.

(4) Define the polaristion on G':
(I=k)
m

xkx x {(k— B, (B — o)} (B.2)
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(5) Replace (A.5) by
(I k)

= (hP(m) — & dim P(H@® W)) + k(2h — fi dim Po(H ® C*))

+ 2k = B)(2h — A dim P, ((H)) + Y(Bi — o) (h — idim Py (H)) < 0,

{resp. £)

where Pg is the projection in the second factor of G'.
(6) Replace (A.6) by

)
m

(X(E")P(m) — fig(E'(m))) + k(2x(E") — #ih°(QF))

+ Yk — BAQE) — Ah°(QE ) + LB, — o) (x(E) — ih°QE ) < O.
i i (resp. £)

The rest of the proof of Theorem X1 goes through with obvious modifications
except that we cannot assume that the sheaves involved are torsion-free at xy and x,.
The fact that #"* is reduced, irreducible and normal is proved in Appendix C
{Lemma C.2 and Proposition C.3).

For example, the analogue of Proposition A.11 is the following result. (We
denote a point of Grass,(C"® C?) by p,.)

Proposition B.3. There exists N' and M’ such that for A2 N and m 2 M’ the
following is true. A point (p, p2,{(P2.i» P1.:) }1) € &' is GIT-stable (respectively, G1T-
semistable) iff the quotient E is torsion-free outside { x,, X, } and a stable (respectively,
semistable) generalised parabolic sheaf, and the map C* — H°(E) is an isomorphism.

Remark B.4. Note that if (E, Q) is a semistable GPS, Tor E is supported on the
reduced subscheme {x,, x,} and

(TorE),, ®(Tor E),, 5 Q. (B.3)
This follows from (B.1).

Remark B.5. The above construction of the moduli space also shows that B is

open in #' and hence, by a standard argument, semistability is an open property for
GPS’s.

Bb. S-equivalence of generalised parabolic sheaves

We enlarge the category of GPS’s by adopting the following more general defini-
tion. For simplicity we assume that no “ordinary” parabolic points are present. It
should be noted that the detailed description of s-equivalence given below (Prop-
osition B.15) is not really needed. Corollary B.17 and Proposition C.7(4) are the
lonly places where it is used; and one can give direct proofs of these without using
Proposition B.15.

Definition B.6. A generalised m-parabolic structure on a sheaf E over the divisor
{x1, x,} is a choice of an m-dimensional quotient Q of E, @ E,,. A sheaf with
a generalised m-parabolic structure will be called a m-GPS, or GPS for short.
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A GPS E is said to be stable (respectively, semistable) if E is torsion-free outside
{x1,x,}, and

(1) ifrank E > 0 then for every proper subsheaf E’ such that E/E’ is torsion-free
outside {x, x,} we have

rank E(degree E' — dim Q%) < rank E'(degree E — m). (B.4)
(resp. <)
(2) If rank E = 0, then we have E, @E,, = Q and dimQ =1 (respectively
E,@E,, =0). ,
(For any subsheaf E’, we denote by QF the image of E,, ® E., in Q).

Definition B.7. If (E, Q) is a GPS, and rank E > 0 set
(degree E — dim Q)
rank E

Examples B.8. (1) Any torsion-sheaf 7 supported on {x,, x, } is in a canonical way
a semistable GPS: one takes ¢ = 7, @1, . Such a GPS is stable iff degree v = 1.

{2) A line bundle L with a one-dimensional quotient Q of L, @ L,, is a semi-
stable GPS. It is stable iff each map L, — Q is nonzero.

(3} A line bundle L with a two-dimensional quotient Q of L, @ L,, is a semi-
stable 2-GPS. It is never stable. _

It is useful to think of a m-GPS as a sheaf E on X together with a map
. E — xoQ — 0, with Q being thought of as a sheaf on X supported on the reduced
point xq, with 2%(Q) = m. In this subsection we will omit the (pre-)subscript x,. Let
K denote the kernel of the sheaf map n E — Q.

Definition B.9. A morphism of GPS’s (E, Q) — (E", Q") is a sheaf map E — E” which
maps Kg to Ky (and therefore induces a map Q — Q”).

1el(E, Q)] =

Definition B.10. Given an exact sequence 0 » E'—> E — E” — 0 of sheaves on X,
and n E — Q — 0 a GP structure on E we define GP structures on E’ and E” via the
diagram:

0O » nE > wnE - n,E - 0

! ! !

