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Abstract

A method of estimation of the derivatives of a probability density
using wavelet systems is proposed. Precise order for the integrated mean
square of the proposed estimator is obtained.
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1. Introduction

Methods of nonparametric estimation of density function and regression function
are widely discussed in the literature (cf. Prakasa Rao (1993)). Rosenblatt (1991) gives
a short review of stochastic curve estimation. It is known that the estimation of the
derivative of a density as well as that of the regression function are of importance and
interest to detect possible bumps in the case of the density and to detect concavity
or convexity properties of the regression function if any. Asymptotic properties of the
kernel type estimators for the derivatives of density have been investigated earlier (cf.
Prakasa Rao (1983), p. 237).

Here we discuss the estimation of the derivatives of a density using the method
of wavelets. Antoniadis and Carmona (1991), Antoniadis et al. (1994) and Masry
(1994) discuss the estimation of density and regression function by using the method of
wavelets. Masry (1994) obtained the ezact orders for the integrated mean square error
(IMSE) of density estimator using a wavelet basis. All the earlier results on IMSE give
a bound only on the IMSE for estimators of kernel type or other estimators derived by
the method of orthogonal series. We generalize the result of Masry (1994) to estimators
of the derivatives of a density. For an overview of recent advances in nonparametric
functional estimation, see Prakasa Rao (1996).

2. Introduction to Wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions ¢ and v called the scaling function and the primary wavelet function respectively.
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The function ¢(z) is a solution of the equation

d(z)= > Ci¢(2z—k) (2.1)
k=—o0
with -
[ ¢z =1 (2.2)

and the function ¥(z) is defined by

]

¥(@)= Y (~1)Cop 62z — k). (2.3)

k=—o00

Note that the choice of the sequence {C}} determines the wavelet system. It is easy to
see that

> Crp=2 (2.4)
k=—o00
Define
dir(z) = 29/2¢(2z — k), —00 < j, k < o0 (2.5)
and
Vie(z) =272 (2 — k), —00 < j,k < oo. (2.6)

Suppose the coeflicients {C}} satisfy the condition

Z CiCrioe = 21if£=0

k=—o0

= 0if £#£0. (2.7)

It is known that, under some additional condition on ¢, the collection {t;x, —00 <
J»k < oo} is an orthonormal basis for L?(R) and {¢;x, —00 < k < oo} is an orthonormal
system in L?(R) for each —oo < j < oo (cf. Daubechies (1990)).

DEFINITION 2.1. A scaling function ¢ € C(") is said to be r-regular for an integer
r > 1 if for every non-negative integer £ < r and for any integer k,

169 (z)| < ex(1+ |z]) 7%, —o00 <z < 00 (2.8)
for some ¢, > 0 depending only on k where ¢(¢)(-) denotes the ¢-th derivative of ¢.

DEFINITION 2.2. A multiresolution analysis of L?(R) consists of an increasing se-
quences of closed subspaces {V;} of L?(R) such that

G () vi={o}

j=—00
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@ (J vi=IR);
j=—o0
(iii) there is a scaling function ¢ € V; such that

{¢(z — k), —o0 <k < o0}

is an orthonormal basis for Vp; and for all h € L(R),
(iv) for all —o0o < k < 00, h(z) € Vo = h(z — k) € Vy;
(v) h(z) € V; = h(2z) € Vji1.

Mallat (1989) has shown that given any multiresolution analysis, it is possible
to derive a function 1 (primary wavelet function) such that for any fixed j,—oco <
J < oo, the family {¢;x,—00 < k < oo} is an orthonormal basis of the orthogonal
complement W; of V; in Vj41 so that {¢;x, —00 < j,k < oo} is an orthonormal basis
of L?(R). Conversely, given any compactly supported wavelet system, it gives rise to a
multiresolution analysis of L2(R) (cf. Daubechies (1990)). When the scaling function ¢
is r-regular, the corresponding multiresolution analysis is said to be r-regular.

Let H$ denote the space of all functions g(-) in L?(R) whose first (s —1) derivatives
are absolutely continuous and define the norm

1/2

llgl

s [e o]
=Y | [ lo9
=0 | %

LEMMA 2.3. (Mallat (1989)). Let a multiresolution analysis be r-regular. Then,
for every 0 < s < r, any function g € L?>(R) belongs to H3 iff

o0

Z e%ezse < o0 (2.9)

{=—0

where €2 = ||g — gel|3 and g; is the orthogonal projection of g on V.

