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1. Introduction

Let r be a positive integer, and let Z be a compact Kähler manifold of dimension
r whose Betti numbers are same as that of Pr

C but which is not isomorphic to Pr
C.

Then for r = 2, since c21 = 9 = 3c2, it follows from S.-T. Yau’s results on Calabi’s
conjecture that Z is uniformized by the open unit ball B2 in C2, i.e., it is the quotient
of B2 by a cocompact torsion-free discrete subgroup Π of the automorphism group
PU(2, 1) of B2. In this case (i.e., if r = 2), it was proved further by Bruno Klingler
[Kl], and the second author in [Y], that Π is an arithmetic subgroup of PU(2, 1).
Analogues for r > 2 of these results of Yau, Klingler and the second author are not
yet known. In this paper the quotient of the open unit ball Br in Cr by a cocompact
torsion-free arithmetic subgroup of the group PU(r, 1) of automorphisms of Br will
be called an arith! metic fake Pr

C if it has the same Betti numbers as Pr
C.

We observe that Br is the symmetric space of PU(r, 1), and Pr
C is its compact

dual. Now given a connected semi-simple real algebraic group G with trivial center,
let X be the symmetric space of G(R) (X is the space of maximal compact subgroups
of G(R)) and Xu be the compact dual of X. We shall say that the quotient X/Π
of X by a cocompact torsion-free irreducible arithmetic subgroup Π of G(R) is an
arithmetic fake Xu if its Betti numbers are same as that of Xu. For example, the
Grassmann space Grm,n of m-dimensional vector subspaces of Cn is the compact
dual of the symmetric space of the group PU(n−m,m), and so the quotient of the
symmetric space of PU(n−m,m) by a cocompact torsion-free arithmetic subgroup
of PU(n−m,m), whose Betti numbers are same as that of Grm,n, is an arithmetic
fake Grm.n.

Let G, X and Xu be as above, and let Π be a cocompact torsion-free arithmetic
subgroup of G(R). Let Z = X/Π. If Z is an (arithmetic) fake Xu, then the Euler-
Poincaré characteristic χ(Z) of Z = X/Π, and so the Euler-Poincaré characteristic
χ(Π) of Π, equals that of Xu. Using the results of [BP], we can easily conclude that
there are only finitely many irreducible arithmetic fake Xu with χ(Xu) 6= 0 (in this
finiteness assertion, G is allowed to vary). It is of interest to determine them all. If
Π is contained in the identity component of G(R), then there is a natural embedding
of H∗(Xu,C) in H∗(Z,C); see, for example, [B], 3.1 and 10.2. Thus Z = X/Π is an
arithmetic fake Xu if and only if the natural homomorphism H∗(Xu,C)→ H∗(Z,C)
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is an isomorphism. This latter property makes arithmetic fake Xu very interesting
geometrically as well as for the theory of automorphic forms.

If the symmetric space X is hermitian, then Z is a smooth complex projective
algebraic variety. Hence, if X is hermitian, an arithmetic fake Xu is a smooth
complex projective algebraic variety.

Let n be an integer > 1. The Euler-Poincaré characteristic of Pn−1
C , and so

also of any arithmetic fake Pn−1
C , is n. It is an immediate consequence of the

Hirzebruch proportionality principle, see [Se1], Proposition 23, that the orbifold
Euler-Poincaré characteristic (i.e., the Euler-Poincaré characteristic in the sense of
C.T.C. Wall, see [Se1], §1.8) of any cocompact discrete subgroup of PU(n − 1, 1),
for n even, is negative. This implies that if there exists an arithmetic fake Pn−1

C ,
then n is necessarily odd. The purpose of this paper is to determine all irreducible
cocompact torsion-free arithmetic subgroups Γ of a product G of r groups of the form
PU(n−m,m), with n > 3 odd, and 0 < m < n, whose Euler-Poincaré characteristic
χ(Γ) is equal to the Euler-Poincaré characteristic χ(Xu) of the compact dual Xu of
the symmetric space X of G. (Note that χ(Xu) > 0.)

Let Γ be an irreducible cocompact torsion-free arithmetic subgroup of G with
χ(Γ) = χ(Xu). Let G be the connected semi-simple Lie group obtained by replacing
each of the r factors PU(n − m,m) of G by SU(n − m,m). As the kernel of the
natural surjective homomorphism G → G is a group of order nr, if Γ̃ is the full inverse
image of Γ in G, then Γ̃ is an arithmetic subgroup whose orbifold Euler-Poincaré
characteristic is χ(Xu)/nr. Therefore, the orbifold Euler-Poincaré characteristic
of any arithmetic subgroup of G, which contains Γ̃, is a submultiple of χ(Xu)/nr.
Assume, if possible, that G contains an irreducible maximal arithmetic subgroup
Γ whose orbifold Euler-Poincaré characteristic χ(Γ) is a submultiple of χ(Xu)/nr.
As Γ is an irreducible maximal arithmetic subgroup of G, there exist a totally real
number field k of degree at least r over Q, an absolutely simple simply connected
group G, of type 2An−1, defined over k, r real places of k, say vj , j = 1, . . . , r, such
that G ∼=

∏r
j=1G(kvj ), and for every other real place v of k, G(kv) is isomorphic to

the compact real Lie group SU(n), and a “principal” arithmetic subgroup Λ of G(k)
such that Γ is the normalizer of Λ in G (we identify G with

∏r
j=1G(kvj ) and use this

identification to realize G(k) as a subgroup of G), see Proposition 1.4(iv) of [BP].
From the description of absolutely simple groups of type 2An−1 (see, for example,

[T1]), we know that there exists a quadratic extension ` of k, a division algebra D

with center ` and of degree s =
√

[D : `], s|n, D given with an involution σ of the
second kind such that k = {x ∈ ` |x = σ(x)}, and a nondegenerate hermitian form
h on Dn/s defined in terms of the involution σ so that G is the special unitary group
SU(h) of h. It is obvious that ` is totally complex.
The main results: In terms of the normalized Haar-measure µ on G =

∏r
j=1G(kvj )

used in [P] and [BP], and to be used in this paper, χ(Γ) = χ(Xu)µ(G/Γ) (see [BP],
4.2). Thus the condition that χ(Γ) is a submultiple of χ(Xu)/nr is equivalent to the
condition that µ(G/Γ) is a submultiple of 1/nr. We will prove (Theorems 1 and 2)
that if n > 7, there does not exist an arithmetic subgroup of G whose covolume is
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6 1/nr, and if n = 7, there does not exist an arithmetic subgroup whose covolume is
a submultiple of 1/7r. We will also prove that if n = 5, and there is an arithmetic
subgroup of G of covolume a submultiple of 1/5r, then k = Q, so r 6 1. Thus, in
particular, an arithmetic fake Pn−1

C can exist only if n = 3 or 5, and an arithmetic
fake Grm,n can exist, with n > 3 odd, only if n = 5.

The first fake projective plane was constructed by David Mumford in [M] using
p-adic uniformization. We have constructed twenty three distinct (finite) classes
of arithmetic fake projective planes, and it has been proved that there can exist
at most three more (see [PY], and the addendum to [PY]). In §5 of this paper
we construct four distinct arithmetic fake P4

C, and four distinct arithmetic fake
Gr2,5. We use certain results and computations of [PY] to exhibit five (irreducible)
arithmetic fake P2

C×P2
C in §6. All these are connected smooth (complex projective)

Shimura varieties, and these are the first examples of fake P4
C, fake Grassmannians,

and irreducible fake P2
C ×P2

C.

2. Preliminaries

A comprehensive survey of the basic definitions and the main results of the
Bruhat–Tits theory of reductive groups over nonarchimedean local fields is given
in [T2].

2.1. Throughout this paper we will use the notations introduced in the introduction.
n will always be an odd integer > 3, k a totally real number field of degree d, ` a
totally complex quadratic extension of k, and G = SU(h), where h is as in the
introduction. G is an absolutely simple simply connected k-group of type 2An−1.
All unexplained notations are as in [BP] and [P]. Thus for a number field K, DK

will denote the absolute value of its discriminant, hK its class number, i.e., the order
of its class group Cl(K). We will denote by hK,n the order of the subgroup of Cl(K)
consisting of the elements of order dividing n. Then hK,n 6 hK . We will denote by
UK the multiplicative-group of units of K, and by Kn the subgroup of K× consisting
of the elements x such that for every normalized valuation v of K, v(x) ∈ nZ.
Vf (resp. V∞) will denote the set of nonarchimedean (resp. archimedean) places

of k. As k admits at least r distinct real places, see the introduction, d > r. For
v ∈ Vf , qv will denote the cardinality of the residue field fv of kv.

