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1. INTRODUCTION

STUDIES on the scattering of light in crystals yield data of two distinct types
which may enable us to evaluate the acoustic wave-velocities in the solid.
In the first place, we observe in the scattered light small spectral shifts, which,
following L. Brillouin, have been interpreted as Doppler shifts of frequency
arising in the reflection of the incident light waves by sound waves of thermal
origin. This interpretation, however, ignores the possible influence of the
presence of an external boundary in the crystal on the types of stationary
elastic vibrations. It has been suggested (Raman, 1948) that the discre-
pancies noticed between the facts as actually observed and those theoretically
expected according to the assumptions of Brillouin (Krishnan, 1947), are
to be explained in this manner. The second method available for the
evaluation of the acoustic wave-velocities in the crystal is purely theoretical.
It is based on the knowledge of the forces acting between the various consti-
tuent atoms, the latter being themselves found out from the Raman effect
data. A method has been recently worked out (Ramanathan, 1947) which
enables these forces to be evaluated from the observed frequencies of the
normal modes of vibration of the crystal. Using the force-constants thus
evaluated, one may proceed to calculate the frequencies of stationary elastic
vibrations of different types and of various wavelengths. When the latter
are sufficiently large, the product of the frequency of the vibration and its
wavelength reaches a constant value which is the acoustic wave-velocity
in the crystal for the particular direction. We shall proceed to find out the
acoustic wave-velocities in diamond in different directions using the procedure
indicated and compare the same with the experimentally determined sound-
velocities.
2. DESCRIPTION OF THE METHOD

We shall here coasider the three principal directions, viz., cubic, dodeca~
hedral and octahedral, and calculate the velocities of transverse and longi-
tudinal stationary vibrations along these in diamond. In the cubic and
dodecahedral directions, the carbon atoms in this crystal are arranged in
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equidistant layers spaced at intervals of 0-89 A.U. and 1-259 A.U. res-
pectively. However, the spacing of the layers of atoms perpendicular to
any octahedral direction is alternately greater and smaller, the distance
between any two equivalent layers being 2-055 A.U. In the two former
cases, the nodal planes must necessarily be located in a plane of atoms along
the cubic and dodecahedral directions respectively. Consequently, only
such vibrations are possible whose wavelengths are even multiples of the
lattice spacing d. Further, if the displacements of the atoms in any plane
are assumed to vary harmonically with its distance from the nodal plane,
it is found that the equations of motion of all the atoms in the entire crystal
are simultaneously satisfied, showing thereby that these are possible modes
of elastic vibration in the crystal. This resuit is found to be valid whether
the displacements of the planes of atoms are transverse or longitudinal.

Considering now the cube directions, only two distinct types of vibra-
tions are possible, one longitudinal and one transverse. Along any dodeca-
hedral direction however, three distinct types of vibration are possible, in
one of which the planes move normal to themselves while in the other two,
they move tangentially with respect to themselves, the direction of motion
being along a cube axis or along another dodecahedral direction.

In the case of the octahedral planes, if we assume any two nearly-spaced
layers to move always with the same phase and further if the displacements
of the double-layers (nearly-spaced layers) are supposed to vary harmo-
nically from any nodal plane which is also another double-layer, then, the
equations of motion of all the atoms in the crystal are simultaneously satis-
fied. There will be two kinds of such vibrations, one longitudinal and the
other transverse. Here again, as in the cubic case, there is only one distinct
transverse vibration. '

Let us suppose that the planes of rest are separated by n oscillating
planes which vibrate with their phases opposite on either side of a nodal
plane. Then, if d denotes the lattice spacing, the wavele.ngth of the s.ta-
tionary vibration is A =2d(n + 1). The phases and a'mpl.ltuQes of p10t1on
of all the atoms in a particular plane will be the same, while, 1t will b.e different
for atoms in different planes. The displacement & of any atom in plane &k

.. . 7wk . X i
at an instant of time ¢ is given by §; = £ sin AT where £ is the displace
ment at the antinode. The equation of motion of any atom in plane k is

m %fzk =a§k + b (fk—l + gk-i-l) + C(f'-z"!— §k+2) + df(fé_;;-{— §k+3) + ..... (1)
where m is the mass of the carbon atom, @ represents the sum of the forces
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acting on the atom under consideration due to the displacements of all the
atoms in the kth layer, b the sum of the forces acting on the atom due to
the displacements of all the atoms in the (k — 1)st or (k + 1)st layer
(these two will be equal), ¢ the sum of the forces on the atom due to the
displacements of atoms in (k — 2) nd or (k + 2) nd layer, etc. There will
be n equations of motion corresponding to k =1, 2, 3,....n. All the n
equations become identical on eliminating ¢, and expressing them in terms
of ¢, the equation obtained being

d2§ 27
mos ._(a+2bcos +1+2ccos T
+adeos g )¢ ?)

