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PROPAGATION OF LONG WAVES OF 
FINITE AMPLITUDE 

We consider the radiation problem for long waises oj- tmali ampiintie, 
cmed by an instanlaneozrs disturbance of unit height at the origin. TIE 
e q ~ ~ i o n s  governing this phenomrnon were derived by Long (1964). The 
mynptotic expressions for the wave front and for large times are obtained. 
The initial value problem for the non-linear system of equations is also solved, 
wing a perturbation scheme based on the small parameter n, the non-dimensional 
umplitude of the disturbance. The sofution holds only for t < < I / =  as a r~sul t  
of [he appearance of a secular term in the fist order solution. 

Long (1964) derived a set of equations governing the development of 
arbitrary, small but finite amplitude long waves. These waves are, therefore, 
characterised by the inequaljties 

V I ~ )  < c I ,  ( A I ~ )  =. :, I 1I.11 

where 11 is the uniform depth of the water, a is a length representative of the 
amplitude and A is a length representative of the wavelength of the disturbance. 
In contrast to the theory of Airy' which imposes the additional restriction that 

(a lh )  ( X Z / A 2 )  > > I WI 

and of JetTereys and Jeffereys (1946) which requires 

( 4 k )  (XZ/hz)  < < 1 

B@ussi1lesq2 derived an equation which governs the propagation of long 
waves when 



fhe  initialivalde prbhlems for the Bmssinesq equation whicli Were 
discussed by Korteweg and de ~ r i e ~ ' ,  for example, were for waves for 
which the wr2.e heights travel only in one d,rection with not an arbitrary 
speed but one nearly equal to (ph)'''. L O U  (19641, fo i l~wing Rsyegt,Il, 
expanded the complex potential for the unsteady motion and der~ved a set of 

equations which govern arbitrary long waves of small hut fini:e amplitude 
without any resxiction on  their speed to  (g/z)"* or  the direct~on of rheir 
propagation. With these restricrions these equatiotls properly reduce to 

Boussinesq equations, Long has shown that these e q u l ~ o n s  also yield the 
solitary wave which is a long wave that propagates without ch.inge of fonl,, 

H e  has also considered numerical solutions o f  his eqmiions for sorne 
symmetric initial values of elevation and zero initihl velocity. After some 
time, the wave profile i n  either of the  two directions is very nearly that 
corresponding to a solitary wave. 

The purpose of this paper is to study the  non-linear hyperbolic system 
of equat:ons derived by Long (1964). These equations govern the develop. 
merit of an arbitrary, small ( b u ~  finite) amplitude long wave disrurbmces and 
also yield the solitary wave when they are suitably approx:mated. Our 
treatment follows the well-known approach of Lighth~l l  and Whith.niP 
and Whitham", particularly the latter, t o  the system which is obtained 
by linearising the non-linear system. Whitham showed that the highest 
order derivative in a partial and d3ffereptial equation governing wave 
propaqation, yield the phenomenon In the earlier stages of propagation, 
coupled with a damping caused by lower order terms, while it is the lowest 
order terms which finally govern the phencmenen, these being accompanied 
by a diffusion due to the higher order terms. The characteristics of differ- 
entit.1 equations that we cons'der have constant slopes kd3, 0, 0, which, 
however, d o  not introduce any simplicity in the analysis of the equations. 
First we consider the radiation problem for the linearised form of these 
equations and derive the  form of the wave io r  small and large times 
respectively. The solucion for the initial boundary conditions f = 0 ,  

9 - F,= q,, = T,,, =O. x > 0 and q = 6 (2) at  x= 0, is expressed in terms of 
Bessel function of f i : ~  order for small time, that is, when the high frequency 
waves dominate o r  in tke region where the dkcontinuities in the  wave form 
appear. The solution is expressed in terms of Airy function when we 
consider the wave form after a large time. We also consider an  initial value 
problem fo, the non-linear system in a power series in the small parameter a, 
charzcterising the non-d mensional amplitude of the dis turbace.  The first 
order term in the soluticn contains a secular term, that is, one containing rbe 
independent variable 2, so that the soluton is valid only for or t c < 1. 

2. DIFFERENTIAL EQUATIONS AND THEIR CHARACTERISTIC FORM 
The differential equations describing the two dimensional long gravity 

waves and satisfying the kinemtio and dynamic conditions on  the surface of 



water were written by Long in terms of the non-dimensional height q = ( B ' / h )  
of the disturbance above the undisturbed level and a non-dimensional velocity 
u= -F,= -IF:, (x', t ' ) ld (gh) l .  Here the primed quimtities denote the dimen- 
sional variables so that j"= 0 is the x'-axis along the bottom uf the channel 
and f = h  is the vertical undisturbed height as  shown in the fiigure. E' i s  time. 
The function F' is a f~nc l io f l  of x' and t' i n  ternls of which the real part of 
the complex velocity potential $' is expanded about y'=O, that is, 

The dimensionless quantities are expressed as  

x= (x'lh), Y =(y91h). t= t ' / d ( g l h ) ,  

U,  in fact, is the velacity at the bottom of the channel. Long wade 
certain assumptions as to the  order of different terms, which correspond to 
those employed in the derivation of the solitary wave. Thus, he assumed 
that if the non-dimensional amplirude of the disturbance is of the order a, 
a small quantity, that is, if 

q-n, 12.31 
then 

@/ax)- aPr2. 12-41 

This, in fact, expresses [1.4]. Besides, Re assumed that 

U= -Fa - a, (a/&) - (alax). 12.51 



By subst~tuting tbd  Aon-dimensional velocity potenti81 in the 
dim-nsional f i r m  of sarface condition, Long obtained the following equations 
for and U  with an error of 0(ff9) in 7 ,  

n s + U r l x + U , - ~ ? r + + ~ , = O ,  L2.61 

The equations [2 81 and [Z 91 are a l r e ~ d y  in characteristic form. The 
former two equaticns, I2.61 aud [2.71, can be suitably combined to give t ,e 
characteristic form : 

*here the independent variables are the characteristics i - x  +.\/3 I, z=.t--32/r. 
Thus, we have a h y p e r b o l ; ~  system of equations with explicit characteristics, 
h ~ v i n g  constant slopes f 4 3 ,  0, 0. 

3. SOLUTION Of THE LJNEAR~SED EQ\~ATIONS 

i f  we put O= Ua+ U, 7 = q o  + 7, where Uo and (in particular ?,=O) 
are the solutions of equations [2 61' and r2.71' giving uniform flow and U and 7 
are of order 0(a2),  and linearise (thus omitting terms of O(cu1I2) ,  w- obtain, 
after elimination of U, a linear equation in 7. 

Thus the second order operator gives the lower order waves with speeds 
[ U , & ~ ( U ?  i- 1- go)ll  .- r),] and the f m r h  order operator gives the higher 
order waves with speeds 0.0, f d(3). Unlike the differential operators 
considered by Whitham (19591, hcre the order of the adjacent differential 
operators d.ffers by two. If we subst i tu t~  



in equation [3.11 wheve k is real and consider long waves so that k i c 1, 
easily verify t h d  all roots of the dispersion relation are pure imaginary. 
 hi^ shows that we have a stable situation, with progressive waves as 
solutions. Similarly, if we consider a periodic wave maintained at J-0 80 

that 
q a exp.(Bx-iwt) 1 3 4  

with 0) (real) c c. I , .  we again get all four root; corresponding to B pare 
imaginary, leading to the same result as noted above: ' Thus, for large times, 
we again have a stable situation. However, to be able to study the general 
wave motion, we consider the following s:gnalling problem for the differential 
equation [3. I], an unsteady wave phenomenon on a running stream. 

Initial conditions : q = 7 ,  = v,, = v,,# =O at t=o, x>O 

Boundary conditions : q - f ( r )  at x=  0 P 4 1  

In the above we consider waves propagating in the x z 0 direction due to the 
signal at x - 0 ,  but we could also consider the waves in the opposite direction. 
We find the Laptace transform of the equation [3.1] with the initial condi- 
tions [3.4]. We have 

The solution of this equation i s  

where Al  and A2 are some functions of p and 

This expression is rather complicated and therefore we approximate this for 
the following two situations (a) when p is very large i.e., t is small, this 
approximation is valid when the high frequency waves dominate or near 
discontinuities in the wave form. (6)  when p is very small 6 0  that we 
consider the solution for large times. 

(a) When p is large.' I n  this case. 



For the forward moving wave we take negative sign, wilh A, ( p ) = ~ ,  a,d 
inlertitg e ~ ~ a t i o n  [3.61, 

where 7 -Rep is such that all singuiarities of the integrand are to the left of 

Rep- 7. It is obvious that . 

If we take f (r) F 8 jf) ,  the Dirac delta function, so that A, ( p )  = i ,  the above 

integral is easily evaluated, Roberts and Kaufmand2, the solution is 

For any other f (t), we can use the faltung theorem to obtain 

If we were to consider wave propagation in the negative direction, we would 
have 



(h) In this  cnse p ;s  small, we approximate Y,,2 to 

Again if wc consider wave propa&ation in the positivc direction only, then 
taking the lower sign, 

y i i -  
1 - 

7 =T;; ./(PI ex?. I P U  +B.x) +c2xp3l dp 83.151 

where R17 is d - f ind  in t h s  ususE w ~ y .  Again if we choose f (f) =% (1 )  so 
tha t j [p )= l ,  the above integral can be easily integrated, Magnus el 01". 
We can transform this integral into the form 

which is expressible in terms of Airy functions 

ihe asymptotic expression of Ai for l a d e  value of t when.x/t is kept &xed. 
We briefly vciify thiiresult by the method bf sa@e points. - T h e  expmntial  
term in the integral [3.15] can be written as ' 

'' ' . 

~ X P  t { P  I1 4 - 4  (%It) I + cz bit1 P'I . 



. '  
-, both of these being eqvally important. Therefore, by the usual method of 

saddle points, 

when ( p ) =  1.  This is the same as in r3.161. This represents essentially 
the lower order waves. We find that the solution does not hold at the 
observation point x - 0  and the front B2x+  t = O ,  Lighthill and Whitham9. 
We also note that 7 = (l/l/x) or  TI = ( l l d f )  for fixed ~ / t ,  showing diffusion 
of the lower order wave by the higher order ones. 

The solution in the negative x direction can be  easily obtained by changing 
B, and C, to B, and C, respectively. 

Refore we consider the non-linear wave propagation, we briefly indicate 
the resulu as obtained by the quick m e t h ~ d ,  Whitham". For example, 
for the wave corresponding to (ax/at)-2/3 we put @/at)- -d3 (a/ax) in 
equation [3.1] and introduce the variable f - x - d 3  r,  we get the equation 

With the conditions that 7 = O  on the front X - 4 3  1=.$=0 and q - j(r)  on x=O. 
the solution of equation 13.181 can be written in the form, Garabedians, 

Similarly, the solution near the wave front x= -d3t is obtained by s~mply 
changing to  5 '=x+d3 2. For the lower order waves, if we put (a/$) - - C,,(a/ax) in equatioa where C,,2=[Upf d ( U S  i- 1 -q&l -T* 
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Bfter integrating out once with respect to  x. The solution of this equation 
can be expressed in terms of Bessel functions. 