0 - ¢ > Q0 - Q0 = 0
(The first horizontal sequence is exact because = is finite, Q' is defined as the image
in Q of m E’ so that the first vertical arrow is onto, Q" is defined by demanding that
the second horizontal sequence is exact, and finally the third vertical arrow is onto
by the snake lemma.) We will sometimes write 0 — (E', Q') > (E, Q) > (E", Q") > 0;

the meaning of such a sequence is clear.
A morphism (E, Q) — (E", Q") of GPS’s factors:

(£,Q) - (E.Q)

! T

W, Q) - (WQ1) - 0
! T
0 0

We have the following Lemmas, whose proofs we omit.
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Lemma B.11. Let (E, Q) be a GPS with rank E > 0, and suppose E is torsion-free
outside {x1, x,}. Then the following are equivalent:

(1) (E, Q) is (semi)stable.

(2) For every proper sub-GPS (E', Q') we have

rank E(degree E' — dimQ’) < rank E'(degree E — dim Q).

{resp. £)

(3) For every proper quotient GPS(E", Q") we have

rank E(degree E” — dim Q") < rank E"(degree E — dim Q).
(resp. =)
Lemma B.12. Let (E, Q) — (E", Q") be a morphism of semistable GPS’s. Assume that
if rank E % 0 and rank E” % 0, then ug[(E, Q)] = pug[(E", Q")]. Then the kernel
and cokernel are semistable GPS’s. If both (E, Q) and (E", Q") are stable GPS’s the
morphism must be an isomorphism or zero.

Proposition B.13. Fix p a rational number. Then the category of semistable GPS’s
(E, Q) such that rank E = 0 or, rank E > 0, with ug[(E, Q)] = p, is an abelian,
artinian, noetherian category whose simple objects are the stable GPS’s in the
category.

One can conclude as usual that given a semi-stable GPS it has a Jordan-Holder
filtration.

Definition B.14. Two semistable GPS’s are said to be s-equivalent if they have the
same “associated graded” GPS.

Proposition B.15. The s-equivalence classes of rank 22-GPS’s are the following:

(1) If (E, Q) is a stable GPS then E is necessarily a vector bundle, and both maps
E, — Q are isomorphisms. Two such GPS’s are s-equivalent iff they are isomorphic.

) (2) If d is even, consider GPSs (E,Q) such that E is an extension
0> L,—E— L,—0 with degree L,=d/2, p=1,2, and such that the induced
parabolic structure on L, is stable (i.e. the maps (Ly).,— Q have the same one-
dimensional image Q, — denote by Q, the quotient Q/Q;.) All such GPS’s with
(Ly, Q1) and (L1, Q) fixed form an s-equivalence class. _

(3) Consider extensions 0— E - E— t— 0, or extensions 0—»1— E—~ E—Q,
with T a torsion-sheaf of degree 1 supported at x, with the induced structure on E that
of a stable 1-GPS —denote by (E, Q) this structure. All such GPS’s with (E, Q) fixed
form an s-equivalence class. (Included in this equivalence class is the case when E is
locally-free, the map E,,—~ Q has one-dimensional image Q, the map E. — Q is an
isomorphism, and E is the kernel of the sheaf map E — Q/Q — 0, Q/Q being thought of
as a sheaf supported at x;.) -

(4) If d is even, consider extensions as in the previous case, with E an extension
0L, »EsL,»0 or 0»L,>E— L -0 degreel, = dj2, degreel, =
d/2 — 1, the induced generalised parabolic structure on Ly is stable, and that on L,
trivial. Such GPS’s with fixed (L, Q) and L, form an s-equivalence class.

(5) Same as (3) with x, in place of x;.

(6) Same as (4) with x, in place of x;.

(7) ) Extensions 0—E—E—1,®1,—0, or extensions 0-1,@17;—
E- E— 0, with 1; a torsion-sheaf of degree i supported at x;, witf: the induced
generalised parabolic structure on E trivial, E a stable bundle. (i) Extensions
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0— El - E— 10, or extensions 0 > 1, > E— E, > 0, with the induced structure
on E, that of a unstable 1- GPS, with E, in turn an extension of t, by E, with the
induced parabolic structure on E trivial. (iii) The same as (ii) with the roles of x, and
x, reversed. All such GPS’s with a fixed E form an s-equivalence class. (Included in
this equivalence class are the cases when E is locally-free, the maps E, — Q have
one-dimensional images Q;, and E is the kernel of the sheaf map E — Q, (—BQZ, the Q;
being thought of as sheaves supported on the {x;}.)

