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Introduction

IN a paper on the theory of multiplicative arithmetic functions R. Vaidya-
nathaswamy has investigated two operations on arithmetic functions—
¢ Composition ’ and ¢ Compounding ’. In the same paper he has introduced
the notion of a ‘ principal function ’ and has applied itto prove an interesting
theorem on multiplicative functions which are functions of the g.c.d. of the
arguments, the proof being by the method of ° generating series’. The
objects of the present paper are (1) to study an operation which generalizes
composition and compounding, (2) to study in detail principal functions,
to give a purely arithmetic proof of Vaidyanathaswamy’s result mentioned
above and to obtain other similar results, (3) to evaluate certain multiple
Dirichlet series, and (4) to evaluate certain multiple Lambert series.

The notions and notations in Vaidyanathaswamy’s paper are employed
here.

Section 1. A Generalised Composition.
1. Let (D) denote the matrix

and let f and ¢ be two arithmetic functions of a (r X 5) matrix set of argu-
ments. Consider the function

2 f (D),
the summation being for all divisions d; such that II di=M;(j=1,2,...r)
i=1

and ¢ (D)= 1. We shall show that this operation on f includes composition
and compounding as particular cases.

Let the number of rows in the matrix be two and suppose that

f(Nl1 N,)=f1(Mlv-~,Mf) X fy (N, ..., N).

o0
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If we take ¢ to be E (the function whose value is unity for all values of the
arguments) it is clear that the above operation reduces to the composumn

of f; and £, (f;/9)-
Let g (M, N) denote the greatest common d1V1sor (g.c.d.) of M and N,
If we take ¢ (1\131’ B 1\1\/11) to be I g (M;, N;), then it can easily be seen
U\ ¥ o

that the generalized operation is simply the compounding of f; and f,

(i 1.

TueoreM 1: If f and ¢ are multiplicative functions the latter being
positive integral valued, then

2 fD)=FMy ...., M,)
gD =1

‘Eldig = Mg’ (&g=1y""", 1)
is a multiplicative function of r arguments.

Proof.—Let II M; be prime to 11 N; and let (G), (DG) denote the
i=1 i=1

matrices
811, ........ ) Slr dll 811’ ........ , dlr Slr

and

respectively. Then it follows that
F(M;N,....,MN,))= 2 f(DG)

¢ (DG) =1
= 2 f(D)f(G)
y D) ¢ (G) =1
={ 2 f(D)}x{ 2 f(G)}
(D)—l (g=1,2,--",71)
=1 i=1

=FM;, ...., M\,) XF(N, ...., N,)
so that F is multiplicative.

2. The following are some other particular cases of the generalized
composition.

A M~

e,
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(1) Let g(My, -+, M,) denote the gc.d. of My, ..., M,, and define

M, ... M, .. M) XE(Ny, ....,N,). Then ¢ is
s”(NiN) to be g(My ..., M) X E(Ny

clearly multiplicative. Therefore

dy ... d,
zf (Ml/dl, o M,/d,.)
g(dy, -, d)=1; di | M;

is multiplicative if f is multiplicative.
(2) Take ¢ to be II g(M, M,) E (N, ...., N,). Then the multi-
ig

plicativity of F follows that of f.

3) Takea/x(l\éi: o) tobe

I g(M;m)EN, ... N,)
t=1

where m; (i=1,....,7) are given numbers. Then ¢ is multiplicative.
Therefore if f is multiplicative so also is the function

> 1(yih )

gd;,m) =1
(dli ;,1—1 )

(4) Letz/J(Ml’ %\I/I’) be g My, ..., M, N, .o, N then we
S\

see that if f be multiplicative
d
5 f(yy et )
Fmyd, o md,
g(dy s dp Md;, e, Myld)=1,di | M;
is also multiplicative.

3. Principal functions—f is called a principal function of r arguments
equivalent to 0 if

fM, ..., M)=0,unless M, = .... =M,
andf(M, ...., M) =0 (M).
We shall write f = princ 6.

Treorem 2: If f,, f, be two principal functions of r arguments equi-
valent to 0, and 0, respectively, then

fl'f2= pI'iIlC 91~ princ 92= princ (91. 92)’
and

1 ®f,= princ 8, @ princ 6,= princ (6, @ 8y).
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| terms in the sum

Zfi(dl,....,d,)fz(%, . 1\__'11)

ere the summation is for any set of divisors d; of M; (i = 1, ...., 7)
1 vanish unless

M M,
‘j;.::: 612' v = Cir: 75;1 = .... = ~z?;j

wiltaneously, and so it is a principal function. In particular it follows
t the composite or the compound of two principal functions is a principal
\Ction.