Or, if v,, v, and A, represent respectively the frequency of vibration of the
atoms, velocity and wavelength of the stationary elastic vibration, then

2 2
' 4772m'v”2 =4WA’Z‘U” ==
3n
a+2bcos 1—|—2ccos _H+2dcos +1+ R )]

3. EVALUATION OF THE CONSTANTS

In formula (3), when n becomes large and tends to be infinite, the fre-
quency v, tends to be zero and the expression on the right-hand side also
tends to be zero. Also, the value of the expression (@ + 2b + 2¢ 4 24 +....)
which represents a translation of the crystal, is zero. Therefore, an accu-
rate evaluation of the limiting value of the velocity will involve a knowledge
of the exact values of the constants a, b, ¢, d and the other constants repre-
‘senting the series. :

In a recent paper already referred to (Ramanathan, 1947), expressions
for the frequencies of the nine normal modes of vibration of diamond, were
derived in terms of eight force-constants P, Q, R, S, U, W, £ and £, which
take account of the influence on each carbon atom of the 28 nearest of its

neighbours. A description of these constants and the method of arriving
at them by applying the principles of symmetry, are described in the above
paper. Also, numerical values for the constants are given there, calculated
from the known spectroscopic data.

The constants a, b, ¢, d, etc., of formula (3) represent, as have been
defined already, the sum of the forces due to the displacements of all the
atoms in the plane or planes which they represent. An exact evaluation of
these will therefore require also a knowledge of the forces of interaction
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between atoms in' distant planes as well as distant atoms in neighbouring
planes. But, at present, since we have no knowledge of these distant forces
of interaction, we shall have to be satisfied with those which we know, viz.,
P,Q, R, S, U, W, 2 and @ and evaluate a, b, ¢, etc., in terms of these. It
must be remarked here that the distant forces are not likely to play any
sensible part in determining the frequencies of the eigenvibrations of the
crystal, because, in these the phases of vibration go on alternating at each
successive equivalent layer and so there will be a tendency for these forces
to cancel out each other. On the other hand, in the case of elastic vibra-
tions of large wavelengths, there will be mass movements of atoms in a very
large number of neighbouring planes all moving in the same direction, and
therefore, the distant forces of interaction, though of small magnitude, work

together and may be expected to have an appreciable effect on the frequency
of vibration.

The constants a, b, ¢, etc., calculated from P, Q, R, etc., satisfy the
condition that a translation involves no energy (e + 2b + 2¢ + etc. =0)
because the latter have been made to satisfy this condition in the paper
referred to already.

4. RESULTS

I. Cubic Planes: Longitudinal.

The values of the constants can be easily written down from an examina-~
tion of a model of diamond.

a=P+4S = 7-33 x 105 dynes per cm.
b —2Q +4Z — —3-018 x 105,
¢ =4U = — 0-525 x 105 ’s
d =2% =—0-12 X 105 ’s

The value of the velocity increases gradually as we consider vibrations of
larger and larger wavelengths and finally reaches a comstant value (vz.)
which, in this case, is 15900 metres per second.

II. Cubic Planes: Transverse.

a=P+4U = 6-826 X 1C® dynes per cm.
b =2Q + 4X =—3-018 x 10° ’
=28 +2U =—0-272 x 1C® ’

d =22 =—0-12 x 10° .
vsm = 14300 metres per second.
IIT. Dodecahedral Planes: Longitudinal.

@ —=(P+2Q—2R+2U—2W+22—2Q) = 6-122% 10° dynes per cm.
—(Q -+ R+ 2S+2U + 32 +3Q) =—2:685x10° .,
¢ =(U + W + 22 —29) = —0-375% 108 .
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The limiting velocity = 18300 metres-per sec.