(8) If d is even, the same as above, with E an extension 0— Ly —» E— L, -0,
degree L, = d/2 — 1.

) Extenstons 0-E>E—>1—0, or extensions 0>1> E—~E—0, with
7 a torsion-sheaf of degree 2 supported at x,, with the induced generalised parabolic
structure on E trivial, E a stable bundle. All such extensions, with E fixed, form an
s-equivalence class. (Included in this equivalence class is the case when E is locally-
free, the map E,, — Q is zero.)

(10) The same as above, with E an extension 0~ L, > E—L,~0,
degree L,=d/2—1,p=1,2.

(11) Same as (9) with x, in place of x,.

(12) Same as (10) with x, in place of x,.

Remark B.16. In case (3) above the Jordan—Holder filtration has two terms, with
one of the factors a torsion sheaf of length one and the other a stable 1-GPS. In case
(7) and (9) the filtration has three terms, with one term a stable rank two bundle and
the other two torsion sheaves of length one each.

Corollary B.17. Every semistable GPS(E', Q') is sequivalent to a semistable
GPS (E, Q) with E locally free.

Appendix C. The singularities of moduli space of generalised parabolic sheaves

The notation of the previous Appendix holds. For simplicity we assume |I] = 0.
Including ordinary parabolic points makes no difference to the following consider-
ations.

Notation C.1. Define # to be the set of (closed) points (0" — E— 0,Q) in R,
where C* - H°(E) is an isomorphism, H'(E( — x, — x, — x)) = 0 for x € X, and

(T) TorE is supported on the reduced subscheme {x;,x,} and
(Tor E),, @(Tor E),,c Q.

Requiring that HII(E( — X; — X, — x)) = O ensures that H!(E) = 0, E is gener-
ated by sections, H°(E)— E,, @ E,, is onto, and E( — x; — X,) is generated by
sections. N

We will see below that J# is the set of closed points of an open subscheme of Z'.
We will continue to denote this subscheme by 5. Clearly then

R St gengi”.
Lemma C.2. The set of points where the conditions of Notation C.1 hold is open. # is
irreducible, as in A’

Proof. We first check that 2 is open. Consider the flat family of sheaves F on X,
parametrised by R’, constructed as in §4b via the sequence:

0> F - (n.dz)*x8— ,,2-0.
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Consideration (T) precisely determines the points (E, Q) where F is torsion-
free on X (Lemma 4.6(1)). This can be seen to be an open condition using
[EGA-IV, (12.2.1)]. The other conditions in the definition of # are clearly
open.

_ Next we prove the irreducibility of 5# (which, clearly, implies that of =) Let
£ be the open subscheme of # con31stxng of locally-free sheaves. This is a grass-
mannian bundle over Qy (4.5b). That QF 1s irreducible is easy to see by a standard
argument [N, Remark 5.57]; hence so is #5. We will show, in the course of the proof
of the next proposition, that % is dense in 3. [J

Proposition C.3. 3# is reduced, normal, Gorenstein and has rational singularities.
Hence the same holds for R

Proof. The claim is obvious at a point ( E, Q) corresponding to a torsion-free sheaf,
where in fact the space is smooth.

We divide the rest of the proof into steps. Let (0" — E — 0, Q) be a point of #,
with P denoting the projection E, @ E,, - Q, and assume E is not locally frec. We
shall use Lemma 4.18 and Proposition 4.19 without comment.

Step 1. The simplest nontrivial case is when ,, = 0 and the map &,,— 2 is
surjective at (E, @) and hence in an open nelghbourhood U < &' Define the sheaf
& in this neighbourhood by the exact sequence 0 — &> &— 2 0(where ., 21is
the sheaf on X x A& got by pulling back 2 from # and then restricting to
{xi}x #'), at the point (E,Q) we have, with obvious notation
0»E-E— . Q- 0. It follows from the definition of # that E is locally free,
dim H(E)=7 — 2, E is generated by global sections, and H' (E) = 0 - all this will
continue to be true in a possibly smaller neighbourhood, say U’. (To see why Eis
generated by sections use the following fact: there are exact sequences
0-E—>E->t—0and0—1,- E(— Xy — X;)— E'— 0 where E is the image of
the map E{ — x; — x,)— E, and 7, and 1, are torsion sheaves.)