Now we consider the initial value problem for ihc hyperbolic system 
(2.6)'-(2.9)' where equations f2.81 and i2.91 are expressed in terms of the 

variables z and 2 as 

We assume that 7 (x, 0) and U (x, 0) are given. We seek the solution in 
the form 

since the equations of Long give 7 with an error of O(aa). Here 7 and U 
are functions of 2 and 2 .  We substitute the expressions [4.1] in equations 
[2.6]'-[2.91', taking note of the assumprions [2.4] and 12.51. 

After some calculation, we get the following equations. Zero order 
system : 

a (tic+-43 [I,) -(1/2/3) wo. 
az 

f4.21 

First order system : 



The equations satisfied by ? o  and 7 ,  are found io be 

Where K ( z ,  ;) 

We easily verify that the characteristics of the differential operator on the 
left hand side equations [4.1] and [4.21 are ; + ( 2 & d 3 )  z = ( 3 & d 3 )  (xyt) = 

const, agreeing with the linearised equation [29] of Long (1964). Thus the 
characteristic slopes of the zero order solutions are &- 1, while those of the 
non-linear system are fd3. We consider, in particular, the initial value 
problem 7 (x, 0 ) - 2  a cos x, U ( x ,  O)=O, so that we find from equations [4.10], 
(4.21 and [4.3] that 

Thw, it is more convenient to introduce the characteristic variables 

oc,=x-t, ,9 , -xt - t  [4..l?f 
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-fT (cos aI +cos PI). E4.141 

The solution of this hyperbolic differential equztion with the initial 
condition rl!-(aqI/aoi,)- (a7),/ab,) -0 on  the initial line a,-A &&n 
equations [4.6] and f4.71 is 

l iI=(PI- a,) [+ (sin 2 a , - s in2  !,)+ sin$, -sin a,)] 

We find that a secular term in the Erst order term of the solution appears so 
that the solution is valid only for oi t 4 < 1. While the secular terms in 
ordinary differential equations have been treated quite successfully, there does 
not seem to be any general way of tackling then3 for partial differential 
equations. F<>r exmaple, Broer (1965) has considered some simple cases 
when a transformation of the tiine variable can be guessed from the solution. 
The term (or t / G )  [sin (n+I ) - s in  ( x - t ) ]  in [4.151 can be easily combined with 
the zero order lcrm by the transformati in t' - 1 + ( a  t / 6 )  but the other secular 
terms cannot be removed. The divergence of the solu~ion for  large i i s  not 
due to the linearising of the characteristrcs since we can easily fit the exact 
characteristics by stretching the x-co-ordinate by 1/1/3, but does not remove 
the singularity for large t .  This perturbation scheme is not suited to give 
solution for the far field for which a different procedure similar to that given 
by Cole (1968) would lead to the Korteweg equation which provides, the 
solilary wave and other periodic solutions, Kruskal and Zabusky8. In  any 
case, the above solution for r -z ( l / a )  shows thzt in the first order solution 
we get zero order solution and its double harmonic out of phase with the 
zero order solution by 7c/2 and,these together have their amplitude increasing 
linearly with tiine while the other double harmonic in 7 ,  remains bounded. 
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(Deprrrtmenf o f Phydw, Indian Inszirure of Science. BunguIorc-12, India.) 

[Receivei : August 11, 19701 

Raman spectra of 1,2-dichforbethane and 2-chlorbethanol have been recordei 
using both the 4358 A and the 2537 ii excitations In the specrra obtained 
with the latter excitation, many new Ruman lines are found for thejirst time. 
Assignments of these lines are discussed. When the exciting wavelength is 
changed from 4358 A to 2537 A, the relative intensities a~zd depohzriaation 
rarios of scme of the Rcman lines of the two ~ u b ~ t a n c t ? ~  are seen to change also. 
These changes are explained on the basis of the resanaride Raman effect. 

The Raman spectrum of 1,2-dichloroethane and 2~chloroethanol has been 
studied by numerous investigators1-'. The problem of internal rotation in 
substituted ethanes has been studied in d ~ t a i l  by Mizoshima2. 1t . i~.  now well 
known that both in the gaseous and liquid states 1,2-dichlo~aethaue exists as 
a mixture of two rotational isomers, having the trans- and the gauche. forms 
respectively. The trans- form of the molecule belongs to the symmetry 
point group CZb and the gauche- form to the point group symmetry C2. 
Complete vibrational assignments from normal coordinate analyses for these 
two forms has been given by Nakagawa and Mizushima6. The molecu~lar 
structure of 1.2-dichloroethane has also been studied by X-ray7, electron 
dlffraaiona and i n f ~ a r e d ~ ' ~  methods. 

The Raman spectrum of 2-chloroerhanol has also been the subject of 
numerous investigationslO-15. Infrared ~bsor~t ion '~-" ,  electron difractiod9." 
and microwaveu studies of 2-chloroethanol have also been reported in the 
literature. These studies have shown that the 2.chloroethanol molecule ah0  
exists in two rotational isomeric forms-the trans- and the gauche-ones. 
Whereas in 1,2-dichloroethane the trans- form is more stable, in 2-chloro- 
ethanol the guache- form is the more stable one. In the latter case, the 
chlorine atom and the hydroxyl groups take part in the formation of an i n i m d  
hydrogen b o d .  



. .- 
^ A.11 these earlier studies on the Raman spectra of the above b w c  

. compoYndi ha<'beer? carried-out using the visible mercury 4358 B excita;io, 
. ' methgds. Pure 1,2-d.c~oroe;hane 8nd 2-chlor@ett.anol were fain& to bt 

' .  . . -.. , .. , , ~uffi&;itly trarispamnt td"'tha..2§37 A: m e r c i q  radiation. I t  was thouglll 
,.. .,, .,'*brg.$$llile;.:therefore. t o  reexamine the. Raman spfctra.  of the above two 

. .. '..l$g& b$ing@e 2537 A excitation, with a' view .to firm Out the changes if any, 
:.. .: . :: .di.hi:ch'take.gi.$e in .ttd.spectra, as the exoiling frecihencyTin 'this. case will be . . ''. &nch'Zlose~: to the electronic absorp:i~n"treqvencies of the coinpound's., 

.L. : . ,  . 
' i d . ,  .. ....,.. ,. > ' . . . . 

-. .2. EXPERIMENTAL DETAILS. ., , ' - 
, .:: . 

Two sets c f  Raman spectra uiere.recorded f u i  each c:?mpound, ,one using 
the v:s.ble mercury 4358 excliation y d ' t h e  .other us'ng the ~ltravio]~t 
lnercury 2537 A radiation. A Toronto type:hel;cal mercuiy.. arc was the 
sources of the visible radiation, while a watei~cooled," magnet-controlled 
quartz mercury are served to produce an intense berm 'of .  the ultraviolet 
radiation. A saturated solution of sodrum nitrite was used to cut off all 
radiations c i  wavelength less thcn 4358 A in the firs. cpse ; for the ultra. 
violet studies, a filter of dilute acetic acld was used to cut off ail radiations 
of wavelength less than 2537 A The vis'ble Raman spectra were recorded 
using a H lger two prism spect~ogrcph on llford As:ra 111 plates. For the 
ultraviolet Raman spectra, a Hilger med urn quartz spectrograph was used, 
the spectra beirg photographed cn Ilford Zenith Astronomical plates. For 
rhe depolarizatiorr measurements, a double image prism was inserted in the 
path of the scattered light. TIte light coming cut of the double image 
prism was conCctrsed on to the slit of the spectrrgrcph using a crys$l 
quartz lens. The lens w::s so ctosen that by its opt cal activity and biref- 
ringence the two componers of the scattered Lght ccm ng out of thz double 
image prism, were effecrively c'epoiarized. Thus the two beams d d not 
suffer unequal rrflection losses inside the spectrograph. The Raman spectra 
were micropho:rrnetered using a Moll m~crophotcmeier. 

Analar qu: lity I, 2-d'chlorcethane, and 2-chlorcethanol were used in the 
study. Both $ 1  e 1iqu:ds were distilled twice before use. For the ultraviolet 
study, thesampleswere kept in a high optical quality fused silica Wood's tub:. 

Figures l a  and l b  show the Raman spectra and the microphotometer 
tracing.; of 1, 2-dichloroethane a s  excited by the 2537 A and the 4358 A 
radiations, respect:vely. F:gures 2a and 2b show the corresponding Raman 
spectra of 2-chloroethanol. The observed Raman frequency shifts, their 
visually estimated relative intensities, and depolarization ratios of 1, 2-dich- 
loroelhane are 1is:ed in Table 1. The frequency shifts of the Raanan lines 
of 2-Chloroeth~nol, along with thcir v;suslly estimated relative intensities are 
gken in T+bk a. 
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Raman Spectrum of 1.2-Dichloroethane 
--- -- 

7537 A excitation 4538 h excitation Species 
--------- - .  

Frequencies P ( b ,  
Assignments 

~requencies Trans Oachue 
.) P (cm - ') c,r C* 

v:-va or 2~~ 4 
V; C-CI stretching 

v:, C-CI stretching 

v5 C-Cl stretching a ,  

v ; )  CHI rocking 

v CHz rocking 

L,, CH, rocking b, 

V: C-C stretching 

V ,  C-C stretching a, 

y;, CH2 twisting 

v;-v: 

vi CH, twisting 

v;, v , ~  CH, wagging b, 

v,, vi6 CH2 twisting a, 

v:, v : ~  CH2 bending 

", CHz bending a, 

2vj A, 

0.63 via torsion a 

V I E  C-C1 bending b, 
0.31 v: C-C1 bending a 

0.40 v6 C-Cl bending a, 

0.81 v:8 C-CI bending b 

VJ-v6 OL v16-vs A, or B, 



9 ,  . 23 L960i10) 0.23 v, v: I,:, CH s'retching a, a,b 

3005(8) 1.60 3007(7) dp v,, v: v ; ~  C-H stretching b, a,b 

("1 Numbers w h n  brdkets give the reldtiv; intxs1tl.s estimatid vissuaily. 
(b )  Valucs regortcd by Neu rt al. (4). 

A study of the Tables 1 and 2 shows that besides the R:mm lines 
already ieported by earlier workers, the Rhman spectraof 1,2-dkhloroeihane 
and 2-chlorocthonol excited by the 2537 A radiation contain many new lines. 
These lines are mainly in the region of comb.nation and overtone bands. 
We have used the ass;gnrnents for the fundamental vibrations of 1,2 dich. 
loroethane as given by M-kagawa and M zushlma 6. T&le 1 gives these 
assignments, together with our ass:gnmenls of the newly observed Raman 
lines which have been :signed as  combinations and overtones. In making 
the latter assignments, the following facts were taken into account : (i) only 
the overtones a ~ d  ccmbinaticns expected ;.re lhcse involvig  in 'general, the 
stronger fundamer~tals t nd (ii) the resl;llsnt states of the comb~nations and 
the overtunes should belong to a Raman active species. 
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~ A A L E  .? 

Raman Spectrum of 2-Chloroethanol 

Fiequencles (cm-') 

Present study Assignments 

2537 excitation 4538 excitation 

Torsion 

C-C-Cl bending 

@-GO bending 

C-C1 stretching 

CH, rocking 

C-C stretching 

C-0 stretching 

CM, twisting 

CH, wagging 

CH, bending 

cDvertoues and combinaticrah 

C-H stretching 

- 0-N strerching 
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The last column of Tables 2 gives the vibrational assignments for the; 
2-chloroethane molecule. These a ssignments have been made by a comparison 
o f t h e  Raman spectrum of 2-chloroetkano1 with the Raman spectra of 
1,2idichloroethane and I,2-ethanediol 22. 