REMARK. The above introduction is based on Antoniades et al. (1994). For a
detailed introduction to wavelets, see Chui (1992) or Daubechies (1992). For a brief
survey, see Strang (1989).

3. Estimation of the d-th derivative f(9) of the density f

Suppose X1, Xa, ..., X, arei.i.d. (independent and identically distributed) random
variables with density f and f is d-times differentiable, d > 0. We interpret fO as f.
The problem of interest is the estimation of f@,

Assume that f(¥) € L?(R) and there exist D; > 0, 8; > 0 such that

|f9)(x)| < Dylz| ™% for |z| >1,0<j<d (3.1)
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where By > 4d + 1.

Consider a multiresolution as discussed in Section 2. Let ¢ be the corresponding
scaling function. Suppose that the multiresolution is r-regular for some 7 > d. Then,
by definition, ¢ € C"), ¢ and its derivative () up to order r are rapidly decreasing i.e.,
for every integer m > 1, there exists a constant A,, > 0 such that

An
Ne)| € =1y 0<G < (3.2
@< T )
Let
dor(z) = 2424282 — k), —00 < k, £ < 00. (3.3)
Then .
$PA(z) = 2/ g0 (ks — k), 0<j<r (3.4)
and (/2465
) 212+ 4, _
b ()] < ———=, 0<j<T. (3.5)
If d > 1, then it is clear that
Jim g7(z) 74V (@) =0, 0<j<d-1 (3.6)

for any fixed ¢ and k. Let fyq be the orthogonal projection of f(¥) on V,. Note that

00

fa(z) = Y ag; de;(x) (3.7)

j=—00

where

a, = / FD(w) d; (w)du

= (-0* [ 5w ¢ (3.8)
by (3.6) for d > 1. Clearly the equation (3.8) holds for d = 0. Hence, for all d > 0,
a; = (-1)'E [4{) (X)] . (3.9)
Let
X)) (3.10)

be an estimator of a;; based on the i.i.d. sample X1, ..., X,,. Estimate f(4) by

kn

Fra(@) = > e, b, (@) (3.11)

j=—kn
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Let
k
fora(@) =Y ar; ée;(2).
i=—k
The problem is to estimate
E||fD = fadll3- (3.12)

Note that

17D — Fually = 15D = fenall + 1 fesnd — Frall (313)
and hence

en = EIfD = faald = £ = feuknall} + Ell few bn,a = Frall3

IFD = fenalld + | fen,d = Feu km,all?
+ Elfe knd — frall3

= e +Q%+J2, (say) (3.14)
Suppose that
f9 e H;. (3.15)
It follows that
e = 0(e™%%) (3.16)
by Lemma 2.1. Note that
Q2 = |fena— fouknalls
= > lae. 5> (3.17)
{3[>kn
But
0 = (-1 [ f@o wdu
—0o0
= (-2 [ O - j)fu)du
2 ~ |
- v+
= (=1)%24 (l/2)/¢(d)(v)f< > )dv. (3.18)
Hence

lafjl S 2[:1—([/2) / ¢(d)(’l))f ('l);;]> dv + / ¢(d)('l})f (’U;;]) dv

141 151
o<1l lv]>F
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_ v+
otd (5/2){[ sup f< QEJ)
lv|<lsl/2

oo .
v+
+[ s [6000)]| [ 1(*52) v
Jol>1s1/2 I

2&1—(3/2){ ‘ Do (d) Am 2@}
Wzenyee 10+ e

_ Dyl|¢{D)||,2(6+ VB0 ottm
otd (3/2){ 0 . + 2 . 3.19
i T (3.19)

IN

[ wan

— o0

IN

IA

Hence

sz < 22£nd—€"+1 D§l|¢(d)llf 22ﬁ0(€"+1) Z ~]é[3
i, o

[51>Ka

1
2(Ln+ 2
+ 22t N mm}

< 22€nd—fn+l D(2)”¢(d)”% 22ﬁ0(€n+1) A?n 22(en+m) (3.20)
- (280 - DEZ*™H (2m—1) K™
from (3.17) and (3.19) for any integer m > 1. Let m > . Then
0 < D2||¢(@ |2 20n(2d—1)+260(en+1) . A2 92t +m)+en(2d-1)
T T @A) Ko~ (200 — DEZ*
94 {(2d—=1)+260}  92Bo+1 ~
< KB 260 = 1)D3n¢<d>||§(1 + 02 (1=0o)y)
n
9. {(2d—1)+280} 926o+1
< K (2 = 1)D3H¢<d>u§(1 +0(1)) (3.21)
n
since By > 1 and £, — oo. If
K, = 9{(2d—1)+208o+25}(¢n /(260 1)) log n, (3.22)
then
9n{(2d—1)+250} 1
=T~ (log n)PPo-1 226 Oasn = oo (323)
since By > 1 and ¢, — oo and in fact
Q2 = 0(27%%), (3.24)