0
(princ 8- princ 0)) M, ..., M) =2fi(d.....d) o (7 -0 ?i)
aIM '
M
= 2 0,(d)0, 7)2(91'92) (M);
aIM
1
(princ 6, @ princ 8) (M, ..., M)= Z fi(d, ..... D) fi (X M)
dM ; g (d, M/d)=1 d

= 2 0,(d) 8, (M d) (6, @ 05) (M);
dM; g(d M/d)=

ance the required results follow.
TueorReM 3: The function
"f(«zr, o 1\/{1) 0 (d)
are the summation is for all common divisors d of My, ...., M, isequal to
(f - princ §) (M, ...., M,).
c(f-princ ) My, ..., M,)= ﬁ'ﬁ ’ f ( . r’ ) (princ 0) (dy,. ., d,)

(princ 6) (dy, ....,d,)=0unless dy= ....=4d,,
=0(d)ifd,=.... =d,=d,

M
that 7 f( T ""'d‘;) (princ 0) (d,, ..., d)

d{M;
=273 M

summation being for all common divisors d of My, ...., M,.
. A
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In a similar manner we prove

TaeoREM 4: The function

M, M,
dMy, * -+, My 5 g (d, M;[d)=1

is equal to (f @ princ 6) (My, ...., M,). | .

4, Let us write f; M, ...., M,) for '

M, M,
Zf("zl_aﬂ-w_d): ‘

g(dl, ooy dy)=1; diIMy
and g for g(M,, ...., M,). Then

:

Zf(%, 1(“71-) ) z*f(d,....,%f[f)

dM; dg g, - >—d; aM;
ngg(S]_, d) 1 87

.y, fl(%‘la ,,,_,Mf

d
dg
=(f, - princ E) (M, ...., M,), by Theorem 3.

~—— ﬁ-lg

Thus we get

THeoreM 5: I fi(My, ....,M,) = 2 f( %,&), then
gy dy) =13 dlM
f-E=f; princE;
or, equivalently (denoting the inverse of E by E-Y)
fi=f+E - princ B~
Corollary—By definition* f; (M, ...., M,)
= 2 Ey(s@. ...,d,))f(%l, %)
={E (g STM,, ..., M,), say.
Therefore, taking f to be E, we get

EO {g (Mla ceeey Mr)} = (E ' princ E~1) (Mla ceeey M?‘)

t ""tE0 is the function which vanishes unless all the arguments are unity and then is equal
0 unity.
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Example—Take f to be the function ¢; (M,, ...., M)
= ];—’ 2 (M)
where ¢; (M) is the Jordan function representing the number of scis of
fc numbers not greater than M whose g.c.d. is prime to M. Then
My, ..., M) =0 - B (M, ..., M)
where T, (M, ...., M,)= 1:/13é (M), I (M) = M?

and B (My, ....,M,)= ITE*(M,).
Applying Theorem 5 we get

M,
954( )/é( )-w(u E- E - princ B9 (M, ..., M,)
gld, ,d)= l
=g princEY (M, ...., M,)

=2 (MR”}F_"MKY w(d)

=My ..., M T p(d))d™,

where p is the Mobius function and the summations on the right-side are
for all common divisors d of My, ...., M,.

5. Let f(My, ...., M,) be the principal function equivalent to o (M)
and consider the sum

(M M
.J /’1 (/1, Ceeey (]r)f (7—17 e _...]J.’)
) d,
g (dla Tt I):I :az'le'
fi being an arbitrary function. Obviously we need consider only such

divisors which make %—1, e 3;;[7 equal, say, to £. Also we are to have
g(dy, ..., 4,) =150 ihat it fol;ows that ¢ is the g.c.d. bf M. ...., M,
Hence there is only one set of divisors (-th——', e 1\—[/1-’) for which the terms
of the sum can be non-vanishing. Therefore we have

> £, d)f(Ig-l ) jl(Ml M)z,}(f)
g (dy, "+ dA=1; diM;
Taking f; and ¢ to be E we have

E, (2) ; princ E=E, or Ey(g) = E - princ B

which is the corollary of Th. 5
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Hence we have
TueoreM 6: If ¢ denotes the g.c.d. of My, ...., M,, then

A MY 0= { (5 X Ee(@) - prined) } O s M)

= {( f; x (B-princ E-%) - princ ¢ } My, ., M,).