A comparison of the Raman spectrum of I,2 dichloroethane elicited by 
the 2537 A radiation with that obtained by the 4358 A excitation shows that 
the relative intensities of tbe two Raman lines at Ca. 1305 cm-' and a ca. 
1432 cm-1 are reversed. A comparison of the depolarization ratios of these 
two lines shows that in the 2537 A excited spectrum, these two Raman lilies 
have lower depolarization values. Similary, the Raman lines at 848 and 939 
cm-' have their intensities reversed in the 2537 A excited Raman spectrum 
of 2-chloroethanol. The changesobserved in the relative intensities, though 
small, are believed to be genuine. In the short wavelength ranges where 
these Raman lines occur, the variation of the sensitivity of the photographic 
plate cannot introdtlce any appreciable error. And, in our depolarization 
measurements, any error in the determination will only tend 10 increase the 
depolarization ratio to the limiting value. Thus the decrease in the 
depolarization ratios of the two 2537 A excited Raman lines of 1.2-dichloro- 
ethane must also he genuine. 

It is well known that in the phenomenon of the resonance Raman effect 
there is a many fold increase in the intensities of some of the Raman lines of 
the molecule, when the exciting frequency approaches the electronic 
absorption frequency of the molecule2'. If the molecule has a non-degenerate 
ground and excited electronic states, the depolarization ratio tends to 0.50 as 
the exciting frequency approaches the electronic absorption frequency. This 
has been verified experimentally in the case of substituted nitrobenzenes by 
Real'. However, in the case of saturated molecu~es, sach as cyclohexane, 
1, Cdioxne, etc., there does not seem to be a consistent pattern in the 
intensity changes as the exciting frequency is in the resonance In 
the latter case, however, Bernard and D ~ p e y r a t ' ~  have shown that the 
depolarization values do tend to 0.5. 

Thus we can conclude that the changes observed in the spectra of 1,2 
dichloroethane and 9-chloroethanol, when the exciting frequency is increased, 
arise due to the resonance e6fect. It is quite possible, in both cases, that all 
the lines that do change in intensity in the 2537 A excitation, actually 
increase in intenshy; only, say, in the case of 1,2-dichloroethane, the Ca. 
1305 cm-' Raman line increases intensity much more than the line at Ca. 
1432 cm-'. 

The Raman lines at Ca. 1305 and Ca. 1432 cm-' in 1,2-dichlorethane arise 
from the twisting and bending vibrations of the methylene group. The848 cm-' 
and 939 cm" lines of 2-chlorethanol arise from the methylene rocking 
vibrations. It is interesting to note that in cyclohexane and also in 1,4-dioxane, 
it is the CH, group frequencies which show the resonance e f f e ~ t s ~ ~ , 2 ~ .  
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The electronic absorption SpeCttUm of 1,2-dichloroethane was recorded 
using a Unicam absorption spectrophotorneter, and it was found to be 
continuous below 2520 A. This is very similar to the absorption spectrum of 

and can be connected with the fact that all  the valance electrons are 
used up in forming the single bonds and the only non-occupied orbitals 

from the valence electrons will be antibonding ones and so \rill lie 
fairly high. In this case, therefore, it wrll be a good approximation to think 
of the continurn level to be replaced by a single non-degenrate level and this 
might account for the changes observed in the intensities and depolarization 
ratios of the R?man lines on going to the resonance region. Similar 
explsnatiL.n~ have bsen given by Alb~echi:~, Tsenter and BobovichN and Leite 
and Parto" to explain the resonance Raman scattering from various 
substances. 

The authors wish to express their gratitude to Prof. R. S. Krishnan and 
Prof. P. S. Narayanan for their encouragcment during this investigation. 
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A hot wire cell has been devisedJ>r mea~urinf the specific heat of gases at 
low pressures, in parricular of vap.)urs below their normal boiling point. The 
method is based on the heat loss from an electrically heated fine wire immersed in 

the fluid. When the pressures are greater thun about 10 torr, the hear loss is 
proportional to rhe thermal conductivity of the gas, while at pressures below 
1 torr, the hear loss depend7 on rhe specific hear. Thus, in a single experiment 
the thermal conducrivity, the accommodation coeflcient and rhe specific heat of 

the gas are determined. Measuremznts on dry air at 0°C and 40°C are 

reported. 

The hot wire cell method of evaluating the heat capacity of gases at 
constant volume has some advantages over the other methods. Firstly, 
only a small amount of gas sample is required and secondly it is possible 
to measkre the heat capacity of gases at low pressures. The low pressure 
specific heat is the ideal value which can be directly compared with the 
spectroscopic calculations. Moreover it is possible to study the specific 
heat of vapours at a temparature below their normal boiling point. This 
feature is valuable because the region of interest in a few gases is at a 
temperature below their normal boiling point. 

The hot wire assembly is widely used in other aieas also. For'example, 
it can be used to evaluate the thermal conductivity of gases1 and has indeed 
baen used for the m-asuremant of thermal conductivity of vapours below 
their normal boiling point2. It is also used in  aerodynamic studies to 
evaluate the velocity of fiow of p.srs3. The present note- i s  confin@ to 6 
brief dia$ussion of the specific heat measurements. 
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The hot wire cell consists of an electrically h e ~ t e d  w're of radius , 
leng:h L, mounted along the axis of  a tube of  r d u s  r2 The gas undk: 
investigation of molecular weight Ib.l is a t  a pressure p. A study of the 
heat transfer through shows that when the mean free path A of the 
gas is much smaller than r ,  the heat loss is proportional to the thermnl 
conductivity of  the g,!s. Molecular flow conditions occur near the wire 
when A > z rl and over the whole tube if X > > r,. In the molecular flow 
region the heat loss from the wire at  an absolute temparature Td :o the tube 
at  a temparature T, is given by 

I n  this expression, originally due to ~ n u d s e r ~ "  ,-C,/R and a is the 
accommodation cofficient. 

It is evident from Eqn. [ I ]  that by studying the heat conductivity of 
the gas at low pressures it is possible to ev;lluate C,, prov ded ar can be 
obtained. Now the mechanics of gas interaction on the solid surface are 
quite complicated4, and it is best to consider the a s .  a s  an effective parameter 
to be determined under the operating conditionc. Therefore attempts have 
been made to evaluate a as well as $ from the same arrangement. 

Following th'e eallier .suggestion of  Eucken7, Kistiskowsky and  
coworkerla, assumed that the ratio of the cx:s for different gases approach 
unity at  low temparatures a d  .studied the specific heats of ethane etc. in 
relation to a standard gas, viz , Argon. A d fferent procedure was used by 
Vanderkooi and de Vrlrs9 f~ l lowing  the earlier arrangement of Eubken and 
KromefU. A wire and a f l a ~  ribbon are both used inside the s:~ine outer 
tube. The heat losses determhed in the usual way w;ll he of the form . 

where A, depends in addition to the geometrical parameters, on the ac. 
O L ~ ,  arld (p ++). A,, i s  a coupling term depending on  a, and ar,. 4 
similar equation holds for the ribbon also. a, and C, are obtained by 
studying the heat loss from the w:re at different settings. A third procedure 
has been suggested by Gregory and coworkera". They have used Eqn. [ I ]  at 
low pressures. At  high pqessures the heat loss, including the temperature 
jump, is written as 



j t  is suggested that a t  ' high ' pressures the plot of 1/Q against is a 
straight line from which K and [(2- a)/a(p++)l  can be known. This combined 
with the value of + 3) obtained in the ' low' pressure Eqn, [I] enable 
all the quantities to be evaluated. 

3 EXPERIMENTAL ARRANGEMENT AND RESULTS 

Because of the interest in the study of the specific hcat of some vapours 
below their norm?l boiling point, it seemed worthwhile to investigate the 
possibility of using a hot wire cell for the evaluation of the specific heats. 
of the procedures for estimating ct the method suggested by Gregory was 
adopted. It allows a simpler hot wire cell than the wire and ribbon procedure. 
Further, the thermal conductivity may also be compared with the standard 
values to check the procedure, whereas, such a check on K is not possible in 
the more complicated wire-ribbon method of Eucken. The method used by 
Kistiakowsky and coworkers does not appear to be free from objections. 

Two compensated hot wire cells of the type used by Gregory and 
coworkers", have been used in the present arrangement ; one cell was of 
glass and the other of copper. Platinum wire of radius 0.00375 cm has been 
used for the central wire. The glass cell had a diameter of 0.830 cm and 
the copper tube 0 625 cm. The compensating cell had a length of - 5 cms 
which is adequate for the elimination of end conduction. The glass cell had 
an effective length of 15.72 cms and the copper cell 13.90 cms. The hot 
wires of the cell were included in the two arms of a Callendar Griffith 
Bridge. The temperature of the wire was measured by previously calibrating 
the platinum wire resistance as a functian of temperature. The current 
through the wire was measured by con~iecting a series standard resistance 
and ujing a Vernier p~tentiometer. The cells were placed in an ice bath or 
in an electronically regulated paraffin oil bath. 

An all ghss  high vaccum apparatus was used for the purpose, A Toepler 
pump was used for adjusting the pressures while a manometer and a McLeod 
gauge were used to measure the absolute pressures. The vacuum techiques 
were of conventional design. 

The observed heat loss I'R should be corrected for several factors. 
The radiation loss is obtained by measuring the heat loss in the highest 
vaccum - torr. Convection effects under the conditions of the 
experiment are negligible if the hot wire cell is mounted vertically. Finally. 
the end losses are eliminated by employing, as mentioned above, a cornpen- 
s~ ted  pair of cells. 

The two hot wire cells were tested with pure dry air a t  the two 
temperatures of 0" and 40-C. Figure (1) shows performance of the glass 
cell at b=O0C and Figure (2) that of the copper cell a t  -40°C. The plots 
are quite linear and the values of the various qumtities obtained from the 
figures are : 
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lkbviour of the glass cell at an ambient temperature of4OW 
la) bl& pressure region. (b)  low pressure repioo. 
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FIG. 11 b 
Bekaviorr of the metd  c d l  ax an ambient temperature of 4GaC. 

(a) high pressurcregion (b)  low pressure region. 
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At 40°C : K = 6.29 x caI/cm deg. sec ; C,/R = 2.4, ; a - 0. jg, 

The value of the specific heat is as expected very close to that of an ideal 
diatomic gas C, = (5/2)R. The values of K compare well with the values, 
summarized for example, by ~ i c k i n s " ;  K at 0°C=5.84 x canjcm set, 

deg. and Ir: at 40°C =6.5, x lo-? The value of the a.C. are not Comparable 
for they refer to the specific experimental conditions. They are of the same 
order as those for fully absorbed surfaces. I t  is only for very clean surfaces 
in much higher temperatures that smaller values of ar are obtained. 

In conclusion, Gregory's method of evaluating the a x .  appears t o  be 
suited for using the hot wire cell to evaluate the specific heat vapours and 
that the present arrangement is suitable for studying gases under various 
conditions. 

The authors thank Prof. R. S .  Krishnan for his sustained encouragement 
and the Department of Atomic Energy Govt. of India for financial assistance 
and fellowship to one (K. G.) of them. 
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The buckling prol~lems o f  skew plates with di@rent edge suppo,.t conditions 
involving simple support and clamping are considered. The in-plane stresjn 
represented in terms of oblique components. Rayleigh-Kitz method 13 wed 

a double series offunctions appropriate to the combinarion of the edge 
conditions. ~Vumerical results are presented for several cornbi~mtiorrs of side 
rariu, skew angle and different loadings. 