_ Consider the fibre-product B of the frame bundle of the zeroth direct image of
& onto U’ with the frame bundle of 2. One has a smooth morphism B —» U’

Let now 61 be the Quot scheme of rank?2degreed —2 quotients
0"~2 - F 0, and Q} the open subset oflocally free quotients with vanishing first
cohomology such that the map C" 25 HYE ) is an isomorphism. The space Qlis
smooth. Consider on QF the bundle E = Ext!(,,C% &) of extensions [La] where
«C? is the skyscraper sheaf on the (reduced) point x; with C2 as fibre. On X xE
there is an exact sequence of sheaves flat over E:0— E—&—,C*—>0 Let
W denote the total space of the vector bunle Hom(é&,,, %) on E.

There is a smooth morphism B— W. On the other hand W is smooth which
shows the same for the original point (E, Q).

Step 2. We next turn to the case when 7, = 0, 7, + 0, and the map (&), > 2 is
not surjective. Let F denote the frame- bundle of 4, and consider a point
(Fr:Q — C?) eF above (E, Q) where p;eFroP: 1, — C is an isomorphism (p;
denoting the prOJectlon to the first co-ordinate C2— C.). The map P, = 1) oFroP:
&€+, — C is nonzero in some nelghbourhood say F;. On X x 0F, define & by the
sequence 0 — & - & 2 C=0. Asin Step 1 one sees that in a possibly smaller nelgh-

bourhood F,, & is locally free, H°( E) generates E, h°(E) =7i—1and H(E)=
Let B - F, now be the bundle of frames of the direct image of & with respect to nE
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On the other hand Jet Q! be the Quot scheme of rank 2 degree d — 1 quotients
0" '€-0, and let Q} denote the open subset of locally free quotients with
vamshmg first cohomology such that C*~'— HO(E) is an 1somorphlsm Let
E = Ext!(,;C, &) be the bundle of extensions [La] where ,,C is the skyscraper
sheaf on the (reduced) point x; with C as fibre. On X x E there is an exact sequence
of sheaves flat over E: 0 - & - &— ,,C— 0. Let W denote the total space of the
vector bundle Hom(é’x ,0%) on E. Finally let V = V(&,,) = Spec(S(&,,)) be
defined as in [EGA-], (9 4.8)].

There is a smooth morphism B - V xgW. We need, therefore, to analyse the
singularities of V. The map V xgW — Q1 is locally trivial, so clearly we can hold
E fixed for this purpose. Lemma C.4 concludes the proof in this case.

Step 3. We next consider the case when both 1., and 7., are one-dimensional. The
nontrivial case is when (&), —» 2 is not surjective at either point. (The other cases
can be reduced to at most a combination of the two earlier ones.) We now imitate
Step 2 and reduce the proof to Lemma C.6 below. []

Lemma Cd4. Let E be a rank 2 locally-free sheaf on X, let x € X be a smooth point.
Let E = Ext'(,C, E) and consider the universal extension 0— E — E— .C— 0 on
X x E. Then the space V(E,) (cf., [EGA-I, (9.4.8)]) is reduced, normal, Gorenstein,
with rational singularities.

Proof. Clearly we can replace X by an affine neighbourhood of x where E is trivial,
and then by using Noether normalisation, by the affine line Al. We let w denote the
affine co-ordinate, and identify E ~ ©*. We have then natural co-ordinates (1, u5)
on E.
Let E be the sheaf on A" XE defined by the exact sequence: 0—~ 0 — 0* -

E - 0, the map 0 — O3 being fi (u;h, u,h, — wh). The inclusion O - O given
by (f, 9)—(f,¢,0) induces an inclusion ¢* — E. We have thus the diagram on
U x E, the middle horizontal sequence eing split:

0 0
l !
O == 0
! l
0 - 02 - 0 - 0 - 0
= ! !
0 - 0? - E -5 € - 0
i 1
0 0

It is clear that E is the universal extension that we seek. (The map @ — @ is given by
h—>wh.)
Restricitng to {x} x E we get

000> E, - 0. (C3)

The map a is given by A h(u,, u,) (and is therefore an injection.) This shows that
V(E,) is the subscheme of V(¢?) defined as follows. The scheme V{(©?3) is the total
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space of the dual bundle of @3 with respect to the natural co-ordinates
(11, Uz, D1, Us, ) On V(O3) the subscheme defined by the ideal (u,v, + u,v,) is
V(E,). This is the product of the affine line with the cone over the nonsingular
quadric surface in P*, and is easily seen to be reduced, normal and Gorenstein; also,
it has a rational singularity at the vertex. [

Remark C.5. (a) # is not locally factorial. It is well-known that the cone over the
nonsingular quadric in P? is not factorial at the vertex, with class group equal to Z.