IV. Dodecahedrel Planes: Transverse along cube axis.

a=[P+2Q+25+22) = 4-44 x 10° dynes per cm.
b =(Q+4U+ 32) =—2-094 x 10°
¢ =(S+22) =—0-125 x 108,
Vi, = 14300 metres per sec.
V. Dodecahedral Planes: Transverse along dodecahedral axis.
a =P+2Q+2R+2U++2W22420) = 2-254 x 10° dynes per cm.
b=(Q—-R+25+2U0+32-3Q) =-1-00x 108 .
c=U-W+22+20) =—0-127 x 105 ”
vm = 10900 metres per sec.
VI. Octahedral: Longitudinal.
a=P+3Q—-2R+2S-+-4U
—4W + 32+ 60Q) =4-668 x 105 dynes per cm.
b =4(Q+ 2R 428 4 4U + 4W
+ 92 —60) =—2-333 x 108
Usim = 22300 metres per sec.
VII. Octahedral: Transverse.

g =P +3Q+R+25+4U+2W

+32 -39 = 1-365 X 10° dynes per cm.
b=3(Q—R+25+4U—-2W
+92439) =—0-683 x 108

Vsm = 12100 metres per sec.

The classical theory of elasticity leads to expressions for the velocities
of propagation of longitudinal and transverse waves in a cubic crystal in
terms of its three elastic constants Cyy, Cy and Cgy, and p its density. The
expressions in the case of the cubic, dodecahedral and octahedral directions
are y = 4/x/p where x is the quantity shown in the last column.

Cubic Longitudinal Cy

Cubic Transverse Cys

Dodecahedral Longitudinal 3(Cy + Cypp + 2Cyy)
Dodecahedral Transverse Cys

Dodecahedral Transverse 1Cy —Cy)
Octahedral Longitudinal  § (Cy; + 2G5 + 4Cyy).
Octahedral Transverse 3(Cy —Cp+ Cpy).

Theory thus shows that there are two transverse velocities possible for any
dodecahedral direction and that one of them is the same as the transverse
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velocity along a cube direction. It is gratifying to note that the above calcu-
lations lead to two different transverse velocities for any dodecahedral
direction, and that one of them in which the direction of motion is along
a cube axis is the same as the velocity of transverse vibrations along a
cube direction. That this agreement is not accidental is shown by the
fact that in spite of the two formulz being different, the phase-wavelengths
of the vibrations also being different, the limiting velocities come out
to be the same.

The Table below reproduces the velocities of acoustic waves calculated
above together with those calculated from the elastic constants of diamond
determined experimentally by Bhagavantam and Bhimasenachar (1946). It
will be seen that in the case of the longitudinal vibrations the- agreement
is best for the cubic planes, the calculated value being only about 3%
lower than the experimental. For the dodecahedral planes the value
obtained is about 4% higher than the value calculated from experimental
data, while for the octahedral planes it is about 25% higher. It was
already explained in an earlier section that the distant interactions have
to be considered to make accurate calculations of the velocity. As will
be seen from the calculations above, we have considered in the cubic case,
the interaction of three planes on either side of the one under consideration,
while in the dodecahedral case we were obliged to consider only two.
In the octahedral case, only one set of double-layers on either side of
the double-layer under consideration is taken account of. It is probable
that a consideration of the influence of some more layers of atoms might
yield better results in the latter two cases.

Acoustic wave-velocities in diamond

S o A ‘ Velocity from Velocity from
Oscillating planes  [Direction of oscillation ! force-constants elastic-constants |

metres per sec. metres per sec.

(100) [100} 15900 16400

» [001} or [010] 14300 10800

{110) [110] 18300 17700

" {001} 14300 10800

Y [110] 10900 8900

(111) 111] 22300 17700

" fo11] 12100 9500

The agreement in the case of all the transverse modes is much worse,
the discrepancy being nearly 25 to 309 in all the cases. This should also
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be not surprising in view of the remarks about distant interactions already
made in a previous section and in view of the fact that the interaction between
any two atoms is large when the displacement in question involves a change
in the distance between the interacting atoms and small when it does not
involve a change in the distance. Therefore, a transverse vibration is likely
to be much more influenced by the interaction of distant atoms in the plane
under consideration and in neighbouring planes, than a longitudinal vibra-
tion. On the other hand, a longitudinal vibration will be more and more
influenced than the transverse by the more and more distant planes.

It can be seen that the velocities calculated from the interatomic force-
constants lead to nearly the correct value for C;,, too high a value for C,,
and too low a value for C,,.

In conclusion, the author wishes to express his grateful thanks to
Prof. Sir C. V. Raman, with whom he had many useful discussions.

SUMMARY

A dynamical method has been described for evaluating the acoustic
wave-velocities in different directions in a crystal, from the interatomic force-
constants. The method, applied to the case of diamond, yields two trans-
verse velocities for the dodecahedral directions, one of them coming out
to be the same as the transverse velocity in a cubic direction. These facts
are in full accordance with theoretical expectations.
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