Skew plates have their application in construction of modern swept 
wing aircraft. The buckling problems of plates of such shape we of 
interest to rhe designer. The boundary conditions obtaining on individual 
panels are more nearly in  the nature of elastic restraint against rotation. 
Analytical treatment of this boundary condition, however, is somewhat 
tedious and it is even more so for skew geometry. Consequently, the ideal 
boundary conditions of simple support or clamping are usually analysed. 

While considerable literature i s  available on buckling of rectangular 
plates under different loadings (Refs. 1,2,3) yet buckling coefficients foqj the 
many different combinations of edge conditions involving simple support 
and clamping are not fully available. 

The problem of buckling of clamped skew plate under uniform compre- 
ssion was studied by Guesl'. He applied the Lagrangian Multiplier method 
to get upper bounds and rather doubtful lower bounds (see Ref. 5). In i 
another p p e r 6  he considered the buckling of clamped rhombic plate under 
bending and comp~ession. . Using Rayleigh-Ritz method, Wittrick studied 
the buckling problem of clamped skew plates under uniform compression7 

*Paper presented at the 21nd Annual General Meeting of the Aeronautical Society of 
India held at Hyderabad on :be 20th and 2 1 s  March 1970, 
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and pure shears. H e  used Iguchi functions and found that the convergence 
was slow particularly in the case of positive shear. H3segawag calculated 
the buckling coefficients of clamped rhombic plate under the action of pure 

by the Rayleigh-Ritz method using polynomials. Hamada'o used 
Lagrangian multiplier method 10 study the  problem of buckling of clamped 
skew plates undsr the action o f  uniform compression and oblique shear. 
Matrix methods have also been applied" to find the buckling coefficients of 
the parallelogrami~ plates under the action of shear and compression. 
~ u r v a s u l a ~  investigated the above problem using Galerkin Method and 
expressing the deflection as  a series of beam characteristic functions. The 
buckling coefficients have been calculated when direct and shear forces are 
acting either individually o r  in combination. Ashton" also investigared the 
problem using beam characteristic functions and Rayleigh-Ritz method. 
~ansf ie ld"  obtained a rough estimate for the buckling coefficient under 
uniform compression. 

Yoshimura and IwaraC4 obtained the buckling coefficients for the simply 
supported skew plates under oblique shear and compression. D u r v a s ~ l a ~ ~  
solved the problem using double Fourier sine series and Rayleigh-Ritz 
method with in-plane stresses expressed in terms o f  orthogonal components. 
Durvasula and Nair16 have also considered the  buckling problem of simply 
supported skew plates with in-plane stresses expressed in terms of oblique 
components. Extensive numerical results w x e  presented for various com- 
binations of skew angles and side ratios. Interaction curves have also been 
given. 

In this paper, the  buckling problems of skew plates supported differ- 
ently on different edges are  considered. The support conditions considered 
are confined to different combinations of stmple support and clamping on 
the four edges. The in-plane stresses are represented in terms of oblique 
components. Rayleigh-Ritz melhod has been used with the buckling mode 
expressed as  a double series of beam characteristic functions appropriate to 
the combinations o f  the edge conditions in  each case. Numerical calcula- 
tions have bsen mlde  to  obtain the buckling coeffi:ients mainly when each 
of the stress components is present ind~vidually for different combinations 
of side ratio, skew angle and  boundary condition and for a few combined 
loadings. Convergence has been examined in a few typic31 cases and is 
found to be satisfactory. 
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Notario~~ : 

a,b dimensions of the plate 

c , ~  Coellicient in the series expansion of deflection 

D flexural rigidity of the plate. [Eh3/12 !I --vs) ] 

E Young's Modulus of the material of the plate 

G, h"'), H(", H@' Matrices defined in Equation El51 

matrix defined in Equation [18] 

piate thickness 

integrals defined in Equation [I41 

maximum value of indices m, r 

maxtmum value of indices n, s 

midplane forces (oblique components), h u,, h a,, h o, 

respectively 

integers 

normal bending moment 

non-dimensional midplane force parameters u, b2h/x2 D, 
a, h2h/m2 L), uxy bZ h / l t2  D respectively. 

non-dimensional midplane force parameters 
(u,a3h cos3#)/D, (uy  (12 h cos3$) ID, (uxy a2h cos3$/~, 
respectively. 

strain energy of the plate 

potential energy of rhe middle surface forces. 

deflection of the plate 

beam characteristic functions 

oblique cooldinate system d&nd in Fig. 1 

non-dimensional coordinates, x/a and y/b respectively 

Poisson's ratio 

oblique stress components defined in Fig. 1 

Skew differential operator - Seca $ [a2/axa-2 Sin $(allax ay) + (a2/ap) ] 
Non-dimensional skew differential operator - Sec2 4 ta2/a5'-2A Sin $ (a21aEas) + A2 (al/avl) I 

Skew angle as defined in Fig. 1 

a/b. Side ratio 



A sketch of the skew plate is shown In Fig. 1 along with the jn-plane 
'Stresses represented in terms o f  obliquz components. Since the geometry of 
the plate is oblique in nature, the Usc o f  oblique stress components instead 
of usual orthogonal components is preferable. I n  terms of oblique 
componeqts, expressions for the strain encrgy of the plate and the potential 
energy of the middle surface forces are simpler and the structure of 
these expressions is similar to those in  the case of  rectangular plates with 
orthogonal stress components. The plate is assumed to be thin, uniform 
and isotropic. 

Using the classical, small deflection thin plate theory, the differential 
equalion for the deflection of a plate of constant thickness under the  action 
of middle surface forces is given by ", 

In terms of oblique coordinates, the boundaries of the skew plate are 
given bv. 

FIG. 1 
Sketch of the Skew Plate and the in-plane Stress System (Oblique Components) 
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The boundary conditions considered are  confined to combinations 
silmple support and clamping. These conditlonc, a r e  stated as  follows: 

Simple support : W -  M, - 0 Pa l  

o r  alternatively for a polygonal 

Clamping : 

I f  the edge x-a, for example, is sinlply supported, then boundary 
condition, Eq (3b) takes the form, 

W=[ (bZ/axZ) -2 sin $ (b2/ax ay)] W-0 141 

If the edge y - b  is clampcd, then the boundary condition Eq. (3c) takes 
the form'. 

w - [ ( a w a y ) ] =  0 Is1 

I n  this paper, t he  buckling problems with different edges supported 
differently are considered. An approximate solution o f  the buckling problenl 
slated by Equation [I], together with boundary conditions such as given by 
Equations [3b, 3c] appropriate to each edge is solved using the Rayleigh-Ritz 
method. 

Non-dimensional coordinates f and 7 a re  defined as  follows : 

For  the stress system shown in Fig. 1. the expressions for the strain energy 
of the plate and the potential energy of the middle surface forces are given 
respectively by '', 

For  polygonal bounddries with W - 0  along the  edges the expression for 
U reduces to "*' 



BuCIiling doefirierzts of variou..ily Supported Skew Plates 33 

The deflection W is expressed as :I double serles in terms of " admissible 
tllnctions ", i . e . ,  functions which satisfy the geometric boundary conditions. 
Beam charac~eristic functions which have been widely used in the literature 
have been made use of in the present analysis. The serles is written as, 

where X, ( f ) ,  Y, ( 7 )  are the beam characteristic functions Which are appro- 
priate to the particular bounda~y  condit~ons specified. For example, if the 
edges f -0  and 5- 1 are both clamped, the clamped.clamped beam functions 
are taken for X, (f). Similarly, i f  the edge 11 -0 is clamped and edge 7 = 1 
is simply supported, the clamped-simply supported beam functions are  taken 
for Y, (7). 

Substituting the expressions for IV in Eqs. [8] and [9],  we get, 

The coefficient C,, are determined from the condition19 

[(a/aC,,](U-1-V) = G for m = 1 ,  2. . . .M, for n -1 ,  2 , . . N [I31 

The integrals involving the functions X,,, (f), Y, ( I )  and their derivatives 
are defined as follows : 

where y and q represent the order of the derivative. The formulae far such 
integrals were given by Felgarl" and the numerical values of some of these 
integrals are given in Ref. 21. Using the expressions for  U and V from 
Eqs. [Ill and [I21 in Eq. [13], and using the relationships between the 
integrals, we get, finally, a set of linear simultaneous algebraic equations in 
C, which can be expressed in the form of a matrix equation as follows : 
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This is an algebraic eigenvalue problem. TO get the buck11ng loads 
when N,, N,, N,, are present individually or  in combination, numerical - - -  
values are given to two of the three parameters Rz , R: , R:, and the third 
is treated as the eigenvalue. For  example, if we wish to deterni~ne the 

buckling parameter >:, when both iV, and N, are awing, we assign ap$ro- 

priate numerical values to 2; and $ and obrain the G, matrix as, 

Equat~on [I51 then reduces to 

For combinations of boundary conditions syrnrrietricabiout the diagonals, 
the Equation €1.51 splits into two cases : ( M f  n) Even and (r i -s)  Even: 
(m+n) Odd and ( r+s )  Odd. The Even case corresponds to skew symmetric 
case cons!sting of modes which are doubly symmetric and doubly antisym- 
metric. The Odd case corresponds to  skew antisymmetric case consisting of 
modes which are symmetric-antisymmetric and antiqmmetric-symmetric. This 
splitting reduces the order of the matrix to be considered for finding out the 
eigenvaiues and eigenvectors. If K ( = M x N )  is the order of the original 
matrix, then the size of matrix for the even case will be ( K f  1)/2 if K is 
Odd and K/2 if K is Even ; and the matrix size for the Odd case will be 
(K-1)/2 if K is Odd and K/2 if K is Even. 

The eigenvalue 2 can mow be determined by using any of the standard 
methods. The two groups give two eigenvalues; the lower of the two is 
the desired critical buckling load. Similar procedure can be adopted to 
determine the eigenvalues for other combinations of loads. 

For cases where such symmetry of boundary conditions about the 
dmgonafs is not present, this splitting is not possible and the full matrix of 
order K will have to ba handled. . 



Numerical calculations h a ~ e  been made for different combinations of  
side radio alb and skew angle $ for different edge conditions. Since the 
accuracy of the eigenvalues decreases with increasing value of fi, more terms 
hate been considered fur higher skew angles. For skew 4 e 30°, the 
number of terms considered is upto M = N = 6  except in the case of N, acting 
alone in which case the number of terms considered is upto M = N = 5  only. 
For I/ =45", terms upto M =  N-8  have been taken. The calculations made 
are mainly for N,, N, or Vxy acting alone, though the combined action of 
N,, y,, and :VXJ has also been studied in a typical case. Cmvergence study 
hes been made for one representalive boundary condition when If, and N,, 
are each acting illone. The numerical value% are presented in Tables 1 to 5. 

4. RESULTS AND DISCUSSION 

Results of the convergence study for one typical boundary condition in 
the case of a rhombic plate with f i = 3 O 0  are given in Tables 1 and 2. Table 1 

Convergence Study : Nx Acting Alone 

A-a/b-  I, I/-30" 
-- 

Boun3ary Eigen - value* 
CondltlOnS M N Matrix size 

Rr 

. - 

'These values are all from (M+N) ODD case; (M+N) EVEN case giver highcrvalues. 