(b) The canonical map c¢: E,— @ on V(E,) is induced by the map 0° - 0,
(frg. W)+ foy + guy + hs.

(¢) The locus of non-locally-free extensions is given by the (non-Cartier) divisor
defined by the ideal (uy, u,).

(d) Let ¢ bethe map E, » 0 on V(E,) defined in (b) above, and let b be the map
obtained by restricting the map E — ,C. Consider the map E, > 0% ~ @, given by
t—(c(t), b(t)). In the complement of the non-free locus this map is of rank one
precisely when kerc = kerb = ¢, This yields the equation v; = 0, v, = 0.

() 94\, r has codimension = 3 in /. This follows from (c—d).

Lemma C.6. Let E be a rank 2 locally-free sheaf on X, let (forj=1,2) x;€ X be
smooth points. Let E' = Ext!(,,C® ,,C, E) and consider the universal extension
0-E->E- «C®,,C->0 on X xE. Then the space V(E, ®E,,) is normal,
Gorenstein, with rational singularities.

Proof. Clear extension of the proof of Lemma C4. [
We are now in a position to state
Theorem X3. @ is reduced, irreducible and normal, with rational singularities.

Proof. We use Lemma 4.18 and Proposition 4.19. These are all then immediate
consequences of well-known properties of GIT quotients. The relevant result about
rational singularities is that of [Bo]l. [

The codimension one subschemes @f and 9?3 in # are defined in §4a, and also
the subscheme 7/ of each 9/. The following description of the varieties 9; should
be kept in mind; it follows easily from Proposition B.14: @, consists of s-equiva-
lence classes of GPS’s such that the “associated graded” GPS has torsion at x,.

Proposition C.7. (1) The ij are reduced, irreducible, and normal.
(2) The 2 are reduced, irreducible, and normal.
(3) The ¥ 1 are smooth. We have ¥ { n{9{ n 25} =0.
(4) The closed orbits in 91 and 9" are contained in I " Z.

Proof. We will prove these claims for j = 1. The proofs depend heavily on the local
description of # obtained during the proof of Proposition C3.

(1) We will give the proof of (1) in some detail. By definition @i is reduced. The
divisor 9 1, ¢ is irreducible, hence so is its closure. Normality of 9, is also clear
(because, for example, it is a complete intersection and the singular set, ¥"; ¢ has
codimension 2). It remains to prove normality of 97 at points.of DIND . ¢ By
semicontinuity, at such a point (E, Q), the map E, — Q must be either zero or have
one-dimensional image.

(i) Suppose first that E is locally free at x,. Then it is not so at x, and the local
model of # at such a point is either as in Step 1 (if E., — Q is surjective) or as in
Step 2 (if E,, — Q has one-dimensional image.) of the proof of C.3. Note, however,
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that the roles of x; and x, are reversed vis-a-vis that proof. In either case the inverse
image of 9’ by the smooth map B — U’ (respectively, B— F,) is the pull back, in
turn, of & via the map B— W (respectively, B— V x ;W) where W is the total
space of the vector bundle Hom(é”x ,0?)and D = W is defined by the determi-
nantal ideal. In either case we have normahty

{ii) If E is not locally free at x,, E,, — Q must have one-dimensional image, and
there are again two cases to consider: (1) If E is locally free at x, the local model is
the divisor given by the ideal (x, y) in C[u, v, x, y1/(ux + vy)(C.5(d)). 2) If E is not
locally free at x, the local model is the product of the above with another normal
variety.

(2) We prove irreducibility. Consider the open subset of % where the torsion
subsheaf has degree 1; this set is easily seen to be dense. Such a sheaf E is necessarily
of the form E@® C,,, with E generated by global sections. It is now stralghtforward
to imitate the proof of [N, Remark 5.5]. The other facts are proved as in (i) above.
The relevant result is C.5 (4).

(3) It is easily seen that ¥{ is the set of (E, Q) such that the map E, - 2is
zero. E is therefore locally free at x,, and the map E,, - 2 sur]ectwe The local
model is as in Step 1 if E is not locally free at x,. In any case it is clear that ¥ is
smooth. The other statements have similar lproofs.

(4) This follows from Proposition B.15. []
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