For a parahoric subgroup Pv of G(kv), we define e(Pv) and e′(Pv) by the following
formulae (cf. Theorem 3.7 of [P]):

(1) e(Pv) =
q
(dimMv+dim Mv)/2
v

#Mv(fv)
.

(2) e′(Pv) = e(Pv) ·
#Mv(fv)

qdim Mv
v

= q(dimMv−dim Mv)/2
v · #Mv(fv)

#Mv(fv)
.
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If v splits in `, then

e′(Pv) = e(Pv)
n−1∏
j=1

(1− 1

qj+1
v

),

and if v does not split in `, then

e′(Pv) = e(Pv)
(n−1)/2∏
j=1

(1− 1

q2jv
)(1 +

1

q2j+1
v

),

or

e′(Pv) = e(Pv)
(n−1)/2∏
j=1

(1− 1

q2jv
)

according as v does not or does ramify in `. It is obvious that e′(Pv) < e(Pv),
and it follows from Proposition 2.10 (iii) of [P] that for any parahoric subgroup P ′v
contained in Pv, e′(P ′v) = [Pv : P ′v]e

′(Pv).

2.2. We note that if Pv is a hyperspecial parahoric subgroup of G(kv), then the
fv-group Mv, which in this case is just the “reduction mod p” of Pv, is either SLn
or SUn according as v does or does not split in `, and Mv = Mv . If v ramifies in
`, then G is quasi-split over kv, and if Pv is special, then Mv is isogenous to either
SOn or Spn−1, and so is Mv. Hence, e′(Pv) = 1 if either Pv is hyperspecial, or v
ramifies in ` and Pv is special.
2.3. (i) Let v be a nonarchimedean place of k which splits in ` and G splits at v.
Then G is isomorphic to SLn over kv, and Mv is fv-isomorphic to SLn. It can be
seen by a direct computation that for any nonhyperspecial parahoric subgroup Pv
of G(kv), e′(Pv) is an integer greater than n.

(ii) Let v be a nonarchimedean place of k which splits in ` but G does not split
at v. Then kv ⊗k D = (kv ⊗k `)⊗` D = Mn/dv

(Dv)⊕ σ(Mn/dv
(Dv)), where Dv is a

division algebra with center kv, of degree dv > 1, dv|n. Hence, G is kv-isomorphic
to SLn/dv ,Dv

. Let Pv be a maximal parahoric subgroup of G(kv). Then Mv is
fv-isomorphic to SLn, and Mv is isogenous to the product of the norm-1 torus
R

(1)
Fv/fv

(GL1) and the semi-simple group RFv/fv(SLn/dv
), where Fv is the field exten-

sion of fv of degree dv. So

#Mv(fv) =
q
n2/dv
v

qv − 1

n/dv∏
j=1

(
1− 1

qjdv
v

)
,

and hence,

e′(Pv) = qn
2(dv−1)/2dv
v

n/dv∏
j=1

(
1− 1

qjdv
v

)−1
n∏
j=1

(
1− 1

qjv

)
=

∏n
j=1(qjv − 1)∏n/dv

j=1 (qjdv
v − 1)

> q(n
2−2n)(dv−1)/2dv

v > n.

The above computation shows also that e′(Pv) is an integer.
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(iii) Now let v be a nonarchimedean place of k which does not split in `. Then
being a group of type 2An−1, with n odd, G is quasi-split over kv. It is not difficult to
see, using (2), the fact that the order of a subgroup of a finite group divides the order
of the latter, an obvious analogue for connected reductive algebraic groups defined
over a finite field of the results of Borel and de Siebenthal [BdS] on subgroups of
maximal rank of a compact connected Lie group, and the fact that for a finite field
f, the groups of f-rational points of connected absolutely simple f-groups of type Bm
and Cm, for an arbitrary m, have equal order, that e′(Pv) is an integer.

¿From (i), (ii) and (iii) we gather that for all v ∈ Vf , e′(Pv) is an integer.

2.4. Let Γ be a maximal arithmetic subgroup of G =
∏r
j=1G(kvj ) such that

nrµ(G/Γ) 6 1, see the introduction. Let Λ = Γ ∩G(k). Then Γ is the normalizer of
Λ in G, and Λ is a principal arithmetic subgroup (see [BP], Proposition 1.4(iv)), i.e.,
for every nonarchimedean place v of k, the closure Pv of Λ in G(kv) is a parahoric
subgroup, and Λ = G(k)∩

∏
v∈Vf

Pv. Let T be the set of all nonarchimedean v which
split in ` and Pv is not a hyperspecial parahoric subgroup of G(kv). Let T′ be the set
of all nonarchimedean v which do not split in `, and either Pv is not a hyperspecial
parahoric subgroup of G(kv) but a hyperspecial parahoric exists (which is the case
if, and only if, v is unramified over `), or v is ramified in ` and Pv is not a special
parahoric subgroup.
2.5. Let µn be the kernel of the endomorphism x 7→ xn of GL1. Then the center C
of G is k-isomorphic to the kernel of the norm map N`/k from the algebraic group
R`/k(µn), obtained from µn by Weil’s restriction of scalars, to µn.

As n is odd, the norm map N`/k : µn(`) → µn(k) is onto, µn(k)/N`/k(µn(`))
is trivial, and hence, the Galois cohomology group H1(k,C) is isomorphic to the
kernel of the homomorphism `×/`×

n → k×/k×
n induced by the norm map. We

shall denote this kernel by (`×/`×n)• in the sequel.
By Dirichlet’s unit theorem, Uk ∼= {±1} × Zd−1, and U` ∼= µ(`) × Zd−1, where

µ(`) is the finite cyclic group of roots of unity in `. Hence, Uk/Unk ∼= (Z/nZ)d−1,
and U`/Un` ∼= µ(`)n × (Z/nZ)d−1, where µ(`)n is the group of n-th roots of unity in
`. Now we observe that N`/k(U`) ⊃ N`/k(Uk) = U2

k , which implies that, as n is odd,
the homomorphism U`/U

n
` → Uk/U

n
k , induced by the norm map, is onto. Therefore,

the order of the kernel (U`/Un` )• of this homomorphism equals #µ(`)n.
The short exact sequence (4) in the proof of Proposition 0.12 of [BP] gives us the

following exact sequence:

1→ (U`/Un` )• → (`n/`×
n)• → (P ∩ In)/Pn,

where (`n/`×
n)• = (`n/`×

n) ∩ (`×/`×n)•, P is the group of all fractional principal
ideals of `, and I the group of all fractional ideals (we use multiplicative notation
for the group operation in both I and P). Since the order of the last group of the
above exact sequence is h`,n, see (5) in the proof of Proposition 0.12 of [BP], we
conclude that

#(`n/`×
n)• 6 #µ(`)n · h`,n.
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Now we note that the order of the first term of the short exact sequence of
Proposition 2.9 of [BP], for G′ = G and S = V∞, is nr/#µ(`)n.

Using the above observations, together with Proposition 2.9 and Lemma 5.4 of
[BP], and a close look at the arguments in 5.3 and 5.5 of [BP] for S = V∞ and G as
above, we can derive the following upper bound:

(3) [Γ : Λ] 6 nr+#Th`,n.

From this we obtain

(4) 1 > nrµ(G/Γ) >
µ(G/Λ)
n#Th`,n

.

2.6. Now we will use the volume formula of [P] to write down the precise value of
µ(G/Λ). As the Tamagawa number τk(G) of G equals 1, Theorem 3.7 of [P] (recalled
in 3.7 of [BP]), for S = V∞, gives us for n odd,

(5) µ(G/Λ) = D
(n2−1)/2
k (D`/D

2
k)

(n−1)(n+2)/4
( n−1∏
j=1

j!
(2π)j+1

)d
E,

where E =
∏
v∈Vf

e(Pv), with e(Pv) as in 2.1.

2.7. Let ζk be the Dedekind zeta-function of k, and L`|k be the Hecke L-function
associated to the quadratic Dirichlet character of `/k. Then

ζk(j) =
∏
v∈Vf

(1− 1

qjv
)−1;

L`|k(j) =
∏′

(1− 1

qjv
)−1
∏′′

(1 +
1

qjv
)−1,

where
∏′ is the product over the nonarchimedean places v of k which split in `, and∏′′ is the product over all the other nonarchimedean places v which do not ramify

in `. Hence the Euler product E appearing in (5) can be rewritten as

E =
∏
v∈Vf

e′(Pv)
(n−1)/2∏
j=1

(
ζk(2j)L`|k(2j + 1)

)
.

Since e′(Pv) = 1, if v /∈ T ∪ T′ (2.2), and e′(Pv) > n if v ∈ T (2.1 and 2.3),

(6) E =
∏

v∈T∪T′

e′(Pv)
(n−1)/2∏
j=1

(
ζk(2j)L`|k(2j+1)

)
> n#T

(n−1)/2∏
j=1

(
ζk(2j)L`|k(2j+1)

)
.