TABLE 2 

Convergence S l ~ l d ?  : N ,  Acting Alone 

Wcgative Shear - 
Eigenvalue* H, 

Boilndary conditions M N Matrix slze ._ 
Positive Ncgatlve 

-- 

-- - These values arc all from (M+N) EVEN case. (M+N) ODD case gives higher values. 

gives the eigenvalues when N, alone is acting. Table 2 gives the eigen- 
values when N,, alone is acting; I1 can be seen from Table 1 that the 
convergence of the eigenvalues is satisfactory. When N, is acting the 
convergence is equally good for positive as well a s  negative shears (Table 2). 

The buckling coefficient >, has been obtained for sevcn different 
combinations of  boundary conditions for u/b equal to  0.5 and 1 and JI equal 
10 On, l j" ,  30" and 45". These are given in  Table 3 along with results, 
where available, for comparison. Similarly for the same combinations or 
a/b  and # and different boundary conditions, the buckling coefficients 

2, and 4 are given in Tables 4 and 5 respectively. In Table 6, the 

buckling coefficient & in  the presence o f  inplane forces N,, and N, is 
given for a rhombic plate with skew angle $=3O0 for a typical boundary 
condition. From Table 3 it may be seen that even for  rectangular plates 
complete results are not available. For  skew plates with different combina- 
tions of boundary conditions no results could be found in the literature for 
comjgjson:-  The-resul ts  o f j h e  present paper are in good agreemgt.with 
the available .rssulls. . .  - . . .  



- 
t h e  buckling coefficient R,= N, b2/*' D increases with the skew angle, 

o~ may be expected, and decreases with alb. Also the values in Table 3 are 
indicative of the relative stiffncsses of the plates with different combinations 
of boundary conditions for a given combination of a/b and JI. One can 
expect that fof a given 4 6  and JI the buckling coefficient for a plate with 
conibihation of clamped edge conditions (C) and simply supported edge 
"onditions ( S )  should be in between the values for a plate of the same 
geometry with all edges clamped and all edges simply supported ; this is 
borne out by the present results except for alb-0.5, for the obvious reason 
that in this case thk cirder of approximation is lower ( k f = N = 4 ) .  . 

In Table 4, the buckling coefficients under positive and negative shears 
are given along with some available results for rectangular plates. The 
agreement between the present results and available results is quite good. 

L 

As in the case of R,, the buckling coefficient R ,  decreases with a/b and 

~ncreases with 4. The buckling coefficient R, for positive shear is less than 
that for negative shear irrespective of a/b, J I  and :boundary condition. This 
is in conformity with the observation made previously'6. 

In Table 5, the critical buckling coefficient x, is given for differnt com- 

bination of alb, and boundary condition. The buckling coe5cient R,, for a 

cerlain a/b and $ and boundary condition, can be related to x, for corres- 
ponding b/a and $, for appropriate boundary conditions. For example for 

- 
JI=O0, a/b= 0.5 for:boundary, conditions (Case 6) R, can be interpreted as the - 
value of R, for 9-0 and a/b=2 for boundary conditions (Case 5). For 
this to be valid, the correspondmg orders of approximations have to  be - 
necessarily equal ; the slight difference that is seen in the case of  R, for  

a/b= I (Table 3) and zy for a/b= I (Table 5) is because the corresponding 
orders are not the same 

- 
In Table 6 ,  the critical buckling coefficient R, in the presence of 

different combinarions O F  inplane forces N,, und N, is given for a typical 
combination of 016, $ and boundary condition. The computer programme, 
however, can generate data for other combinations of alb, and any 
combined loading and is lhus capable of generating interaction surfaces 
which should prove useful in design. 



(0) Ref. 18 (Levy's Method) (c)  Ref. 2 ITak-n from the graph) 
@The eigenvalues corresponding t o  this caseare taken from R e f .  16 

(ndc that for alb-a5, M-N=4 and for a/b=l, M=N-6.)  



Buclt-jing Coej?cienfs of Variously Supported Skew Plate, 

Positive Shear 

ljuckling ~oeeicient  k.* For ~ifferent  Edge conditions 

9=0° 1 *=IS0 1 ' 4 4 0 "  #=lSO . B o u m k ~  1 
Conditions a/b=0.5 ( 1 ( 0.5 ( 1 0.5 1 1 1 0.5 1 1  

-. 

- 
' Eigro~alues for this case are taken from Ref. 16 ; a) Rei. 23. b) Ref. 3. 



Buckling CoemEient :,.;.For Different Edge Conddion 

+=15" 
Boundary 

1 0.5 / I 1 - X  1 I 1 0.5 17 

* Thesevalues are taken from Ref. 16 

. . 
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TABLE 6 
Buckling Coefficieot~; under combined Loading for SCSC case 

a/h=l  ; $=30°; N?=aN,;N,=/N, 

goundary conditions iu fi R critical 
. , , 

The buckling problems of skew plates with different edge conditions 
involving simple support and clamping are considered with the in-plane 
stresses represented in terms of oblique components. Rayleigh-Ritz method 
is used expressing the deflection in terms of beam characteristic functions in 
oblique coordinates. Buckling coefficients have been obtained mainly when 
the in-plane forces N,, N,,, N, are acting individually for different combi- 
nations of a/b,  $ and boundary condition and for a few combined loadings. 
For buckling under shear loading (oblique components) two critical values 
exist; the positive shear (acting in a way so as to reduce the skew angle) 
IS found to be less than the negative shear in magnitude for all the plale 
configurations and boundary conditions considered. The compute1 programme 
developed can be used for generating extensive design data in the form of 
buckling charts and interaction surfaces for buckling under combined loading. 



The aurhors express their sincere thanks to Prof. C. V. Jogn Rae for his 
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Discussed here is Q computational procedure for the inverse of a square 
lnairix by using a power series method' that f i r f t  trariflorms a matrix into one 
whose inverse can be eqdated ro a convergent power series and then finds the 
inverse by a procedure reverse lo the aforesaid one that rests on only matrix 
addition, sdbtraction and mulriplication but no inversion. 

Cofactor method or triangular decomposition methodsz obtain the 
inverse of a matrix directly. Almost all these methods are variants of the 
Cmuss's m e ~ h o d  and they are very susceptible for the ill-conditioned (with 
respect to inverse) matrices. A suggested method of Maulik3, since i t  is 
independent of the the spacing of the characteristic roots of the matrix and 
since it does not demand division except at the last step and avo~ds  redundant 
multiplications, is much more rapid as also more acculate than the co-factor 
method. This novel method, though not a variant of Gaussian type, can be 
applied only to matrices of older Ln, n being a positive integer. The present 
method cannot be classified in either of the aforesaid two categories. The 
method, in the first phase, converts any arbitrary square matrix into one whose 
inverse is replaced by a convergent power series. This inversion then allows 
the method, in the second phase, 'to obtain the inverse of  the original matrix, 
that requires matrix addition, subtraction andmultiplication but no inversion. 

The general form for the conversion of the original matrix A (=a , , )  of 
crder n into one whose inverse is approximated by a convergent power series js 

where A, is identically equal to  A,., excepting the p - t h  diagonal element of 
A,_, and A,=A and 

B, = up v, [1.2] 



whe'se the coh~mn vector up and row vector vP ore 

i t  I 

i i o  J 

dPp is she p-th diagonal element of A, and 

app-aLp in u, and I in v, are the p -  th elements of up and v,, respectively. 
We take a;, such that A, possesses only non-zero diagonal elements. This 
is very easy since we are at liberty to choose ah satisfymg condition [1.4]. 
The matrix A, ,  thus obtained, is the final transformed matrix. For the 
above procedure of conversion the following theorem will be true. 

Theorem : In an arbitrary raw, if the diagonal element of a matrix is 
greater than n times the sum of the moduli of the off-diagonal elements, the 
inverse of the marrix can be equated to a convergent power series. 

We write A,=P+Q 

where P is a diagonal matrix having the diagonal elements identical to those 
of A, whose diagonal elements are already non-zero as a', has been chosen 
in the manner where no zero can appear on t h e  diagonal of A, . Q is a 
matrix identical to A ,  excepting its diagonal elements which are exactly zeros. 

In Newton-Horner's scheme4 

We determme first P-' Q (I+ P-' Q )  and call it X. We then obtain 
P-' Q ( I + X )  and call it X,. Next we find P - l  Q ( I t X , )  and call i t  X, and 
so on. We stop this procedure when the Erhard-Schmidt's norm5 of 
X j - X $ - ,  :.e., 

11 xi-x,-, 11 < a pre-assigned accuracy, say, 10-'0 

1, 1 E.5 



Hence 
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A ; ' - ( I - P - l  Q&) P-' for su9iciently large i 12. lb] 

~h~ of A;' from [2.!a1 is preferred to that of  A['fi.omp f ]  :I-$ 

~ ~ ~ t ~ n - H o r n e r ' s  scheme requires less arithmetic operations (n matrix multi- 
plications and n additions) and consequently results in less rounding errors. 

It is easy to see that I P-'Q I,.,. < I. Ic can, furthermore, be noted 
that we can increase the speed of convergence indefinitely by takidg the 
diagonal elements of A, sufficiently large. We should, however, refrain from 
taking too large d~agonal  elements for too rapid convergence, since these 
introduce rounding errors due to matrix addition operations the effect of 
which, however, is very much dependent on the precision of the computer 
employed. This fact is illustrated through numerical examples that find 
description in subsequent pages. 

The method, in the second phase, obta~ns A-I using the knowledge of 
A .  The general form of the recurrence relations for obtaining A - ~  is 

The above recurrence relations demand only simple matrik m ~ l t i ~ i c a t i o n s  
and additions and no inversion. We can, moreover, see that number of 
multiplications and additions are only a few because, all elements are zeros 
except one In up and one vp. An efficient computer program is easy to prepare 
for the afo~esaid procedure. 

(I) Store A = A ,  = (aij) i-1.2, , . , n ;  j=1,2, . . , n 

(11) cp=opp p= 1,2, . . . , n 
cp (P= 1,2, . . . , n) are the diagonal elements a,, (i- 1, 2, . . . , n) of A. 

( If  d, - 0 for any p, put d,=any non-zero number, say, 1. 

d q ( p =  1,2, . , . , n) are the diagonal elements a:, ( i -  1,2, . . . , n) of P 
which 1s a diagonal matrix. 
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( I )  0 p=1, 2,.  . . , n 

The matrix Ais now our Q. The problem is  to find A;'.  

) and (b,l) are,the elements of lnalrix -P-'Q 

Now (bJ are the elements of the matrix I 4- (-P"Q). The following two 
steps, namely, steps V f I l  and lX obtain the value of (I + P-'Q)-~ using 
Newton-Homer's scheme. 

( I X )  & = e n  i =  I ,  2,. . . , n ;  j-1, 2 , .  . . , n 

if k r 1 go to step (Xr), if k b 1, replace k by k +  I and go to  I step p l u .  

f3 - mod (f, -f,) 

i f f ,  < lod8 say, go to step (XII) otherwise go to step (VI). 

( X I I )  b ,  = 1 + b ,  i = 1, 2, . . . , n 

Now (b,.) produce the A i ' P  matrix. 

b 
(XIII) b,=* i =  1, 2,. . . , n ;  j -  I ,  2 , .  . . , n  

'5 

(bd) are now the elements of A;' matrix. 
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Relalions [3.1],  t3.21 and [3.3] are computationally represented in step (XIV). 
( b . )  thus obtained are the elements of A,' or A-'. For k=n ,  we determine 4 
y", all ei;s and all b,#'s. We then take k=n-1, and obtain ,-,, all ei;s 

then all bti's and so on. Thus Cor k =  I, we calculate Y,, all e,,'s and 
subsequently b,j's. The latest b,,'s are the elements of A-' inarrix. The ' = ' 
sign in all the aforesaid computational steps has the identical meaning as 
that in Fortran. 