Taking f; = E we get
¢{g (Mla L] Mr)} = (E ' pIiI’lC E—l ‘)b) (Mla eeney Mr)
= [E - princ () - B M, ...., M,).
Thus we have

TueoreM 7*: If f(My, ...., M,)be a function () of the g.cd.
t of My, ...., M,, then it is the integral of the principal function equivalent

to the function whose integral is .
Taking ¢ to be E in Theorem 6 we get
TueoREM §: If fis the g.c.d. of My, ...., M,, then

f (l\—f-l, M’): {(f x (E - princ E)) - princ E} M, ..., M,).

Tt
Analogous to Theorem 6 we can easily obtain
TueoreM 9: If £ is the g.c.d. of My, ...., M,, then

{(f1 x Eq(2)) @ princ glr} M, ..., M,)
=f1(M-t~1, I\_f_) b, ifg (4 Mf)=1

=0, otherwise.
6. We shall require the following considerations in Section 3.
Let P(ay, ....,a,; M) denote the number of solutions in non-zero
positive integers of the equation
ax, +.... +ax,=M,
the @’s and M being positive integers, the g.c.d. of x,, ... ., x, being unity.
Consider the function

IM) =2 flgMy, ....,M,)}
ay My+ -+ +a, M,=M

Let gMy, ....,M,) =d. Then d is also a divisor of M.

* This result, when f is multiplicative, is the theorem of R. Vaidyanathaswamy mentioned
in the Introduction.
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It is therefore clear that we may write

oM =2 Z fd)
d.M alN1+"'+arNr=M/d}
g (le .'.’N7)=1

=2 fdP(ay, ....,a,; M/d).
M

This relation may also be written in the form

) (ef—l) (M) ZP(ala ‘“‘)a;'; M)’
provided f(1) 5 0.

Section 2. Multiple Dirichlet Series.

1. A series of the form
2 f(Mla ey Mr)/(Mlﬁs ey Mrsr)
M;=1;i=1,--r
shall be called a multiple Dirichlet series. In all cases under consideration

we shall suppose that sy, ...., s,'are so chosen as to ensure the absolute
convergence of the series. ,

Let Z f1 (Mla e Mr)/(MI‘HJ ter Mf's')i
oMy, o, MM, L, M)

be two multiple Dirichlet series. Then it can readily be shown that their
product is the series

2 (fi S My, oo MM, e MY,
Let f, be the principal function equivalent to . Then
Z My e MM, o, M =2 (MM,
It follows that
AWMy o, M)M®, o MAEE S (MM -+

=2 {2 (T @) onm

where Z' denotes summation for all common divisors d of My, ...., M
/4

2. Now 2 1/(M,*, ....,M,™)
g (Mp tty M?’)=]

= ZEO [g (M].? creey M?')]/(M].&' . .Mrsr)
— Z(E - princ BN (M, ..., M,)/(M;®, ....M,")
—(TEMy, .. M)V, .., M)E s (MM 47

=(T L)L Es),

where {(s) is the Riemann Zeta function 2 ’-13

pe
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Since #[g My, ...., M,)] =[E;(g) - princ ] My, ...., M,)

we have also
[{IT £ (3¢ (Zs)] x Z'¢h (M)/Mt- 4
=Xy [gMy, ...., M))I/M™, ...,
Examples—(1) Put ¢ =pu (M). Then we get
Zp(g My, -0y M), oo ML) = (IT L (s)}{L (Zs)}
(2) Put §=the Jordan function ¢, Then

5 (g Oy -, M), ., M) = é%) X C_,gzg’(sj)k)

= {(2s;—k)[[ (Zs;).
(3) Put ¢y (M) =0, (M) representing the sum of the ath powers
of the divisors of M. Then

o (8 My oo MO M= TED s 12y L )

= {1 [ (s;)} {(Zs;—a).
() Put $ (M) =0, (M) 0;(M). Then
Z'ora(g(Ml, ey r))ab (g(Ml, e ,))/ (M. ... M,

L), L) {(Esi—a) LS s b)Z(2s~a-—b)
= T@s) " [ 25— a—b)

= {(IT { (5} { (Zs5;—a) L (Zs;—b) { (&s;— a— b)/{ (2 Zs;— a— b).
3. Theorem 6 of Section 1 gives

$@F (%) = (U Bot®) - prive ) (M, .., M)

where =g (M, ...., M,).
Therefore, Z ¢ (1 f(Ml;.l, . Mi‘) /(Mlﬁa MY

= {2 f(My, .., M) Eg{g My, .., M) (M. M) X 2 (M)/MSE- - 457

But 2 f(My, ..., M)JQMS, ..., M%)
4 (MJ_: . MI’)"