2.8. Using the functional equations

ζk(2j) = D
1
2
−2j

k

((−1)j22j−1π2j

(2j − 1)!
)d
ζk(1− 2j),

and

L`|k(2j + 1) =
(Dk

D`

)2j+ 1
2
((−1)j22jπ2j+1

(2j)!
)d
L`|k(−2j),
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we find that

(7) R := D
(n2−1)/2
k (D`/D

2
k)

(n−1)(n+2)/4
( n−1∏
j=1

j!
(2π)j+1

)d (n−1)/2∏
j=1

(
ζk(2j)L`|k(2j + 1)

)
= 2−(n−1)dζk(−1)L`|k(−2)ζk(−3)L`|k(−4) · · · ζk(2− n)L`|k(1− n).

Equations (5), (6) and (7) imply that

µ(G/Λ) = R
∏
T∪T′

e′(Pv).

As e′(Pv) is an integer for all v (see 2.3), we conclude that µ(G/Λ) is an integral
multiple of R.

2.9. As χ(Λ) = χ(Xu)µ(G/Λ) ([BP], 4.2), we have the following

(8) χ(Γ) =
χ(Λ)

[Γ : Λ]
=
χ(Xu)µ(G/Λ)

[Γ : Λ]
.

Proposition 2.9 of [BP] applied to G′ = G and Γ′ = Γ implies that any prime divisor
of the integer [Γ : Λ] divides n. Now since µ(G/Λ) is an integral multiple of R (the
latter as in (7)), we conclude from (8) that if χ(Γ) is a submultiple of χ(Xu), then
any prime which divides the numerator of the rational number R is a divisor of n.
We state this as the following proposition.

Proposition 1. If the orbifold Euler-Poincaré characteristic of Γ is a submultiple
of χ(Xu), then any prime divisor of the numerator of the rational number R divides
n.

2.10. We know (cf. [P], Proposition 2.10(iv), and 2.3 above) that

(9) for all v ∈ Vf , e(Pv) > 1, and for all v ∈ T, e(Pv) > e′(Pv) > n.

Now combining (4), (5) and (9), we obtain

(10) 1 > nrµ(G/Γ) >
D`

(n−1)(n+2)/4

D
(n−1)/2
k h`,n

( n−1∏
j=1

j!
(2π)j+1

)d
.

It follows from Brauer-Siegel Theorem that for all real s > 1,

(11) h`R` 6 w`s(s− 1)Γ(s)d((2π)−2dD`)s/2ζ`(s),

where h` is the class number and R` is the regulator of `, and w` is the order of the
finite group of roots of unity contained in `. Using the lower bound R` > 0.02w` e0.1d

due to R. Zimmert [Z], we get

(12)
1
h`,n

>
1
h`

>
0.02

s(s− 1)
((2π)se0.1

Γ(s)
)d 1

D
s/2
` ζ`(s)

.
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Now from bound (10) we obtain

(13) 1 >
D`

(n−1)(n+2)/4

D
(n−1)/2
k D

s/2
` ζ`(s)

· 0.02
s(s− 1)

((2π)se0.1

Γ(s)
)d( n−1∏

j=1

j!
(2π)j+1

)d
.

Letting s = 1 + δ, with δ in the interval [1, 10], and using D` > D2
k, and the obvious

bound ζ`(1 + δ) 6 ζ(1 + δ)2d, we get

(14) D
1/d
k 6 D

1/2d
` <

[
{Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

n−1∏
j=1

(2π)j+1

j!
}·{50δ(1+δ)}1/d

]2/(n2−2δ−3)
.

We will now prove the following simple lemma.

Lemma 1. For every integer j > 2, ζk(j)1/2L`|k(j + 1) > 1.

Proof. The lemma follows from the product formula for ζk(j) and L`|k(j + 1) and
the following observation.

For any positive integer q > 2,

(1− 1
qj

)(1 +
1

qj+1
)2 = 1− q − 2

qj+1
− 2q − 1

q2j+2
− 1
q3j+2

< 1.

The above lemma implies that for every integer j > 2, ζk(j)L`|k(j+1) > ζk(j)1/2 >
1. Also we have the following obvious bounds for any number field k of degree d
over Q, where, as usual, ζ(j) denotes ζQ(j). For every positive integer j,

1 < ζ(dj) 6 ζk(j) 6 ζ(j)d.

From this we obtain the following:

Lemma 2. Let E0 =
∏(n−1)/2
j=1

(
ζk(2j)L`|k(2j+1)

)
. Then E0 > E0 :=

∏(n−1)/2
j=1 ζ(2dj)1/2.

2.11. To find restrictions on n and d, we will use the following three bounds for the
relative discriminant D`/D

2
k obtained from bounds (4)-(6), (11), (12), and Lemma

2.

(15) D`/D
2
k < p1(n, d,Dk, δ)

:=
[ 50δ(1 + δ)

E0D
(n2−2δ−3)/2
k

· {Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

n−1∏
j=1

(2π)j+1

j!
}d
]4/(n2+n−2δ−4)

.

(16) D`/D
2
k < p2(n, d,Dk, R`/w`, δ)

:=
[ δ(1 + δ)

(R`/w`)E0D
(n2−2δ−3)/2
k

· {Γ(1 + δ)ζ(1 + δ)2

(2π)1+δ
·
n−1∏
j=1

(2π)j+1

j!
}d
]4/(n2+n−2δ−4)

.

(17) D`/D
2
k < p3(n, d,Dk, h`,n)
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:=
[h`,n
E0
· {
n−1∏
j=1

(2π)j+1

j!
}dD−(n2−1)/2

k

]4/(n−1)(n+2)
.

Similarly, from bounds (4)-(6), (11), and Lemma 2 we obtain the following:

D
1/d
k 6 D

1/2d
` < ϕ(n, d,R`/w`, δ)(18)

:=
[
{Γ(1 + δ)ζ(1 + δ)2

(2π)1+δ

n−1∏
j=1

(2π)j+1

j!
} · { δ(1 + δ)

(R`/w`)E0
}1/d

]2/(n2−2δ−3)
.

3. Determining k

3.1. We define Mr(d) = minK D
1/d
K , where the minimum is taken over all totally

real number fields K of degree d. Similarly, we define Mc(d) = minK D
1/d
K , by taking

the minimum over all totally complex number fields K of degree d.
The precise values of Mr(d),Mc(d) for low values of d are given in the following

table (cf. [N]).

d 2 3 4 5 6 7 8
Mr(d)d 5 49 725 14641 300125 20134393 282300416
Mc(d)d 3 117 9747 1257728.

We also need the following proposition which provides lower bounds for the dis-
criminant of a totally real number field in terms of its degree.

Proposition 2. Let k be a totally real number field of degree d, k 6= Q. Then
(a) D1/d

k >
√

5 > 2.23.
(b) D1/d

k > 491/3 > 3.65 for all d > 3.
(c) D1/d

k > 7251/4 > 5.18 for all d > 4.
(d) D1/d

k > 146411/5 > 6.8 for all d > 5.

Proof. Let g(x, d) and x0 be as in 6.2 of [PY]. Let N(d) = lim supx>x0
g(x, d). It has

been observed in [PY], Lemma 6.3, that N(d) is an increasing function of d, and it
follows from the estimates of Odlyzko [O] that Mr(d) > N(d). We see by a direct
computation that g(2, 9) > 9.1. Hence, Mr(d) > N(d) > N(9) > g(2, 9) > 9.1, for
all d > 9. For 1 6 d 6 7, from the values of Mr(d) and Mr(d + 1) listed above we
see that Mr(d) 6 Mr(d+ 1).

(a)–(d) now follow from the values of Mr(d), for d 6 8, and the above bound for
Mr(d) for d > 9.

3.2. We note here for latter use that except for the totally complex sextic fields
with discriminants

−9747, −10051, −10571, −10816, −11691, −12167,
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and the totally complex quartic fields with discriminants

117, 125, 144,

R`/w` > 1/8 for every number field `, see [F], Theorem B′.
For r2 = d = 2, we have the unconditional bound R`/w` > 0.09058, see Theorem

B′ and Table 3 in [F].

3.3. For d and n positive integers, and δ > 0.02, denote by f(n, d, δ) the expression
on the extreme right of bounds (14) i.e.,

f(n, d, δ) =
[
{Γ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1

n−1∏
j=1

(2π)j+1

j!
} · {50δ(1 + δ)}1/d

]2/(n2−2δ−3)
.