Numerical Results: 8 dit floating point arithmetic has been employed 
for all the calculations. 

Example 1. A matrix that does not satisfy row (or column)-sum criterion. 

Three times the sum of the off-diagonal elements in the first, second and 
third rows are 21, 15 and 15 respectively. If we choose their multiplying 
factor 10, the number of effective terms in the powei series becomes 6 
and the final inverse (Ae') is correct up to 6 significant figures. 

Any additional terms in the power series wrll not contribute anything 
towards improving or diminishing the accuracy of A;. An extra term in 
the series does, however, improve the accuracy when the precisison of 
calculations is considerably increased. 

If the multiplying factor (m. f.) is lo2, the A-' is correct up to 5 
significant figures. The number of effective terms in this poder series for 
A;' is 4. 8 For the m.f. lo3, A-I becomes less accurate and the accuracy is up 
to 4 significant figures. When the m. f ,  is lo4, A-' i s  correct up to 3 significant 
figures, the number of terms in the power series for A;' being 3. The 
inverse is, for m. f. - 1.1, 
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and AA'qs  

j .1000000 x 10' .I862645 x lo-* ,3725250 x 

/ - ,2980232 x lo" .1000000 x lo1 - .I4901 I6 x 

i ,1490116.rlO-' ~OOOOOOOxlOo .1083000x101 

The number of Terms in the series for the aforesaid m. f. is 16 and the 
result is correct up to all significant figures noted. When m. f. is 105, the 
accuracy of A-' comes down still further and it is correct up to 2 significant 
figures. When it is 1b6, the A-" is correct u p  to 1 significant figure. 

The m f., when increased, reduces rhe number of terms (in the power 
series) and consetjuently the computing time a t  the cost of introducing more 
error due to marril addition. The ocher examples which we have attempted 
produce good results for m. f. lymg between I . I  and 10. 

Example 2 .  A matrix satisfying row (or column)-sum criterion 

( I 0  r; 3 1 
I 1 2  8 

1 3  19 7 

When m. f. - 10, number of terms in the power series is 5 and the inverse is 
correct up to 7 significant figures. When it is lo2, the result is correct up 
to 6 significant figures with effective number of terms in the series=4. The 
inverse, for m. f. 1 

1 ,1265405 x 1 Go 

- ,4467430 % 10-' 

- ,1980634 x lo-' 

. -.3603155 x lo-' 

and AA-I is 

[ .100uoo0x 10 ' 
93 13226 x 

0000000 x lo0 
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~h~ of  effective terms here is 12 and rhe restiit is correct in all the 
significant figures shown. For  m. f .=  1.5, the number of terms in the serics 
is 10 and the result is identical to  the above result up to  all  the significant 
figures retained. When m. f .=  los, number of terms in the power 
,, 2 and A - I  is correct up to 3 significant figures. 

~ ~ ~ ~ ~ l e  3. A near-singular matrik 

5 3 j: I I j  , 

1 -2  1 : 9.90 6 14 ,j / 
The (4,2)-th element is made 9.9 instead of 10 to make it slightly near- 
sinzular. 

When the inultiplying f;!cior - 10, nt~mber  of terms In the power series is 6 
and the inverse is correct up to 4 significant figures. The inverse is, for 
m f. 1 5  with number of terms in the series 12, 

and AA-' is 

When the (4,2)-th element is made 9 99, the inverse becomes, for  m, f. 10 
with number of  terms in the series 6 ,  

I 
.6076449x103 -.115021$x102 .5501015x10' -.30077l7xl@ 1 

.2000490x 10' -.7378161 x 10-3 ,3428161~  lo-' -.lo00242 x lo3 

.4060965 x 1 P  - ,9001453 x 101 .4000676 x 10' -.2000478 X I@ 

1 -.4035970 x lo3 .5501461 x 10' - ,250069 x 10' .2000480 x 1@ 



I 
j 

\Siben rhe m. f. = 1.5, the accuracy o f  A-' is nearly the sxmc as above ; 
cumber of eEecrive Terms, however, is doubled. 

When (4.2)-rh element is made 9.999, the inverse becomes, for m. f ,  

1.1 w!th number of effecrive terms 14, 
, ,6006932 x ilig 

' .1999305 x l G 4  
i 
1 .4005622 x ! @ 

1 -.400312Ox lo4 

and AA-' is 
; .loo0488 x 10' / .I678467 r lo-' 

,3204346 x lo-' 1 - .335%34 x lo-' 

Any result better than above can only be achieved by using higher 
precision arithmetic. 

We have, in all the aforesaid examples, used Newton-Horner's' scheme 
for the evaluation o f  the power series (I+P-'@-I .  

The author wishes to express his sincere gratitude to Prof. P. L. Bhatnagar 
and Prof. S. Dhawan for their constant encouragement. 
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Praentrd in rhispupcr is u simple extrapolarion technique to obtain numerical 
i .  mvarive of an unn1~'ric fu~zction, complex or real. The function may be in 

tabular form or in fiwctionul form. A few numerical e.tamplrs are rrdded for the 
purpose of' illustrario!d. 

The m e h o d  of h d m g  the tcrnpcrature at which the volume of a gas 
hecomes zero (a  situation which cannot be reached in practice) by extrapola- 
ting the curve of relative volume versus temperatme ("C) to zero volume, 
prompted the idea of obtaining the numerical derivative of a function (that 
cannot be obtained numer~cally using the theoretical definition. 

For any analyti ,~ function because of the precision limi~ation of any arbitrary 
computer used) by extrapolation. 

Lct us firsi consider a real f~lnction 0.f a single real variable. The 
generalizltion to many Variable functions and to complex functions then 
follows readily from it. Let Ax,,  AX,, Ax, be three smal! positive real 
numbers satisfying the inequality 

and let x, be the point at which we want to obtain the derivative of f (x ) .  
The problem is then posed as follows : 
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Evidently, the answer to the question mark ('0 is the numer~cal derivative of 
the function at x,, and it can be obtained only by extrapolatron since the 
quantities 

cannot be obtained numerically due to obvious physical limitation. 
(0, indicates that A x  -+ 0 from the positive direction and 0- indicates 
that Ax--+ 0 from the nqative d~rection.) 

The aforesaid problem is one of quadratic extrapalation since r. h. s. 
informations are provided corresponding to  three quantities Ax,, Ax,. 
Ax, only. One can as well pose the problem as cubic, biquadratic or any 
other extrapolation considering 4, 5 or more r.h.s. informations corresponding 
to 4, 5 or more quantities Ax, ,  A x , ,  Ax, ,  Ax4, Ax, etc. It IS, however, 
the fact that the use of biquadratic or  higher-order extrapolat~on does not 
offer any significant advantage over quadratic or cubic extrapolation which is 
simpler and more economic1. It is worth mentioning that the aforesaid 
situation is analogous to the fact that the Wilkes-Harvard and Newton- 
Raphson ileratiee division scheme with an order of convergence more than 
two or  three are uneconomical for realization in computers1. We therefore 
restrict ourselves to the d~scussion of quadratic and cubic extrapolation. 
The next problem is how to choose Ax,, A y2, a x j  etc. Since we do 
not possess definite knowledge about wh@ a x ' s  should be so that the 
numerical derivative turns out to be the pos t  qccnrate within the allowed 
precision of the computer, we devise the Ellowing iteration process. 

We extrapolate the 1.h.s. quantities to x=O, using Lagrange's inter- 
1, polation formula o f  order 2 or 3. We choose for this purpose Axz as 

[ Ax112 1, A s  as [ AxJ2l. A x4 as [ Ax,/2] and so on. We can, however, 
choose any other spacing of Ax's, equidistant or non-equidistant. Afm 
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,btaining the numerical derivative of f ( x )  by extrapolation, we reduce A . ~ ~  
to half and pass through the identical procedure to obtain the second 

value of numerical der~vative. The process is repeated, halving 
rhe interval Asl at each iteration till the continuously increasing or  
c o n t i n u o ~ ~ l ~  decreasing numerical derivative attains a maximum or . 
minimum value. The maximum or  minimum value is the required numerical. 
derivative. For greater accuracy, Ax1 should be small (starting wilh, say, 
I or 2 )  but no; too small. 

It can be seen that we have used in [I] the central difference scheme 
and not forward or backward difference schemes for initial approximate 
derivatives. This is because central difference scheme produces a truncation 
errorof the order of  h' while forward or backward difference scheme produces 
an error of the order of h. 

The suggested technique is also true for complex functions. The 
arithmetic employed here has to  be complex. Functions of many variables 
do not pose any extra problem ; in this case we obtain numerical partial 
derivatives. 

Jf we use both the quadratic and cubic extrapolations, then the difference 
between the values o f f '  (x,) ,  so obtained, provides us in the first place an 
idea of the accuracy and also an idea about the interval size to be chosen 
for the argument of the funct~on.  I f  the interval is big, so far as the nature 
of the variation of a f ( x ) / A x  is concerned, both quadratic and cybic 
fittings may produce results almost completely different, thereby indicating 
that the interval should be reduced. 

A function . j ' ( % )  is said to  be ill-conditioned w ~ t h  respect to its deriva- 
tives i f f  ( x )  1s violently fluctuating,, i.e , a little change in x causes a very 
large change in f ( x ) .  The degree of ill-conditionlng2 is dependent on the 
degree of fluctuation of f  (x). >uch a function of f ( x ) ,  however, is a 
problem under any treatment. The basic fact 1s that the function f ( x )  is a 
near approach to a d~scontinuous function. 

If we denote A X , ,  Ax,, A x S ,  by p , ,  p,, p, respectively and the 
corresponding right hand quantities in [I] by q,, q,, q, respectiaely, we then 
write, by Lagrange's interpolation formula, the extrapolated numerical 
derivative as 

The formula in [II] is the result o f  quadrat~c fitting. Similarly we can obtain 

/' (x) using cubic fitting. - 



We have taken :he Bessel functions Jo (x), Ji (x ) ,  J,$(x), Y: (n), I;(~., 
I, (xj, K,(x) and K, (x) with real argument x as examples. The calculdtions 
are carried out in about 8 bt floating point arithmetic. The computer usei 
is National Elliott 803 computer with fixed tord-length of 40 bits. Numeri- 
cal derivatives of the aforesaid functions at x'=2, oMained by the cresent 
method are presented in %ble 1. The starting value of AX, is 2 in each 
case. The calculation of the functions Jo, J1, Yo, Y,, lo, I,, KO, K, are 
carried out using Chebygrshev polynoinial expansion3. 