_Zf(Mla ‘e M ) EO {g (Mla Cee ey Mr)}/(Mlh' . .M’:fr)
Hence we have 24 (1) f (M‘ M° e Mf') / (M. ... M)

= (ZH QDM T E PO, L MYV M,
&, (Mlg ) M’/")=1

where ¢ is the ocd of My, ...., M,.
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Section 3. Multiple Lambert Series. '

Th 2_’ f( ) “Clml X ‘ 4
¢ series My oo S R Bt 4 i
o mZ*I 1 , (1 _ xlml)- o (1 - JC?.'”’) !
i=1,

shall be called a multiple Lambert series. Here again, as in the previous
section we shall suppose that the series considered are absolutcly convergent.

Expanding the series as a power series in x,, ...., x,, we get
my my
X X,
Zfmy, ..., m AR
f( 1 v r) (l ml>‘ . ( xrm,-)

=5 (f E)(my, ....,m) x"™. .. oxm™
Replacing 7 by £+ E* we see that

m ]
1 A« 7 1

SN (o x"™. ..
Z(fEN(my, ....,m) = ,,,11) =5
. 1 r
=2f(my, ....,m)x™ . x

Let f(my, ....,m)=d{g(my, ...., m)},
= {B - pring (B1- )} (m, .., m),

Then we get

my My

xl... - X,
— xlﬁh)' . (l _ xrmf)
= 2 (/, {g (n11’ ceees I, )} \‘1”11:" Feeay xrm'.
The left-side is equal to

2 ’pi‘inc (Ew-l : (#) (‘Vﬂlv ey ’n?’) (]

T oh . Rl (X3, -',"’xf)m
W BN On) e s

so that we have

©o ) m
F B o =S e B g O ) R |

Examples.~—(1) Take i (m)=m* so that ¢ - E-* is the Jordan function
¢z Then we get

Z‘ ¢y, (m)

X )7)2
IO
(2) Put $=o0,, the sum of the ath powers of the d1v1sors of the
argument. Since (o, * EY) (m) =m® we have

o0 m
£t po, (g n o m 5
m=1 tete 7

=X{g(my, ...., m ) x™. .
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Let us put x;=x*, ...., x,= x* Then we have
2¢ {g (mla ceeey mr)} xazmz+. Oy

X (22, .. .-far)

1(¢ ’ E‘“l) (m) (1 . xmd;). L. .(1 — xma,)

~
But the left-side is equal to

5 {,,;’3 bgln, ...om)}

m=al m1+ e +afm7'==m

=5 { z zﬁ(d)P(al, ey @ ?)} X"

m=1 Cdm

where P (ay, ...., a,; m) is the number of solutions in non-zero positive
integers of the equation

GXyt .. Fax,=m
the g.c.d. of xy, ...., x, being unity (see Section 1 § 6).
Thus we get

B D=5 B )

Examples.—(1) Put y=E. Then we find

2079 Z’ L ) _ x+a1....+ar VVVVV
={ P(a, "’r’d)}xm =, ...0= )

X (Gt L 48r)
— X" (1= Xy

Z Py, ....;aq; m)x"= 2 u(m) a
m=1

(3) Put ¢ (m) =m*. Then

2’0 mé): P 5 s amay s d é} "= (lbk(n?) xﬂl(a,,{._“._{_”r)
=1 { dfm (al a;" /d) X 2(1 __xm(h)- - .(1 —xmaf)'

In particular if we put a;= .... =a,= 1, and write
P, ....,1; m)=P, (m),

we have

3 X biglmy ... m)) = ?_?l(wP,)(m)xm

m=] m1+-. cFnmy=m

-2 6 E 0 ()
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Equating coefficient of x” we get

Z biglm ..om))= 2 i (7)2 @

mytr +my=m
=dlz' r—l) E%) (m)

m =1
where (’;) denotes n(n—1) .... (n—r+ 1)/r!

fii?i .

-1
In particular 2 P, (d) = )
p dm ( ( 1)

ie., P(m)-— (;~1) (Z’I)

and m* 2 P,(d)/d*= ¢
P (r- D) #(7) |
Let the series 5 (gl: E-1) (m)/m” be absolutely convergent. Then as “:; )

m=
x tends to 1,

E6 B0 ((5) ~ { £ ¢ oo} -9

m=1

Therefore, if we denote
2 J{g(my, ....,m)} by ¥(m), we have

my - tmy=m

.
2 Y(m) ~ X Z (- EY) (m)/m7*
w” b3l ¢ (m)/Im”
Z (r) I' (r + l) m=
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