Note that

o3
IR
|

1FD = Fonnall® = Q2+ 1£D = fo, all2
= 0(2726) 4 0(e25)
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by Lemma 2.1 (cf. Mallat (1989) and hence

B2 = 0(27%%). (3.25)
Let us now compute
J2 = Elfe,ked— Frdll3
Kn
= Z E(G,gn'j —‘&E"J)2
j——K
= Z Var(a, ;)
j=—K,
1 &
= = 3 Varlgf? (X)) (3.26)
J=—8Ra
and hence
n n K1 d
QTnJﬁ = 5 > Vaf[¢g).(X1)]
j=—Kn
oo 2
_ 1§ (@ d (@) d
= 5 o, () f(u)du — m (W) f(u)du
j=—Kn |

5> l ks u)f(u)dU]

j==o00

2% > / A" () ()

[i>Kn “oo
== > {(-D%a, ¥
" |il<Ka
= 51 +85+ 53 (say). (327)

Suppose that f is of bounded variation on (—00,00). Note that

oln(142d) T )
- 25 Joog £ 1(5) o

]“—00

_ o2.d 7¢(d)2(u) {28" Z f (u +J>}

j‘—OO

= 2%nd / 6D (u {7f(u )du + O(2~ n)}

—o
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(by Lemma A.1 of Masry (1994))

= 2””{ / ¢(‘”2(v)dv}(1+0(2‘€"))- (3.28)
Furthermore 1 ,
Se=-5 3 E[qsg,i?j (X))]. (3.29)
[71>Kn
But

B (0] = [ o s

oo

= 20n(2d41) / ¢(d)2(2éu—j)f(u)du
— 22[ﬂd / ¢(d)2(u)f (U;J) du
D 2 A2 ‘
22fnd { 0 (d) ™m 2{,,}
W7y 19 I+ G e

2
< 92ad {D0|l¢(d) [ 206~ +1)80 N 22"+2m‘4$n}

IA

g i (330

by methods similar to those used to derive (3.20). Hence

lnd (d)? Bo(€n+1) lo4+2m A2
5 < 2 {D0H¢ a2 2t2m A2 }

26| (B- DEPT T (2m - K2
Dol|¢@* ||y 280(én+1)=2bnd—tn

(Bo—1) Kot
A?n 2Zn +2m—2¢,,d—¢,

@R -1) g

2¢n(Bo—2d—1)980 (a)*
— et D0”¢ ”1 +O(2Zn(l—ﬁo)
(Bo — 1) K50 (Bo—1)

9ln(Bo~2d~1)

form > By > 1 as £, — oo from (3.29) and (3.30). Furthermore

o0

1 1
[Ss] < 5 Z afw < 27n|]f(d)”§- (3.32)

j=—00

We now state and prove the main theorem.
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THEOREM 3.1. Suppose that f(9) € L*(R)NHS where 0 < s <, f € BV (—00,0),
the class of functions which are of bounded variation on R and that the condition (3.1)
holds. Suppose that £, — oo and K, is as defined by (3.22) viz

K, = 2{(2d—1)+ﬁ0+2s}(€n/2ﬁ0—1)) log n. (3'33)
Then
n 2
2. (1+2d) en = / ¢ (v)dv asn — oo (3.34)

where €2 = E||f@ — f, 412.

PRrOOF. Note that

n - n
s—€n = (EIfYY - fn,d“%)2Tn
— 0(6‘28“1712_[") + 0(2—2slnn2—€n)

+22£,.d{ / ¢(d)2 (v)dv}{l + 0(26" )}

9¢n(Bo~2d—1) »
+0 (T) + 0(2 "). (335)
Furthermore £, — oo and
26n(Bo—4d=1) ygrBo=1 _, 0 a5 — 0o (3.36)
from the choice of K,,. Hence
(o]
n 2
)

REMARK. If d = 0, relation (3.37) reduces to Theorem 3.2 in Masry (1994). If
¢, = nt/(2s+1) then it follows that

2(s—d)

n T g2 / ¢(d)2 (v)dv asn — oo (3.38)
—0o0

which shows that the IMSE for the wavelet based estimator is of the same order as for
the best kernel type estimator for the d-th derivative of a density (cf. Muller and Gasser
(1979)).
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