Function Quadratle Fittings 
7----y 

Cubic flttmg 

f (xd f'  ( X O )  No. o f  iteratton f '  (xd No. o f  iteration 

( 2  ' -3767243 5 -- ,57672486 3 
(min) (max) 

.I0703253 5 . I0703247 3 
(min) (max) 

1, (2) .I4842662 x 10 5 ,14842662 x 10 3 
(min) (max) 

KO (2) - ,13986553 5 - 13986603 3 
(min) (max) 

It is noted that in the quadratic fitting the derivative value decreases 
with iterations and after attaining a minimum galue with 4 or 5 iterations 
starts increasing. The situation is just reverse in case of cubic fitting. In 
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~ ~ b l ~  I the word 'mill  ' within closed parenthesis under the headins . q~iid:a- 
t ic  fitting ' indicates the minirnuni value attaint?e By the derivative a t  the 
corressonding number of irerotions mentioned alongside ; this minimum 
value is our requiied numerical deri\ ,at~ve. S~rnilarly, in the  case of cubic 
firting, the maximum value of the  derivative I S  the required derivative. The 
results are Seen to be correct u p  to about 6 sipn~ficant figures. 

The authors Wish lo express  heir sinrere thanks to P;of. S. Idhadan for 
constant encouragement. 

I .  E. V. ~r.shnamurthy . . . . " Econodieal iterati": add ~ a n g c ~ ~ r a n s f o t -  
mation Sch-mcs for Dwirion ", 10 appear 
in lEEE Trans. on Computers. 

2. 5.. K .  Sen . . . J .  Indian Insr. Sc i ,  49, 1967, pp 37. 

3. M.  Abramowltz and I.  A. Stcgun . . Haridbook of Math. Functions, Dovet Publi. 
cation, N:w York, 1965, pp. 355-435. 
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Yapom phme ~fehydrarion of ethanol to erhy?ene mer She~aroy bauxite has 
been studied in a fluidised-bed reactor. Faclorial design of exprrimenrs has been 
carried out. A n~arhematical expression representing rAe dependence of conversion 
as a function ox lemperafure and time factor has been proposed 

Vapour phase dehydration of e t h a ~ o l  to ethylene using bauxite)dlumina 
as catalysts has been a well studied reaction. However, most of the work 
reported in literature is for the reaction in fixed-bed reactors. Therefore, 
in the present study of  alcohol dehydration over bauxite from Shevaroy 
(Tamilnadu State) a fluidised bed reactor was employed. Factor~cal des~gn 
of experiments was carried out to determine the nature of dependence of 
conversion as  a functicn of temperature and t m e  facton. 

Bauxite obtained from Shevaroy was first washed to  remove clay 
material present and dried to remove free water. It was then activated to 
remove combined watel and to increase its adsorptive power. 

A few important characteristics of this bauxite are  : 

(i) Particle size - 6 5 t 8 0  T.S.S. 
(2) Bulk density 1.30 gmsjcc. 
(3) Surface area 68.34 sq. cm./gm. 

,- The surface area of bauxite was determined b y  benzene adsorption method in 
a desiccator.' 

The equipment was of laboratory scale, as illustrated schematically in 
Figure 1. It  consisted of feed system, vaporiser, reactor, condenser and 





gas collection system. Ethanol from storage carboy was pumped to the 
overhead by using compressed air, from where it was fed continuously to a 
vaporiser a t  constant rate. The vaporiser was 114" x 318" stainless steel tube 
of 24" length, p x k e d  with porcelain beadr and electrically heated. ~ h ,  
temperature of the vaporiser was maintained at  125f  1°C. The reactor was 
a stainless steel tub: 2" dia. and 12" long. A stainless steel wire mesh was 
used as the catalyst s u p p i t  and feed distributor. The reactor was heated 
by external resistance c o ~ l s  to the required temperature and c ~ n t r o l ] ~ d  to 
within * 5°C by a simmerstat. Hot gases leaving the reactor were passed 
through a double walled surface condenser to condense out the water produ. 
ced by the dehydration of  alcohol, as also any unconvqrted alcohol. 'fhe 
gas collection system consisted of a low pressure gas holder of 250 Iltres 
capacity. Suitable wcights were used for the gas collection under positive 
pressure. A T-stop cock was placed midway between the liquid-product 
collector and the gas holder for tapping gas samples for analysis. 

The vaporiser and the reactor were heated to the desired temperature 
and then alcohol was allowed to flow at a predetermined rate. The vapours 
then passed through the reactor containing a known weight of bauxite for a 
period of one hour. The condensate was collected in a flask and the gaseous 
product in the gas holder. 

The gaseous product was analysed in a modified Orsat gas analysis 
set-up. The liquid product being mainly water and unreacted alcohol was 
not analysed even though very small amounts of acetic acid, ethyl acetate 
and acetaldehyde were present. 

A design was used involving two factors namely temperalore (A) and 
time factor (B), each at four levels with equal intervals. The experimental 
runs were carried out in a random order so as to improve the experlmenral 
efficiency. Care was taken to avoid batch to bstch variation in the raw 
malerials. 

5. RESULTF AND DISCU~SION 

The responses obtained at various levels of temperature and time factor 
are presented in Table 1. The method qf analysis employed is as suggested 
by Davies.' The first step is to calculate the Imear, quadratic and cubic 
components of the effect of factor A for each level of factor B and that of 
factor B for each level of factor A. The interaction of components of the 
factors A and B are then calculated. The analysis of variance of Table 1 is 
presented in Table 2. 

The conclusion that can be drawn within the range of experiment are 
therefore : 

(i) There is a significant linear increase in conversion with increase 
in temperature. 
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(ii) There is a significant linear decrease in convdrsioo with in~raase 
in time factor. 

(iii) The quadratic and cubic effects of temperature are small, so that 
a linear function provides an adequate representation. 

(!v) The interactions of linear temperarure with lineat and quadratic 
rime factor are significant which means that slope of the line is 
not the same for different levels of time factor. 

All the components of the effect of temperature and the linear and cubic 
component$ of the effect of time-factor are significant which imply that there 
occurs a minimum or maximum conversion at  some intermediate combination 
of temperature and time factor, or a point outside the range eftanined. Taking 
into consideration only those effects and interactions which are significant at 
5% level (see Table 2) the conversion of ethanol to ethylene as a function of 
temperature and time factor could be represented as I 

Responses obtained at various levels o f  tetdperatilt6 dnd timd factot 

Temperature (A) A, = 380°C 

A, = 420°C 

A,=46O0C 

Time factor (B) B,-28.97 

B, = X.30 

8,-47.63 

Response : Mole% conversion of ethanol to ethylene. 
i 

31 32 B, B, 

*I 34.78 38.25 28.65 26.54 

A2 46.22 55.03 43.10 39.64 

A, 80.70 92.37 71.70 47.63 

'44 78.30 89.43 75.20 51.28 



Analysis of Variance of Table I 
- - - 

Scurcc of variation sum of squares D ~ ~ ~ ~ , $  &::e Variance ratio - 
Main Effects 

Linear 4597.00 4597.00 200.20.r 
A Quadratic 182.00 5096.10 : 1 3 182.00 7.93% 

Cubic 317 10 1 317.00 13.81* 

Linear 988.39 988.30 43.04* 
B Quadratic 491 .QO 1590.70 3 491.00 21.38: 
-.,_Cubic 111.40 1 111.40 4.84 

~ n r e ~ a c t i o ; ~ ~ ~  . . 

Linens A x L i n q r  B ... 183.80 183.80 8.01* 
Linear A x Quadratic B \'45_6.30 156.30 6.81* 
Quadratic A x Linear B - 6.92 .480.86 . 0.26 
Reruainder=Error ' - 134.74 ... 6 22.47 -.... 

. . -- .. ---------____---- ., 
Total ...- ~ 7167.66 15 ' .. :. 

* Signiiicant ?t 5% level of 'the F statistio, because with. .I and 6 degrees. of 'freedom, 
5% significanca level requires a variance ratio of 5.99. --. - 

where x is the mole~/b'conversion of ethanol to  ethylene 

y is the temperature 
z is the time factor, and 
K's are constants. 

By least square fitting their values are found to  be : 
~ , - 1 . 0 9 ~ 1 0 ~  
iq= - 1.06 x 103 

- -- - K,= -a .asx io -1  
K4=l .21  x l 0  
K,-2 43 x lW4 
K6=1.82 
%=2.09 x 10-2 

Given a temperature and time factor, within the range studied in the present 
investigation, Eq. [I] can be employed to  calculate the conversion. 
. - - -  - -  
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Pilot of constant conversion contours. 



The relationship between mole% conversion and the two independent 
wriables v i t . ,  tcmperature and time factor, is represented as a contour 
diagram consisting of lines of constant mole% conversion as parameter, the 
coordinates being temperature and time factor. Figure 2 shows such 
contours, on which the circles represent experimental points, while the 
crosses represent theoretical points calculated from Eq. [ I ] .  In order ro 
obtain theoretical points on any contonr the corresponding valde of the 
mole% conversion (2) is put in Eq. [I] and a value is assumed for tempera 
ture (y), so thar tLe equation reduces to a quadratic equation by solving 
which one gets two values of time factor (2). I t  is evident from the contour 
diagram that an optimum point of temperature and time factor lies inside 
the region bounded by the contours V and VI 

In the range of variables employed in the present factorial study viz., 
temperature, 380°C to 500°C and time factor, 28.97 to 56.96 grns. of bauxite 
per gm.mole alcohol per hour, the effects and interactions which are signifi- 
cant (at 5% level) are the linear, quadratic and cubic effects of temperature, 
the linear and quadratic effects of time factor and the interaction of linear 
temperature with linear-time factor and quadratic-time factor. 

At all combinations of temperature and time factor in the shaded 
region of Fig- 2 the conversion is more than 95%. 

1. Emmett, P. H. . . . . Catalysis. Vol. I. Reinhold, New York, 1964. 
pp. 1-26. 

2. Daviw, 0. L. . + . . The Design and Analysis of Indutrrial Experi- 
ments, Oliver & Boyd, 1956, pp. 247-327. 
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The present rpporl consists of a brief v; .sunth of the properties of microwave 

resonators, such as,.moc!e dege~leracy, coupling of compsrnion modes etc , and the 

derivation of the equivalent circuit ~ J I  using Lagrangiau me~hod. After making a 
cornpa,-urine study of the Sommerfeld and Harms--Gbubau surface wave lines, 

the report deals with the theory of surface wove resenator excited in E, and E H  
and H E  modes. As each of the Iatler two modes are coupled modes it is expected 

that the Q fuclor will be very low, so emphasis is Iuid on the E, -mode resonator, 

which may be called the Sommerfeld surface wave resonator. Numer id  

Computarions for Q (E,) and guide wavelength A, (E,) as function of the length I 
of the resonaror and frequency of excitarion for the Sommerfeld resonator show 

shut Q (E,) increases linearly with increasing length of the resonaror for diflerext 

frequencies of excitation, whereas, A, decreases almost expnnenriafly with increase 

in frequencj'. 

The study of electromagnetic oscillations in resonators is inherently 
associated w t h  Maxwell's equations and the concept of standing waves. 
The study of standing waves in resonant cavities first made by Lord Rayleigh 
remained for mdny years a subject of theoretical speculation. Almost half a 
century elapsed before the p~actical importance of standing waves could be 
realised and resonators became very useful practical tools for microwave 
work. The obvious answer as to why standing waves were for such a long 
period of only academ~c  interest is that the technique of generation of 
microwave power was not sufficiently advanced so as.to make microwave 
work possible ; and yet this is hardly a n  adequate answer as the original 
experiments of Hertz were done with millimeter wa~ves. The practical 
- 
This Project is supported by PL-480 Contract No. E-262 69 (N), dated August 30, 1969. 



app\icarion of resonalors to microwave work wiismride poss~ble  due mainly to 

the work of Southworth and SchelkunoK at rile Beli Telephone Laboratories, 
2nd Barrow, C hu  and Srrarton a1 the Massachusetts Institute ~ f T e c h n ~ ] ~ ~ ~  
j, the middle of 1930's. 

