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ABSTRACT

In the new approach to the cascade theory suggested by Alladi Rama-
krishnan and one of us (S. K. S.), we deal with the number of electrons
produced between 0 and ¢ in a soft cascade, each of these electrons having
an energy greater than E at the point of its production as contrasted
with the usual approach where we are interested in the number of electrons
with energy greater than E at z. We present here numerical calculations
of the mean numbers on the basis of the new approach.

IN a previous paper (1956) in these proceedings (hereafter referred to as
Paper I), Ramakrishnan and one of us (S. K. S.) suggested a new approach
to cascade theory which yields equations having elegant asymptotic
solutions. In the normal approach we are interested in » (E; f) the number
of particles above a certain energy E at a particular thickness # in a shower
initiated by a particle of known energy or energy distribution. On the other
hand, we now ask for N (E; #) the number of particles produced between
0 and t each with energy greater than E at the point of its production. It
is well known that n (E; 1) and N (E; #) are stochastic variates and a com-
prehensive treatment should deal with their probability distribution func-
tions. A more limited and tractable problem is to obtain the first and second
moments of the distribution. In the case of electron-photon showers the
first and second moments of n (E; #) have been tabulated by other workers.*
'We now here present the numerical calculations relating to the first moment
of N(E; 1).

In Paper I, Ramakrishnan and one of us (S. K. S.) have proved that
the mean number of electrons produced between 0 and # with their primitive
energies above E, in a shower initiated by a single electron of energy E, is
given by

* For a comprehensive account of the treatment, see Ramakrishnan and Mathews (1954).
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For fairly large thicknesses (say 7 > 4), we can neglect the term contain-
ing et and (1) can be written as
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Noting that €{N (E/E,; £)} is a function only of E¢/E or y = log E,/Ejwe
can write it as € {N(y;#)}. We next observe that as t— co the second in-
tergral tends to 0 and hence we have
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As s—2, A;—0 and B,Cg/p; remains finite and non zero at s = 2.
Hence ¢; (s) and ¢, (s; 1)—> + coas s—2. From (2) to (7), it follows
that for very large real part of s,
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tend to — oo logarithmically. Since y (s — 1) — + oo much more rapidly,
¢, (s) and &, (s; ?) tend to + oo, as s—> co. Hence ¢, and ¢, must have
a minimum as s increases along the real axis from 2 to co. Let s, and s,
be the points at which
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We can shift the line of integration in each of the integrals so that it
passes through the saddle points. This can always be achieved since the
only restriction on the line of integration is that it should be to the right of
imaginary axis and also to the right of all singularities, i.e., 0> 2. Having
chosen the contour to pass through the saddle point, we have the well-known
approximation of the saddle point method obtained by replacing each of the

functions ¢, and ¢, by the first three terms of its Taylor expansion about the
saddle point.

Thus
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Substituting (14) and (15) in (8), we have
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The mean numbers e {N (y; £)} for various values of y and ¢ have been
calculated numerically using (17). In order to obtain the saddle points,
it was found necessary to sub-tabulate at intervals of -025, the basic func-
tions As, B, C, As and pg tabulated by Janossy and Messel (1951) at in-
tervals of -1. The mean number of electrons produced in infinite thickness
and fairly large thickness are given in the following table. For convenience

of comparison, we have also tabulated e{n(y;7)}, the mean number of
electrons that exist at ¢ with an energy above E.}

 These are taken from the table of Ramakrishnan and Mathews (1954).
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«{N(y; 0}
e{n(y; 1)} is given in brackets.

y/t 4 6 8 16 co !
8 293 528 851 1372 1406 f
(94-2) (149) (146) :
7 124 249 355 502 508 !
(48-8) (61-3) (49-6) |
6 645 1 146 183 184-5 5
(23-4) (22-9) (15-1) |
5 30-6 41-6 57-9 66-4 66-5
(10+2) (7-55) (4-01)
4 10-9 147 18-9 20-51 20-53
(3-85) (2-11) (1-897)
3 6-65 7-86 8:56 8-82 8-82
(1-21) .475) (-160)

e{N(y; 1)} unlike e{n(y;?)} has an Interesting asymptotic property.
While € {n(y; 1)} —0 as t — oo, e{N(y;#)} tends to a finite value for any
finite y as t— co. The smaller the y we observe from the table, the more
quickly does €{N (y; #)} approach the limil. For almost all the y given in
the table the limit is nearly reached at ¢ = 16.

For small thickness, we cannot neglect the term containing e-#t in (1).
Then the saddle point formula as adapted here cannot be applied to this
term. An alternative method of calculation of (1) for small thickness is being |
attempted and the mean numbers for small thickness will be reported in
a subsequent contribution.

We are deeply indebted to Dr. Alladi Ramakrishnan for suggesting this
problem.
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