For fixed n and δ (δ > 0.02), f(n, d, δ) clearly decreases as d increases.
We now observe that for all n > 17, n! > (2π)n+1. From this it is easy to see

that if for given d, δ, and n > 17, f(n, d, δ) > 1, then f(n+ 1, d, δ) < f(n, d, δ), and
if f(n, d, δ) < 1, then f(n + 1, d, δ) < 1. In particular, if for given d, and δ > 0.02,
f(17, d, δ) < c, with c > 1, then f(n, d′, δ) < c for all n > 17 and d′ > d.

By a direct computation we see that for 13 6 n 6 17, f(n, 2, 3) < 2.2. From the
property of f mentioned above, we conclude that f(n, d, 3) < 2.2 for all n > 13, and
all d > 2. Now Proposition 2(a) implies that for all odd n > 13, k = Q.

3.4. Now we will investigate the restriction on the degree d of k for n 6 11 imposed
by bound (14). We get the following table by evaluating f(n, d, δ), with n given in
the first column, d given in the second column, and δ given in the third column

n d δ f(n, d, δ) <
11 3 2 2.6
9 3 1.7 3.2
7 4 1.5 4.1
5 5 1.2 6.2

Taking into account the upper bound in the last column of the above table,
Proposition 2 implies the following:

If n = 11, d 6 2.
If n = 9, d 6 2.
If n = 7, d 6 3.
If n = 5, d 6 4.

We will now prove the following theorem by a case-by-case analysis.

Theorem 1. If n > 7 and the orbifold Euler-Poincaré characteristic of Γ is 6
χ(Xu)/nr, then d = 1, i.e., k = Q. If n = 7 or 5, and the orbifold Euler-Poincaré
characteristic of Γ is a submultiple of χ(Xu)/nr, then again k = Q.

Proof. (i) First of all, we will show that if n = 11, then d cannot be 2. A direct
computation shows that f(11, 2, 1.8) < 2.6. Hence, if n = 11 and d = 2, then
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D` < 2.64 < 46. However, from the table in 3.1, we see that the smallest discriminant
of a totally complex quartic is 117. So we conclude that if n = 11, then d = 1.

(ii) Let us now consider the case n = 9. We will rule out the possibility that d = 2
using bound (18). Note that we can use the lower bound R`/w` > 0.09058, see 3.2.
We see by a direct computation that ϕ(9, 2, 0.09058, 1.5)4 < 97. Hence, D` < 97
from bound (18). As Mc(4)4 = 117, d = 2 cannot occur. Hence, if n = 9, then
d = 1.

(iii) We now consider the case n = 7. We need to rule out the possibilities that
d is either 3 or 2. We see from a direct computation that f(7, 2, 1.2) < 4.3 and
f(7, 3, 1.4) < 4.14, where f(n, d, δ) is as in 3.3.

Consider first the case where d = 3 (and n = 7). As D1/6
` < f(7, 3, 1.4) < 4.14,

D` < 4.146 < 5036. This leads to a contradiction since according to the table in 3.1,
a lower bound for the absolute value of the discriminant of all totally complex sextic
fields is 9747. Hence, it is impossible to have d = 3 if n = 7.

Consider now the case where n = 7 and d = 2. As mentioned above, f(7, 2, 1.2) <
4.3, and hence,

D
1/2
k 6 D

1/4
` < f(7, 2, 1.2) < 4.3.

It follows that Dk < 4.32 < 18.5. There are then the following five cases to discuss.

(a) Dk = 5, k = Q(
√

5)
(b) Dk = 8, k = Q(

√
2)

(c) Dk = 12, k = Q(
√

3)
(d) Dk = 13, k = Q(

√
13)

(e) Dk = 17, k = Q(
√

17).

Case (e): We will use bound (16). As R`/w` > 0.09058 (see 3.2),

D`/D
2
k < p2(7, 2, 17, 0.09058, 1.26) < 1.1,

which implies that D` = D2
k = 172. From the table of totally complex quartics in [1],

we find that there does not exist a totally complex quartic with discriminant 172.
Case (d): D`/D

2
k < 4.34/132 < 2.1. Hence, D`/D

2
k = 1 or 2. So D` = 169 or 338.

From the table of totally complex quartics in [1], we see that neither of these two
numbers occurs as the discriminant of such a field. Therefore we conclude that case
(d) does not occur.

Case (c): D`/D
2
k < 4.34/122 < 2.4. Hence, D`/D

2
k = 1 or 2, and D` = 144 or

288. Again, from the table of totally complex quartics in [1], we know that there
is no complex quartic with discriminant 288. Moreover, there is a unique totally
complex quartic `, namely ` = Q[x]/(x4−x2+1) = Q(

√
−1,
√

3), whose discriminant
equals 144. It clearly contains k = Q(

√
3). We will now eliminate this case using

Proposition 1 (whenever we use Proposition 1 in the sequel, we will assume that the
orbifold Euler-Poincaré characteristic of Γ is a submultiple of χ(Xu)/nr).

In this case, we have the following data.

ζk(−1) = 1/6, ζk(−3) = 23/60, ζk(−5) = 1681/126,
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L`|k(−2) = 1/9, L`|k(−4) = 5/3, L`|k(−6) = 427/3.

(According to well-known results of Siegel and Klingen, for any positive integer
j, ζk(−(2j − 1)) and L`|k(−2j) are rational numbers . The denominators of these
rational numbers can be estimated. In this paper, we have used the functional
equations of the Dedekind zeta and Hecke L-functions and the software PARI to
compute the required values of these functions. The values have been rechecked
using MAGMA. This software provides precision up to more than 40 decimal places,
which, in view of the bounds for the denominators of the zeta and L-function values
provided to us by Shigeaki Tsuyumine, is sufficient to determine the precise values.)
Therefore, µ(G(kvo)/Λ) is an integral multiple of

2−12ζk(−1)L`|k(−2)ζk(−3)L`|k(−4)ζk(−5)L`|k(−6) = 23 · 412 · 61/216 · 38.

As the numerator of this number is not a power of 7, according to Proposition 1 this
case cannot occur.

Case (b): D`/D
2
k < 4.34/82 < 5.4. Hence, D`/D

2
k = c and D` = 64c, where c

is a positive integer 6 5. As D` > Mc(4)4 > 117, the possible values of D` are
128, 192, 256, 320. According to the tables in [1], the only possibilities are:
D` = 256: ` is obtained by adjoining a primitive 8-th root of unity to Q; the class
number of this field is 1.
D` = 320: ` is obtained by adjoining a root of the polynomial x4 − 2x3 + 2 to Q,
the class number of this field is also 1.

Now, as p3(7, 2, 8, 1) < 3.1, from bound (17) we find that D` 6 3× 82 = 192. So
neither of the above two cases can occur.

Case (a): As Dk = 5, D` is an integral multiple of 25. We will now use
bound (16) to find an upper bound for D`/D

2
k, making use of the estimate of

Friedman [F] mentioned in 3.2 that R`/w` > 1/8 if D` 6= 125. We find that
D`/D

2
k < p2(7, 2, 5, 1/8, 1.3) < 8.7. So D` = 25c, where c is a positive integer 6 8.

Since the smallest discriminant of a totally complex quartic is 117, c > 5. Hence,
5 6 c 6 8. The possible values of D` are therefore 125, 150, 175, 200. From the
tables in [1] we see that there is no totally complex quartic field with discriminant
150, 175 or 200, whereas the field ` obtained by adjoining a primitive 5th root of
unity to Q is the unique totally complex quartic field with D` = 125. It is a cyclic
extension of Q, and it contains k = Q(

√
5). We will use Proposition 1 to eliminate

this case. In this case, we have the following data.

ζk(−1) = 1/30, ζk(−3) = 1/60, ζk(−5) = 67/630,

L`|k(−2) = 4/5, L`|k(−4) = 1172/25, L`|k(−6) = 84676/5.

Hence µ(G(kvo)/Λ) is an integral multiple of

2−12ζk(−1)L`|k(−2)ζk(−3)L`|k(−4)ζk(−5)L`|k(−6) = 67 · 293 · 21169/210 · 34 · 57 · 7.

Again, as the numerator of this number is not a power of 7, according to Proposition
1 this case cannot occur.
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(iv) Finally we take-up the case n = 5. We will rule out the possibilities that
d = 4, 3 or 2.

(1) Consider first the case where n = 5 and d = 4. Bound (14) with δ = 1 leads to
D

1/8
` < f(5, 4, 1) < 6.4. Now from Table 2 of [F] we find that R`/w` > 0.1482. Next

we use bound (18) to conclude that D1/4
k 6 D

1/8
` < ϕ(5, 4, 0.1482, 1.2) < 6.05. As

6.054 < 1340, Dk < 1340. From the list of quartics with small discriminants given
in [1], we see that the only integers smaller than 1340 which are the discriminant of
a totally real quartic k are 725 and 1125. Moreover, for either of these two integers,
there is a unique totally real quartic field k whose discriminant is that integer. Each
of these fields has class number 1. Now if Dk = 1125,

D`/D
2
k < 6.058/11252 < 2,

so D`/D
2
k = 1. This implies that D` = 11252 = 1265625. On the other hand, if

Dk = 725,
D`/D

2
k < 6.058/7252 < 4.

