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IN this paper an attempt is made to throw more light on the following
statement of Hardy and Wright in their book lutroduction fo the Theory of
Numbers.

* Fermat's and Wilson’s theorems show that 271 and (p— 1) ! have the
residues 1 and - I, mod p (p being prime). Little is known about their
residues, mod p*, but they can be transformed in interesting ways.”

Theorems | to 4, under some restrictions, give such transformations
for general values of the modulus m. Theorems 5 and 6 are equivalents

n

of Gauss' lemma regarding (p) The remaining theorems give results of

these types.
TreoreM 1. Let m, n and d be integers such that m— 1= nd. Then

/x
d¥m™ 1 1 :;}2
iy B , mod m

m d X

where <x> denotes the smallest integer greater than or equal to x, and
the summation is for all x less than and prime to m.

Proof —Consider the array

1 d,‘i,ﬂl .......... (nww l)dm*ﬂl
2d+2 (n—1)d+2
3

d 2d nd

from which all numbers not prime to m[ - nd- 1] are removed.  Let the
product of the elements of the ith row be denoted by IT' (i++jd). Then
i

a3

* T am thaokful to the referes for some very helpful suggestions.
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we have

IV (i+jd) = IT' (i (nd+ 1)~ d (ni— )}

RSUICUE AR
- {g'(—d)(ni-—j)} {1~—7[2' _L J} mod m?

where, 2 denotes summation over such values of j < n for which ni—j is
prime to m. Taking the product for i=1,2,3, ....d it is easily seen that

= i) I __11112, 1 3
Ma=(—d) na‘_1{1 - ]} mod m

=(— )%™ Ia {1 ~7% __]}, mod m?,

where [1a denotes the product of all numbers less than m and prime to it.

Therefore
d(m f — 5 I
1=(— d)"l lan j} mod m?2.

On writing: d®™ = 1+ A m, this gives

_ Ll 2
L=1+m {2 2Z m___]} mod m?,
so that
1 ]
A=32 ‘*—::-']., mod m *
¢ /x
(m) _ >
ie., d 1= 1 Py A , mod m.
m d

Corollary 1.—If m is prime and m— 1 =nd, then

d"—d_ & (1 1 1
m ,,LZ ni m—1+""+m’—~n+1)’ mod rm.
Corollary 2—Taking d= 2 in Theorem 1, which is possible if mis odd,
we get

201 1Ty, 1 ', 1
/4 1 —_— 7 1 . .
But & ~—— =— 5% ——  mod m,

,2nJ ; n—j’

J—
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V so that, if m is odd,
| 2% 11,1
- ~ 5 ‘,‘: et mod m,
1,1
22 mod m.

where 2 denotes summation over all x less than 2"-1 and prime to m.

Corollary 3.—Taking d=3 in Theorem 1, which is possible if m is of
the form 3n+ 1, we get

390 __ | 1[, 1 ) 1
o 3»‘?’—1—-:——1-222’1 +323n_1]modm
It is easily seen that
, 1 , 1
% ‘;‘:371“]:‘2; ——__—j,modm
' and
' > L =0, mod m
j <=
Therefore ]
my _
3 IE -—-%Z"——l-—.-, mod m
m 37 n—]j
=—§21, mod m
X

where m is of the form 3n+ 1, and X denotes summation over all x < %
and prime to m.
THEOREM 2. Let m+ 1=nd, and [x] the greatest integer € x. Then

d‘“"‘)-— 1_1,ln] [E]

m d
This is proved exactly like Theorem 1, by observing that

i=1, 2}<n, d— 1)

, mod m.

T G jd) = IT {— i (nd— D)+ d i+ ) (
i j
and IT' (14 ) d=d®™" x II' (j + 1),
i i

where ¢ (m, n) denotes the number of numbers not greater than »n and prime
to m.
Corollary.—Take d=3. Then

% 3°’("‘) —1 1 1

__1 ’ '
=§[2 +J+2‘? 2n+j

£4

] mod m.
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But Z" ———1—~ =0, mod m
+ .
, 1 ’
and E 2n+] %‘ iy o { mod m.
Therefore, if m is of the form 3n— 1,
$my _
3¢(7) 12__2_2, 1 b hed m
m 35, n—j—1
=— %2—1, mod m,

where 2 denotes summation over all x < 3 " and prime to m.

We therefore see that Corollary 3 of Theorem 1 is true for all values of
m prime to 3.

THEOREM 3. If a runs through all numbers less than m and prime to it

and B through all numbers less than 2"-2 and prime to m, and m is odd, then

o = (— 1) (116)2 224" mod m2.

This can be proved in the same way as theorem 133 of Hardy and
Wright’s book, making use of Corollary 2 of Theorem 1 in the place of the
more particular result used there.