Hence, D` = 7252c with c 6 3. In particular, D` 6 1576875.
Gunter Malle has determined that there is exactly one pair (k, `) of number fields

with (Dk, D`) among the four possiblities above. k (resp., `) is obtained by adjoining
a root of x4−x3−4x2+4x+1 (resp., a primitive 15th root of unity which is a root of
x8−x7 +x5−x4 +x3−x+1) to Q. For this pair Dk = 1125, D` = 11252 = 1265625,
and the class number of ` is 1. We will now employ Proposition 1 to eliminate this
case. We have the following values of the Dedekind zeta and Dirichlet L-functions
for this pair (k, `).

ζk(−1) = 4/15, ζk(−3) = 2522/15, L`|k(−2) = 128/45, L`|k(−4) = 2325248/75.

From which we conclude that µ(G(kvo)/Λ) is an integral multiple of

2−16ζk(−1)L`|k(−2)ζk(−3)L`|k(−4) = 22 · 13 · 31 · 97 · 293/35 · 55.

As the numerator of this number is not a power of 5, Proposition 1 rules out this
case.

(2) We will consider now the case where n = 5 and d = 3. As ` is a totally
complex sextic field, from 3.2 we know that R`/w` > 1/8 unless ` is a totally
complex sextic field whose discriminant equals one of the six negative integers listed
in 3.2. Now using this lower bound for R`/w`, we deduce from (18) that Dk 6

D
1/2
` < ϕ(5, 3, 1/8, 1)3 < 6.243 < 243. On the other hand, if ` is a totally complex

sextic field whose discriminant equals one of the six negative integers listed in 3.2,
then Dk 6 121671/2 < 111. Hence, if n = 5, d = 3, then Dk < 243. From Table B.4
in [Co] of discriminants of totally real cubic number fields we infer that Dk must
equal one of the following five integers: 49, 81, 148, 169, and 229.
• If Dk = 229, D`/D

2
k < 6.246/2292 < 1.2. Hence, D` = 2292 = 52441. There are

however no such totally complex sextic fields according to [1].
• If Dk = 169 or 148, D` > D2

k > 1482 > 12167, and hence R`/w` > 1/8, see 3.2. We
will now use bound (16). As p2(5, 3, 169, 1/8, 1.1) < 1.9, and p2(5, 3, 148, 1/8, 1.1) <
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2.3, D` must equal cD2
k for some c 6 2. None of these appear in the table t60.001

of totally complex sextics in [1].
• If Dk = 81, then 812|D`, but none of the six negative integers listed in 3.2 are
divisible by 812. Hence, R`/w` > 1/8. We will again use bound (16). We see by
a direct computation that p2(5, 3, 81, 1/8, 1.1) < 6.2. Therefore, if Dk = 81, then
D` = cD2

k, with 1 6 c 6 6. But from the table t60.001 in [1] we see that there is
no totally complex sextic field the absolute value of whose discriminant equals 812c,
with 1 6 c 6 6, except for c = 3. Thus D` can only be 3× 812 = 19683.

Let k be the field obtained by adjoining a root of x3 − 3x − 1 to Q, and ` its
totally complex quadratic extension obtained by adjoining a primitive 9th root of
unity to Q. Then k (resp., `) is the unique totally real cubic (resp., totally complex
sextic) field with Dk = 81 (resp., D` = 19683). In this case, we have the following
data on the values of the zeta and L-functions.

ζk(−1) = −1/9, ζ(−3) = 199/90, L`|k(−2) = −104/27, L`|k(−4) = 57608/9.

From which we conclude that µ(G(kvo)/Λ) is an integral multiple of

2−12ζk(−1)L`|k(−2)ζk(−3)L`|k(−4) = 13 · 19 · 199 · 379/27 · 39 · 5.
As the numerator of this rational number is not a power of 5, according to Propo-
sition 1 this case cannot occur.

• If Dk = 49, then D` is divisible by 492, but none of the six negative integers
listed in 3.2 are divisible by 492. So R`/w` > 1/8. We apply bound (16) to obtain
D`/D

2
k < p2(5, 3, 49, 1/8, 1.2) < 14.3. Hence, D` = 492c, with 1 6 c 6 14. On the

other hand, the table in 3.1 implies that c > 9747/492 > 4. Therefore, we need only
consider 5 6 c 6 14. From the table t60.001 in [1] we see that among these ten
integers, 7×492 = 16807 is the only one which equals D` of a totally complex sextic
`. This ` is obtained by adjoining a primitive 7th root of unity to Q and it contains
the totally real cubic field k obtained by adjoining a root of x3 − x2 − 2x+ 1 to Q.
It is easy to see that Dk = 49 in this case. We have the following data on the values
of the zeta and L-functions.

ζk(−1) = −1/21, ζ(−3) = 79/210, L`|k(−2) = −64/7, L`|k(−4) = 211328/7.

From which we conclude that µ(G(kvo)/Λ) is an integral multiple of

2−12ζk(−1)L`|k(−2)ζk(−3)L`|k(−4) = 13 · 79 · 127/32 · 5 · 74.

Again, as the numerator of this rational number is not a power of 5, according to
Proposition 1 this case cannot occur.

(3) We will consider now the case n = 5, d = 2. We recall the lower bound
R`/w` > 0.09058 from 3.2. From bound (18) we obtain that D

1/2
k 6 D

1/4
` <

ϕ(5, 2, 0.09058, 1) < 6.7. Since 6.72 < 45, Dk 6 44. It follows that the discrimi-
nant Dk of the real quadratic field k can only be one of the following integers,

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44.



ARITHMETIC FAKE PROJECTIVE SPACES AND GRASSMANNIANS 15

• If Dk > 37, then D`/D
2
k < 6.74/372 < 2. In these cases, D` = D2

k is one of the
following integers 1369, 1600, 1681, 1936. Of these only 1600 and 1936 appear as
the discriminant of a totally complex quartic `, check [1]. Moreover, there is a unique
totally complex quartic ` with D` = 1600 (resp., D` = 1936). The class number of
both of these quartics is 1. Now we will use bound (17). Since p3(5, 2, 40, 1) < 0.6 < 1
and p3(5, 2, 44, 1) < 0.5 < 1, if either Dk = 40 or 44, then D`/D

2
k < 1, which is

impossible.

• If Dk = 33, then D` > 332 = 1089, and hence R`/w` > 1/8, see 3.2. Now from
bound (16) we obtain that D`/D

2
k < p2(5, 2, 33, 1/8, 1) < 2. Hence, D` = D2

k = 1089.
There is a unique totally complex quartic ` whose discriminant is 1089. Its class
number is 1. Now we apply bound (17), 1 6 D`/D

2
k < p3(5, 2, 33, 1) < 0.77, to reach

a contradiction.

• If Dk = 29, then D`/D
2
k < 6.74/292 < 3. Hence, D`/D

2
k = 1 or 2 . Therefore,

D` = 292 = 841 or 1682. Neither of these two integers is the discriminant of a totally
complex quartic ([1]).

• If Dk = 17 or 13, then D` > 169, and hence R`/w` > 1/8 from 3.2. Now we will
use bound (16). As p2(5, 2, 17, 1/8, 1) < 4.7, and p2(5, 2, 13, 1/8, 1) < 7.2, D` = 172c,
with 1 6 c 6 4, or D` = 132c, with 1 6 c 6 7. But of these eleven integers none
appears as the discriminant of a totally complex quartic field.

• To eliminate the remaining cases (namely, where Dk = 5, 8, 12, 21, 24 or 28),
we will use Proposition 1. Let us assume in the rest of this section that Dk is one of
the following six integers: 5, 8, 12, 21, 24, 28. As D` is an integral multiple of D2

k,
we conclude from 3.2 that unless D` = 125 or 144, R`/w` > 1/8. We will now use
upper bounds (16) and (17) for D`/D

2
k to make a list of the pairs (k, `) which can

occur.

(i) As p2(5, 2, 28, 1/8, 1) < 2.1, if Dk = 28, then D` = 282c, with c = 1 or 2. We see
from [1] that the class number of any totally complex quartic ` with D` = 282 or
2×282 is 1. Now we note that p3(5, 2, 28, 1) < 1.1. Hence D` can only be 282 = 784.
The corresponding quartic field is ` = Q[x]/(x4 − 3x2 + 4) = Q(

√
−1,
√

7), which
contains k = Q(

√
7). We shall denote this pair (k, `) by C1.

(ii) As p2(5, 2, 24, 1/8, 1) < 2.6, if Dk = 24, then D` = 242c, with 1 6 c 6 2. Of these
integers, only 242 = 576 is the discriminant of a totally complex quartic. There are
two totally complex quartics with discriminant 576, but only one of them contains
k = Q(

√
6). This quartic is ` = Q[x]/(x4−2x2 +4) = Q(

√
−3,
√

6). We shall denote
this pair (k, `) by C2.

(iii) As p2(5, 2, 21, 1/8, 1) < 3.3, if Dk = 21, then D` = 212c, with 1 6 c 6 3. Of
these three integers, only 212 = 441 is the discriminant of a totally complex quartic
`. This quartic is ` = Q[x]/(x4 − x3 − x2 − 2x+ 4) = Q(

√
−3,
√
−7), and it clearly

contains k = Q(
√

21). We shall denote this pair (k, `) by C3.

(iv) As p2(5, 2, 12, 1/8, 1) < 8.3, if Dk = 12, then D` = 122c, with 1 6 c 6 8.
Among these, only for c = 1, 3, 4, and 7, there exists a totally complex quartic
` with D` = 122c, and all these quartics have the class number 1. Now we note
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that p3(5, 2, 12, 1) < 4.4, which implies that c 6 4; i.e., c = 1, 3, or 4. The quartics
corresponding to c = 3 and 4 do not contain Q(

√
3). As we observed while dealing

with Case (c) in (iii) above, there is a unique totally complex quartic `, namely
` = Q[x]/(x4 − x2 + 1) = Q(

√
−1,
√

3), whose discriminant equals 122 = 144. It
contains k = Q(

√
3). The pair

(
Q(
√

3),Q(
√
−1,
√

3)
)

will be denoted by C4.

(v) As p2(5, 2, 8, 1/8, 1) < 16.2, if Dk = 8, then D` = 82c, with 1 6 c 6 16. Among
these, only for c = 4, 5, 8, 9, and 13, there exists a totally complex quartic field with
discriminant 82c, and all these quartics have the class number 1. Now we observe
that p3(5, 2, 8, 1) < 8.7, which implies that c = 4, 5 or 8. There is only one totally
complex quartic field ` containing k = Q(

√
2), with discriminant as above. This is

` = Q[x]/(x4 + 1) = Q(
√
−1,
√

2) (with D` = 256). The corresponding pair (k, `)
will be denoted by C5.

(vi) As p2(5, 2, 5, 1/8, 1) < 35.5, and D` > 117, see 3.1, if Dk = 5, then D` = 25c,
with 5 6 c 6 35. Among these, only for c = 5, 9 and 16, there exists a totally
complex quartic field with discriminant 25c. Thus the possible values of D` are 125,
225 and 400. There are precisely three totally complex quartic fields containing
k = Q(

√
5) and with discriminant in {125, 225, 400}. These are ` = Q[x]/(x4 −

x3 + x2 − x+ 1) (= the field obtained by adjoining a primitive 5th root of unity to
Q, its discriminant is 125), ` = Q[x]/(x4 − x3 + 2x2 + x + 1) = Q(

√
−3,
√

5) (with
discriminant 225), and ` = Q[x]/(x4 + 3x2 + 1) = Q(

√
−1,
√

5) (with discriminant
400). The corresponding pairs (k, `) will be denoted by C6, C7 and C8 respectively.

We observe that in all the above cases, the conclusion of Proposition 1 is violated,
see the last column of the table below, where R = 2−8ζk(−1)L`|k(−2)ζk(−3)L`|k(−4)
is as in (7) for n = 5 and d = 2. Hence none of these cases can occur. We have thus
completely proved Theorem 1.

(k, `) ζk(−1) ζk(−3) L`|k(−2) L`|k(−4) R

C1 2/3 113/15 8/7 80 113/32 · 7
C2 1/2 87/20 2/3 38 19 · 29/29 · 5
C3 1/3 77/30 32/63 64/3 22 · 11/35 · 5
C4 1/6 23/60 1/9 5/3 23/211 · 35

C5 1/12 11/120 3/2 285/2 11 · 19/215

C6 1/30 1/60 4/5 1172/25 293/27 · 32 · 55

C7 1/30 1/60 32/9 1984/3 31/35 · 52

C8 1/30 1/60 15 8805 587/211.

4. Restrictions on ` and the main result

4.1. We shall assume in the sequel that k = Q. (We have proved in the preceding
section that this is the case if n > 7, or if n = 7 or 5 and the orbifold Euler-Poincaré
characteristic of Γ is a submultiple of χ(Xu)/nr.) Then ` = Q(

√
−a) for some
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square-free positive integer a. By setting d = 1 and Dk = 1 in bound (13) we obtain

1 >
D

(n−1)(n+2)/4
`

D
s/2
` ζ`(s)

· 0.02
s(s− 1)

· (2π)se0.1

Γ(s)
·
n−1∏
j=1

j!
(2π)j+1

.

Using the obvious bound ζ`(s) 6 ζ(s)2, and by setting s = 1 + δ, we derive from
the above that

(19) D` < {50δ(1 + δ)e−0.1Γ(1 + δ)(2π)−1−δζ(1 + δ)2
n−1∏
j=1

(2π)j+1

j!
}4/(n2+n−2δ−4).

4.2. Denote by d(n, δ) the right hand side of the above bound. We see, as in 3.3,
that for a fixed value of δ, d(n, δ) decreases as n increases provided n > 19. We
obtain the following upper bound for d(n, δ) for n listed in the first column and δ
listed in the second column of the following table:

n δ D` < d(n, δ) <
19 2 2.2
17 2 2.7
15 2 3.4
13 2 4.5
11 2 6.2
9 2 9.4
7 1 15.7
5 0.5 37.4

The bound for D` given by the bound for d(n, δ) in the above table restricts
the possibilities for n and `. In particular, since an imaginary quadratic field has
discriminant at least 3, we deduce from the above table and the monotonicity of
d(n, δ) for a fixed δ that it is impossible for n to be larger than 15. We recall that for
` = Q(

√
−a), where a is a square-free positive integer, D` = a if a ≡ 3 (mod 4), and

D` = 4a otherwise. From the above table we now obtain the following enumeration
of all possible n and `.

(a) n 6 15.
(b) The number field ` equals Q(

√
−a), where for all odd n, 5 6 n 6 15, the possible

values of a are listed below:

n a
15 3
13 1, 3
11 1, 3
9 1, 2, 3, 7
7 1, 2, 3, 7, 11, 15
5 1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 35.

4.3. It is known that the class number of the fields ` appearing in the above table
is 1, except when a = 5, 6, 15, or 35, in which cases ` has the class number 2, or



18 ARITHMETIC FAKE PROJECTIVE SPACES AND GRASSMANNIANS

a = 23, or 31, in which cases ` has the class number 3. Hence from (10) we get the
following bound:

(20) D` < [h`,n
n−1∏
j=1

(2π)j+1

j!
]4/(n−1)(n+2),

where h`,n can only be 1 or 3 since n is odd. Let λ(n, h`,n) be the function on the
right hand side of the above bound. Direct computation yields the following table.

n 15 13 11 9 7 5
λ(n, 3) < 3.3 8.1
λ(n, 1) < 3.3 4.2 5.5 7.7 11.2 17.6.

Using the above table, and upper bound (20) for D`, we conclude the following.

Proposition 3. The only possibilities for the number field ` = Q(
√
−a) are those

listed in the following table.

n a
15 3
13 1, 3
11 1, 3
9 1, 3, 7
7 1, 2, 3, 7, 11
5 1, 2, 3, 7, 11, 15.

4.4. In the considerations so far we did not need to assume that Γ is cocompact.
We will henceforth assume that Γ is cocompact, and make use of the description of
G given in the introduction. Let `, the division algebra D, and the hermitian form
h be as in there.

If D = `, then h is an hermitian form on `n and its signature over R is (n−m,m),
n > m > 0. The hermitian form h gives us a quadratic form q on the 2n-dimensional
Q-vector space V = `n defined as follows:

q(v) = h(v, v) for v ∈ V.

The quadratic form q is isotropic over R, and hence by Meyer’s theorem it is isotropic
over Q (cf. [Se2]). This implies that h is isotropic, and hence so is G/Q. Then by
Godement’s compactness criterion, Γ is noncocompact, which is contrary to our
hypothesis. We conclude therefore that D 6= `, and so it is a nontrivial central
simple division algebra over `.