THEOREM 4. If @, B, y run through all numbers prime m and are such
that e < m, B < 23& and y < ’l; and ¢ (m, n) denotes the number of numbers

not greater than » and prime to m, and m 1s prime to 3, then
Ha= (— 1)%m3) LTIR-TTy (3%0*1 _ 1} mod m?.

First, let us assume that m=3n+ 1.

Then, if II' denotes the product for numbers prime to m, and j < n
II'(1+3j)=II"{(3n+ 1) — 3 (n—j)}
i i ‘

= {H'(—3) (n-—j)} {1—-?2’ ]7_—1:7}, mod  m?
and II' 2+ 3j) = I {(m+ 3 (n+j + 1})

_ {Ij]’3(n+j+ ) {1-§"12 ﬂ-“}li“f} mod m?,
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Therefore
11’( ?j)ﬂ’( -3 )II’(? b 3) (- DEmen 3bem g1 (f1--j)II’ (n+j+1) x
}_ .
LIy "M ,l gy l
| ( :‘/)ll 3(%' ;zw'ii‘?nwf } mod m*,

b4 I
But X ) 0 mod m,
. onkjk

and hence we get the required result for m 3n+ 1 by making use of
Corollary 3 of Theorem | and the fact that 3*™ .1 mod m.

The case m 3n- 1 can be treated as  above, using corollary of
Theorem 2.

TueoreMm 5. I m 1 2ud, then d®™2 . (= 1) mod m,

where ' |
{‘S: {d’ (m 2 ‘)‘ 1 (1) b (1, id)} if d is cven E
{l o / 2i - 1d | , ) e |
x 1ip (in 3 ) ¢ (m, ld)} if d 1s odd. |
Altcm:ncly* v may be given by the relations |

Yo {;}i‘l [ (my 20y gy 200~ 1) ni] if d 18 even

{i=3din . “
} 2 bl iy pim, 200 Tya) if d s odd.
1

ST
Proof. Consider the array
Pdi 1 2dy 1., (n 1d+1
2d4+2 242 (m-—-1)d+2
3
d 2 3 nd

from which all numbers not prime to m are removed. If we denote the
product of the elements of the ith row by II' (i4- jd) 1t is clear that j runs
f

through all values from 0 to 2~ 1 such that / + jd is prime to m. We have

Ir (i jd) I {im- d (2ni - )}
j J
IT (- d)(2ni =), mod m.
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Similarly
Il {d— i+ jdy=IT' {d Qin+j + 1) — im}
$ j

= IT' {d 2ni+ j+ 1)}, mod m.
J
Therefore

E d=k—1 .
I IT (i+jd) 1T IT' (d— i+ jd)

i=1j i=0

o T I (= @) Qui— ) IT T (d) i+ j + 1), mod m.
i=0

i=1 j

Taking k= dJ2 or (d— 1)/2 according as d is even or odd we get

Ha=(— 1y d* Ila, mod m,

where o runs through the numbers prime to m and not greater than m/2.
Dividing both sides by ITe we get the required result.

In .a similar manner we may prove

THEOREM 6. If m+4 1= 2nd,

d¥* = (—1)* mod m,

[ 2 . 2i— 1 . 3

= -1 - d—

where p 1“;2'1 {95 (m,yid—1) — ¢ (m, —5— 1)}, if d is even
i
|

2 {4 (m, id—1) — ¢ (m a-ld- 1)} if dis odd.

=2
As corollaries of Theorems 5 and 6 we get,

THEOREM 7. If m =2nd + 1 be prime, then to the modulus m

m—1

m-1
d?* =(—1) *,ifdiseven

=(— 1y* @iz, if dis odd;

and

THeEOREM 8. If m = 2nd — 1 be prime, then to the modulus m

w=—1 m+1
d* =(—1),* ifdiseven

=(— 1" @12 if d is odd.
By combining the methods of Theorems 1 and 5 we get

THEOREM 9. If residues are taken to the modulus m =2nd + 1, and
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< x> and [ x] are as in Theorems 1 and 2

X

(= 1ypdb¥de -1 |
T | o, & —mod m,
m d X

P m
where the summation 1s for all x .- 5 and prime to m, and {

. ot

} denotes
i‘I

<w y,] according as N 1s even or odd, and v has the same
n/ n "/

meaning as in Theorem 5
and
TaeoreM 10. If residues are taken to the modulus m . 2nd ~ |, then

x
— 1) Y0 [') ]
(= Drdi® by -~{£-, mod m,

m d
. . M . X
where the summation 1s for all x - 9 and prime to m, and [Zn] denotes

X x : X7 .
[ or/ . % according as [] 1s even or odd, and p has the same
2n \2n "

meaning as in Theorem 6.