From the classification of central simple division algebras over `, which admit an
involution of the second kind, we know that the set T0 of rational primes p which
split in `, but the group G does not split over Qp, is nonempty. Note that T0 ⊂ T,
where T is as in 2.4, and p ∈ T0 if, and only if, Qp ⊗Q D = (Qp ⊗Q `) ⊗` D is
isomorphic to Mr(Dp) ⊕Mr(Do

p), where Dp is a noncommutative central division
algebra over Qp, Do

p is its opposite, and r is a positive integer. We shall denote the
degree of Dp by dp in the sequel.
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4.5. Now we will use the Euler product E appearing in the volume formula (5) to
eliminate all but the pair (n, a) = (5, 7) appearing in Proposition 3. Recall from 2.7
that

E =
∏

p∈T∪T′

e′(Pp)
(n−1)/2∏
j=1

(
ζ(2j)L`|Q(2j + 1)

)
= E1E2E3,

where

E1 =
∏

p∈T∪T′

e′(Pp),

E2 =
(n−1)/2∏
j=1

ζ`(2j + 1),

E3 =
(n−1)/2∏
j=1

ζ(2j)
ζ(2j + 1)

.

In the above we have used the simple fact that L`|Q(j) = ζ`(j)/ζ(j).
4.6. Clearly, E2 > 1 since each factor in the product formula for ζ`(2j + 1), for
j > 0, is greater than 1. Also, e′(Pp) is an integer for all p, and for p ∈ T, e′(Pp) > n
(see 2.1 and 2.3). Now from (4), (5), (6) and (9) we obtain

D` 6
(
h`,n

n#T

E

n−1∏
j=1

(2π)j+1

j!
)4/(n−1)(n+2)

<
(
h`,n

n#T

E1E3

n−1∏
j=1

(2π)j+1

j!
)4/(n−1)(n+2)

6
(
h`,n ·

∏
p∈T0

n

e′(Pp)
·
(n−1)/2∏
j=1

ζ(2j + 1)
ζ(2j)

·
n−1∏
j=1

(2π)j+1

j!

)4/(n−1)(n+2)
.

It follows from 2.1 and 2.3(ii) that for p ∈ T0, e′(Pp) is an integral multiple of∏n
j=1(pj − 1)∏n/dp

j=1 (pjdp − 1)
,

where dp > 1 and dp|n. Let q be the largest prime belonging to T0. Then∏
p∈T0

e′(Pp)
n

>
1
n
·
∏n
j=1(qj − 1)∏n/dq

j=1 (qjdq − 1)
,

which implies that
D` < L(n, dq, q, h`,n),
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where for any divisor d of n,

L(n, d, q, h`,n) =
(
nh`,n ·

∏n/d
j=1(qjd − 1)∏n
j=1(qj − 1)

·
(n−1)/2∏
j=1

ζ(2j + 1)
ζ(2j)

·
n−1∏
j=1

(2π)j+1

j!

)4/(n−1)(n+2)
.

Note that L(n, d, q, h`,n) is decreasing in q if the other three arguments are fixed.
Also note that L(n, dq, q, h`,n) 6 L(n, d, q, h`,n), where d is any divisor of dq.

Let a be a square-free positive integer. We recall now the following well-known
fact (cf. [BS]).

Lemma 3. (a) An odd prime p splits in ` = Q(
√
−a) if, and only if, p does not

divide a, and −a is a square modulo p.
(b) 2 splits in ` if, and only if, a ≡ −1 (mod 8).
(c) A prime p ramifies in ` if, and only if, p|D`.

As q ∈ T0, q splits in `. Thus if p = pa is the smallest prime splitting in ` =
Q(
√
−a), then q > p. Hence, D` < L(n, dq, q, h`,n) 6 L(n, dq, p, h`,n).

We easily see using Lemma 3 that the smallest prime splitting in ` = Q(
√
−a) for

a = 1, 2, 3, 7, 11 and 15 are respectively 5, 3, 7, 2, 3 and 2. The class number h` of
` = Q(

√
−a), for a = 1, 2, 3, 7, 11 and 15 are 1, 1, 1, 1, 1 and 2 respectively. Now

we see by a simple computation that for the pairs (n, a) appearing in Proposition
3, L(n, d, p, h`,n) < D`, for any prime divisor d of n, except for (n, a) = (5, 7).
Moreover, L(5, 5, 2, 1) > DQ(

√
−7) = 7, but for any q > 2, L(5, 5, q, 1) < 7. We

conclude therefore the following.

Theorem 2. The only possibilities for `, n and T0 are ` = Q(
√
−7), n = 5 and

T0 = {2}.
In particular, PU(n−m,m), with n odd, and 0 < m < n, can contain a cocompact

arithmetic subgroup whose orbifold Euler-Poincaré characteristic is χ(Xu)/n, where
Xu is the compact dual of the symmetric space of PU(n−m,m), only if n = 3 or 5.

5. Four arithmetic fake P4
C and four arithmetic fake Gr2,5

5.1. Let now k = Q, ` = Q(
√
−7), and D be a division algebra with center ` and

of degree 5 such that for every place v of ` not lying over 2, `v ⊗` D is the matrix
algebra M5(`v), and the invariant of D at v′ is a/5 and at v′′ it is −a/5, where v′

and v′′ are the places of ` lying over 2, and a is a positive integer less than 5. Let
m = 1 or 2. Then D admits an involution σ of the second kind such that if G is the
simply connected simple algebraic Q-group with

G(Q) = {x ∈ D× | xσ(x) = 1 and Nrdx = 1},
then G(R) is isomorphic to SU(5 − m,m). We note that by varying a, and for a
given m, varying the involution σ of D, we get exactly two distinct groups G up to
Q-isomorphism.

Let G be as above. We fix a maximal compact-open subgroup P =
∏
Pq of

the group G(Af ) of finite adèles of G, where for all q 6= 2, 7, Pq is a hyperspecial
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parahoric subgroup of G(Qq), P2 = G(Q2), and P7 is a special maximal parahoric
subgroup of G(Q7) (we note that there are exactly two such parahoric subgroups
containing a given Iwahori subgroup of G(Q7) and they are nonisomorphic as topo-
logical groups, cf. [T2]). Let Λ = G(Q) ∩ P . Then Λ, considered as a subgroup of
G(R), is a principal arithmetic subgroup. The following lemma implies that Λ is
torsion-free.

Lemma 4. Let D be a division algebra of degree 5 with center ` = Q(
√
−a), where

a is a square-free positive integer different from 11. Let τ be an involution of D of
the second kind. Then the subgroup H of D× consisting of the elements x such that
xτ(x) = 1, and Nrd (x) = 1, is torsion-free.

Proof. Let x ∈ H be a nontrivial element of finite order. Since the reduced norm of
−1 in D is −1, x 6= −1, and therefore the Q-subalgebra K := Q[x] of D generated
by x is a nontrivial field extension of Q. If K = `, then x lies in the center of
D, and hence it is of order 5. However, a nontrivial fifth-root of unity cannot be
contained in a quadratic extension of Q and so we conclude that K 6= `. Then K
is an extension of Q of degree 5 or 10. As no extension of Q of degree 5 contains
a root of unity other than −1, K must be of degree 10, and hence, in particular,
it contains ` = Q(

√
−a). Now we note that the only roots of unity which can be

contained in an extension of Q of degree 10 are the 11th and 22nd roots of unity. But
the only quadratic extension contained in the field extension generated by either of
these roots of unity is Q(

√
−11). Since K ⊃ Q(

√
−a), and, by hypothesis, a 6= 11,

we have arrived at a contradiction.
5.2. We shall now compute the covolume and the Euler-Poincaré characteristic of
the principal arithmetic subgroup Λ.

Let X be the symmetric space of G(R), Xu be the compact dual of X, and
F = X/Λ. We note that if m = 1, G(R) = SU(4, 1) and Xu = P4

C; if m = 2,
G(R) = SU(3, 2) and Xu = Gr2,5; F is a connected smooth complex projective
variety.

The volume formula (5) for n = 5 and k = Q, with the value of the Euler-product
E determined in 2.7, gives us

µ(G(R)/Λ) = D7
` ·

4∏
j=1

j!
(2π)j+1

· E

= D7
` ·

4∏
j=1

j!
(2π)j+1

· ζ(2)L`|Q(3)ζ(4)L`|Q(5) ·
∏
v∈T

e′(Pv).

From the functional equation for the L-function we obtain

L`|Q(3) = −2π3D
−5/2
` L`|Q(−2),

L`|Q(5) =
2π5

3
D
−9/2
` L`|Q(−4).
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The following values of zeta and L-functions have been obtained using the software
PARI.

ζ(2) =
π2

6
, ζ(4) =

π4

90
, L`|Q(−2) = −16

7
, L`|Q(−4) = 32.

Note also that for the subgroup Λ under consideration, T = {2}, and d2 = 5, so that
(2.3) ∏

v∈T

e′(Pv) =

∏5
j=1(2j − 1)
(25 − 1)

=
4∏
j=1

(2j − 1).

Substituting all this in the above, we obtain

µ(G(R)/Λ) =
4∏
j=1

j!
(2π)j+1

·
((−4π14)

3 · 6 · 90
· L`|Q(−2)L`|Q(−4)

)
·

4∏
j=1

(2j − 1)

=
9

512π14
· (−4π14)

3 · 6 · 90
· (−16

7
) · 32 · 315 = 1.

Therefore, χ(Λ) = χ(Xu). Theorem 3.2 of [Cl] implies that Hj(Λ,C) vanishes for all
odd j. Also, there is a natural embedding of H∗(Xu,C) in H∗(Λ,C); see [B], 3.1 and
10.2. Now since χ(F) = χ(Λ) = χ(Xu), and for all odd j, Hj(F,C) (= Hj(Λ,C))
vanishes, we conclude that F is an arithmetic fake P4

C if m = 1, and is an arithmetic
fake Gr2,5 if m = 2. Thus we have proved the following.

Theorem 3. There are at least four arithmetic fake P4
C, and at least four arithmetic

fake Gr2,5. There does not exist any arithmetic fake projective space of dimension
> 4, or an arithmetic fake Grm,n, with n > 5 odd.

We next prove the following interesting result.

Theorem 4. The first integral homology group of any arithmetic fake P4
C, and any

arithmetic fake Gr2,5, is nonzero.

Proof. Let F be either an arithmetic fake P4
C, or an arithmetic fake Gr2,5. Let Π

be its fundamental group. Then H1(F,Z) = Π/[Π,Π].
It follows from Theorem 2 that Π is a cocompact torsion-free arithmetic subgroup

of G(R), where G is as in 5.1, with m = 1 if F is an arithmetic fake P4
C, and m = 2

if F is an arithmetic fake Gr2,5, and G is the adjoint group of G. Proposition 1.2 of
[BP] implies that Π is actually contained in G(Q). We will view it as a subgroup of
G(Q2).

Let D and σ be as in 5.1. Since Q2 ⊗Q D = (Q2 ⊗Q `)⊗` D = D⊕Do, where D
is a division algebra with center Q2, of degree 5, Do is its opposite, and σ(D) = Do,
G(Q2) equals the group SL1(D) of elements of reduced norm 1 in D, and G(Q2)
equals D×/Q×2 . We now observe that G(Q2) = D×/Q×2 is a pro-solvable group, i.e.,
if we define the decreasing sequence {Gi} of subgroups of G := G(Q2) inductively as
follows: G0 = G, and Gi = [Gi−1,Gi−1], then

⋂
Gi is trivial; to see this use Theorem

7(i) of [Ri]. This implies that for any subgroup H of G, [H,H] is a proper subgroup
of H. In particular [Π,Π] is a proper subgroup of Π. This proves the theorem.
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6. Five irreducible arithmetic fake P2
C ×P2

C

We will now use certain results and computations of [PY] to construct five irre-
ducible arithmetic fake P2

C × P2
C. Let ζ3 be a primitive cube-root of unity, and let

the pair (k, `) of number fields be one of the following three:

C2 = (Q(
√

5),Q(
√

5, ζ3)),

C10 = (Q(
√

2),Q(
√
−7 + 4

√
2 )),

C18 = (Q(
√

6),Q(
√

6, ζ3)).
Let v be the unique place of k lying over 2 if the pair is C2 or C10, and the unique
place of k lying over 3 if the pair is C18. For a given pair (k, `), let qv be the
cardinality of the residue field of the completion kv of k at v.

Let D be a cubic division algebra with center ` whose local invariants at the
two places of ` lying over v are nonzero and negative of each other, and whose local
invariants at all the other places of ` is zero. Then kv⊗kD = (kv⊗k `)⊗`D = D⊕Do,
where D is a cubic division algebra with center kv, and Do is its opposite. D admits
an involution of the second kind with k being the fixed field in `. We fix an involution
σ of D/k of the second kind so that if G is the simple simply connected k-group
with

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1},
then G(kv) ∼= SU(2, 1) for every real place v of k.

As σ(D) = Do, G(kv) is the compact group SL1(D) of elements of reduced norm
1 in D. Let (Pv)v∈Vf

, be a coherent collection of maximal parahoric subgroups Pv
of G(kv), v ∈ Vf , such that Pv is hyperspecial whenever G(kv) contains such a
subgroup. Let Λ = G(k) ∩

∏
v∈Vf

Pv. Let v′ and v′′ be the two real places of k
and let G = G(kv′) × G(kv′′). Then G ∼= SU(2, 1) × SU(2, 1). Let G be the adjoint
group of G. Let X be the symmetric space of G and Xu its compact dual. Then
Xu = P2

C ×P2
C, and hence, χ(Xu) = 9.

We will view Λ as a diagonally embedded arithmetic subgroup of G. Then, in
terms of the normalized Haar measure µ on G used in [P], we see using the volume
formula given in that paper (see, also, [PY], 2.4, 2.11) that µ(G/Λ) = µe′(Pv) =
µ(qv − 1)2(qv + 1), where the values of µ and qv are as given in the table in section
9.1 of [PY]. Moreover, according to the result in section 4.2 of [BP], the orbifold
Euler-Poincaré characteristic χ(Λ) of Λ equals χ(Xu)µ(G/Λ) = 9µ(qv − 1)2(qv + 1).
Now using the values of µ and qv given in the table in section 9.1 of [PY] we find
that χ(Λ) = 3 if (k, `) is either C2 or C18, and χ(Λ) = 9 if (k, `) = C10.

We now observe that Lemma 9.2 of [PY] holds for the group G(k) described
above (the proof of the lemma given in [PY] remains valid), i.e., G(k) is torsion-free
if (k, `) = C10, and in case (k, `) is either C2 or C18, the only nontrivial elements of
finite order of G(k) are central, and hence are of order 3. Let Λ be the image of
Λ in G. Then Λ is a torsion-free cocompact irreducible arithmetic subgroup of G.
Moreover, the natural homomorphism Λ→ Λ is an isomorphism if (k, `) = C10, and
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its kernel is of order 3 if (k, `) is either C2 or C18. Hence, for each of the three pairs
(k, `), χ(Λ) = 9 = χ(Xu). Let P = X/Λ. Then P is a smooth projective variety,
and χ(P) = χ(Λ) = χ(Xu). It is known (see the remark following Theorem 15.3.1
in [Ro]) that Hj(Λ,C) vanishes for all odd j. Also, there is a natural embedding
of H∗(Xu,C) in H∗(Λ,C), [B], 3.1 and 10.2. As χ(P) = χ(Xu), we conclude that
the Betti numbers of P are same as that of Xu = P2

C × P2
C, and hence P is an

irreducible arithmetic fake P2
C ×P2

C.

Remark. Theorem 10.1 of [PY] holds for P (with the same proof as in [PY]), i.e.,
H1(P,Z) is nontrivial.

If (k, `) is either C2 or C10, there is a unique nonarchimedean place, say vo, of k,
which ramifies in `. In G(kvo), up to conjugacy, there are two maximal parahoric
subgroups, and thus we get four distinct Λs. On the other hand, if (k, `) = C18, as
D` = D2

k, every place of k is unramified in `, and so, up to conjugacy, we get only
one Λ. Thus all together we obtain five distinct Ps from the above construction and
we have proved the following:

Theorem 5. There exist at least five distinct (irreducible) arithmetic fake P2
C×P2

C.
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Jürgen Klüners for their help with number fields. We would like to thank Don Bla-
sius, Alireza Salehi Golsefidy, Dipendra Prasad, V. Srinivas, Tim Steger, Shigeaki
Tsuyumine, T.N. Venkataramana and J.K. Yu for helpful conversations and corre-
spondence. We thank P. Deligne, J. Kollár and Y-T. Siu for their interest in the
problems considered in this paper.

References

[B] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ec. Norm. Sup. (4)
7(1974), 235-272.

[BdS] A. Borel and J. de Siebenthal, Les sous-groupes fermés connexes de rang max-
imum des groupes de Lie clos, Comm. Math. Helv. 23(1949), 200–221.



ARITHMETIC FAKE PROJECTIVE SPACES AND GRASSMANNIANS 25

[BP] A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded
covolume in semisimple groups. Publ. Math. IHES No. 69(1989), 119–171.

[BS] Z.I. Borevich and I.R. Shafarevich, Number theory. Academic Press, New York
(1966).

[Cl] L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties. Duke Math. J.
72(1993), 757–795.

[Co] H. Cohen, A course in computational algebraic number theory. Graduate Texts
in Mathematics, 138. Springer-Verlag, Berlin, 1993.

[F] E. Friedman, Analytic formulas for the regulator of a number field. Inv. Math. 98
(1989), 599–622.

[Kl] B. Klingler, Sur la rigidité de certains groupes fondamentaux, l’arithméticité des
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