The resonance phenomena in microwave resonarors of simple and sorne 
conlplicated shapes have been studied by several au th~rs ' ' ~* .  The concepr 
of resonance in enclosed type of microwave cavities has been uiilised by 
several a u t h o r P  4' to study 'the surface-wave properties of SOmmerfe]d 
al!d Warms-Goubau lines. The investigations on electromagnetic wave 
propagation" initiated by Sommerfied and Z e n n e ~ k ~ ~  and followed by 
~ a i r ' d - ~ ~ ,  Bowwkamp4', Barlow and many ~thers~'-~"ave led to the 
modern concept of surface-waves and the evalution of different types or 
surface-wave structures which can be med  as waveguides or antennas 
depending on the nature of surface-reactance. 

The present investigations have been motivated with the object of 
making a theoretical study of the resonance properties of a surface-wave 
iesonator :consisting of Sommerfeld surface-wave line of radius termmated 
by identical plane metalic circular plates of  each of  radius a ( a =. > d )  ar 
both ends such that the surface-wave line forms the axis of the resonator 
(Fig. 1). The resonator has been developed with a vrew to make a systematic 
experimental study of the surface-wave properties such as field distribution, 
attenuation constant, etc. of  a corrugated cylindrical metallic structure. 
The present study is the first step towards undertaking the more involved 
problem of surface wave modulated structures. It is thought worth while to 
give a brief re'sume' of some of the fundamental properties of a microwave 
cavity resouatorZ1 which will have some bearing on the study of the 
resonance properties of the Sommerfeld surfwe wave resonator. 
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2.1 Equivalent Circuit 

A microwave cavity resonator, l ~ k e  the conventional resonant circuit, 
can be described as composed of an inductance-capacitance network with 
the help of the Lagrangian equation, which for a holonomic system is expressed 
as follows, in terms of  he generalised co-ordinates q , ,  q2, q3 . . . qn and the 
corresponding velocities q , ,  q,, q,  . . . q,, 

where, p-d/r l t .  F,  represents the dissipative forces and any external applied 
forces present in the system. The symbol L representing the Lagrangian is a 
function of q and q and is expressed in terms of the kinetic energy T and the 
potential energy V of the system as L-  T- I/. The charges Q,, Q,, Q, . . . . . .  
Q, and the currents Q,, Q,, Q3 . . . Q ,  in an electrical network can be 

. . 
considered as equivalema to q,,  q,, q,, . . . q, and q , ,  42, 43 . . . 4. 
respectively. So, the Lagrange equation for a single lossless cavity can be 
written as 

P (a Tla Q) t (a c/a Q )  = o PI 

The kmetic and the potential energies of the cavity of volume V can he 
written as 

?'=I12 P Z k20, k = l p  2 2, &, v=r/z 6 Z k t u ,  Q;-l/2 2 (Q:/C.) [31 

where k, represents the wave number for the ath mode of oscillation. The 
constants of the medium inside the cavity are representcd by P and 6. The 
equivalent lumped inductance and capacitance of the cavity are represented 
by L, and C, rspectwely. 

From equations [2] and [3], the differenlial equation for a lossless cavity 
is obtained as follows : 

which represents a parallel inductance and capacitance network having 
resonant frequency. 

%=%'~llc CJ PI 
A microwave cavity is usually coupled to external circuits by means Of loops 
or coupling holes. The equivalent circuit of a s~ng le  or a double loop 
coupled cavity can be similarly found with the help of Lagrange's equation. 
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Let us consider the case of an  ideal right circular cylindrical cavity 
havihg infinitely conducting walls and end-plater and enclosing completely a 
lossless dielectric. fiatural electromagnetic oscillations once started in such 
a cavity will persist indefinitely and would be subject to Maxwell's equalions 
e*pressed as follows in m.k.s. rationalised units. 

-6 -, -+ -' 
p x ~ = - - i r ( a ~ / a t ) ;  p x H = c ( a E / a t ) ;  

inside the volume of the cavity. Thc following 
be satisfied. 

-+ 
n . H = O ;  nxE=C. 

at  the inside surface of the cavity. The syn~bols  have their usual significance. 

Let i ~ s  assume that an oscilating eleclromagnetic field whose ;and 
components are given by the following equations has been set up inside the 
savitv 
' I - '  + E=- e sin ----t+# ) ; f f = S I ; " ~ s ( ~ &  t + + )  1x1 

where, the electric and the magnetic field configurations are given by the 
-e -t 

mode vectors e and h which are vector functions of position only. k and gl 
are constants. 

The field satisfies Maxwell's equations 
if + + -, -. 

V x h - k e ;  V x e - k h  

within the volume of the cavity and 

a t  the boundary wall of the cavity. 
I 

These equations when solved show that any given cavity can sustain an 
infinite number of modes of oscillation having eigen frequencies k, 12 d h P ,  

kz12 d c r .  . , , , . , k, 1 2 n d ~ ~  with eigeuvalues k,, k,, k, . . . k,. 

The resonant frequencies of a cavity depend on the manner in which the 
cavity is excited. Broadly, two general classifications are made, namely 
transverse electric (H), having the electric field transverse to the axis, and 
transverse magnetic (E) having the magnetic field transverse to the axis. The 
resonant frequencies of a cavity whether it is excited in the H or  E mode is 
given by 

fhfl -di@/2W+ (f,)f 1 [111 



Theoretical Studies on Sornmerxeld Wuve Resonator 

where, 
 length of the cavity 

Isnumber of full period variation of E, along the angular 0 cordinate. 

rn-number of half period variations of Eg along the radial r cordinate. 

n=number of half period variations of E, along the axial or  z cordinate. 

c-velocity of electromagnetic waves in free space. 

The cut-off frequencies (f,),,, are given by 

Where, a represents the radius of the cavity. The quantities Vl,, and k,., 
are the roots of the following equations : 

J', (k' , , , )  = O ;  for HI,, modes ; Jl ( k L m )  =O ; for El,, modes [I31 

There will be a distinct resonance for each combination of I, m, n, which is 
referred t o  as a resonant mode of the system. Theoretically, a triple 
infinity of modes for each class is possible, but only the several lowest 
modes are of practical interest. 

2.3 Mode Degeneracy 

In experimental work on cavity resonators, generally the Ha, mode is 
used, whereas, for surface-wave work, the mode of primary interest is Eo, 
since all the other modes have very high attenuation. From eqn. [13], 
kl ,, - - k  - ,, - - 3.832 as J', (x) = - J,  (x). So, the resonant frequencies eqn. [ I  11 
folr and f,,, for the H,,, and E,, ,  modes respectively are identically the 
same. This is an important case of double degeneracy. When a cavity is 
excited in the desired mode H,,, the other mode E,, which is the companion 
mode invariably appears. 

2.4. Field Components 

The Field components for these two modes are given by the following 
expression. 

Ha,, mode : 

fi, = Ez= H, = 0 ; Eg = JOr (k lP)  sink,: ; H, - (k , /k)  J,' (k,P) cos k,z ; 

Hz = ( k , / k )  J, ( k i p )  sin k , z  [I41 
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El, ,  mode,: 

E, - (k3 /k )  Jl1 (k ip)  cos 8 sin k,z 

E, ==(k,/k) IJ, (k,P)/klP] sin e sin k3z 

E, = ( k , / k )  J ,  (klP) cos @COS k3Z 
H, - - [J , '  (k,P)/k,P] sin 6' cos k,z 

H@ - -J1' (kip) cos 8 cos k g  

H,-0  1151 

2 5 H,, mode 

I n  spite of the double degeneracy, the  Ha, mode is invariably used for 
cavity excitation for the following reasons : 

(i) The field distribution of the H,, mode shows that the wall currents 
flow in  circles perpendicular t o  the axis of the cylinder and 
hence no current can cross the cant-ict surface of an adjustable 
plunger used to  resonate the cavity to the cxcita~ion frequency. 
So, a non-contact type of plunger can be used for turnmga 
cavity, This avoids any fluctuating loss taking place at rhe 
surface of contact with the walls of rhe cavity. 

(ii) When a cavity is excited in any desired mode, a number or 
crossipg and interfering modes appear depending on the volume 
of the cavity and the wavelength of excitation. For  a cav~ty of 
of volume V and wavelength h of excitation, the number of 
modes N that can appear is given approximately by the followm: 
relations 

But the Q of the cavity is given by the following relation : 

As the mean energy W stored in the resonator is given by a volume integral, 
whereas, the rate o f  dissipation of energy P is given by a surface integral, it 
is evident from eqn. [I71 that, in order t o  obtain high Q, the volume of the 
cavity must be large. This is undesirable as it will make a larger number of 
spurious modes appear in a cavity. I t  can also be shown that Ho, is the 
mode which gives the highest possible Q with minimum volume of the cavity. 

2.6 Interaction of H,, and Ell modes 

In  the absence of perturbation, it can be  shown6', that there is very 
little interaction between the t y o  modes H,,, and El, so that the two modes 
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co-exist without interacting with each other. It has been shown by Wien3' 
,hat the mteraclion between the free v~brations of two resonators depend 

the coupling coefficient k' and the ratio of the resonance frequencies of 
t h e  two resonators. We shall calculate the coupling coeRcient k' of the two 

modes under normal cond~i ion with the help of  the field theory. 

The coupling coefficient between the two modes is defined broadiy a s  
follows : 

Where, W ,  and W2 represent the energies stored in the He, and El, modes 
respectively and W1,,= W,,, represents the mutuaI energy, o r  the energy 
interchanged between the two modes. The total energy of  the two modes in 
the resonaior is given by the following re la lion^^ in 1n.k.s. rationalised units, 

The first and the last terms of the right hand side in eqn. 1191 give the 
energy stored in the desired and the companion modes respectlvely. The 
second term gives the energy used in bringing the two modes into interaction, 
or, in other words, the mutual energy betyeen the two coupled modes. 

Hence 

WI,, = P HI  . H, do 

For a cylindrical cavity resonator having radius a and length L, the expression 
equation [20] for the mutual energy becomes 

The expressions For the components H, and Hz for the two modes Ho, and 
El, are 



Substituting eqns. [21! and [221 in [201 and integrating and making some 
approximations, the following expression for the  mutual energy w,,* 
obtainedz1 

3 3 3 + --a2 sin 2k,a i- -a cos 2k,u - ----sin X , a  
8k,' 8kk3 1 6ka4 ] P3i 

The maximum energies stored in the electric field of the resonator opcrafing 
in the Ho, and E, ,  modes respectively aregiven by the following expressions" 

a 2 7  L 

W ,  =f I I P [.I: (k1f)I2 sinz k3r d P  118 di ' 

0 0 0 

The coupling coefficient k" between the  two modes is found from equations 
[It?], [23-251 as follows : 
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2.7. Coupled Frequencies : 

When the two modes H,,, and El , ,  coexist, the cavity will oscillate in 
different resonant frequencies, one slightly above and the other slightly 

below tbe uncoupled resonant frequencies f,,,=f,,,=f, of the two individual 
modes. These coupled frequencies depend on the coupling coefficient k' and 
are given by 

L, =foiv'c 1 + w ; fez =faid(l -k')  1271 

If the coupling is loose these two coupled resonance frequencies may be 
quite close together and the effect is that the the cavity will oscillate over a 
band of frequencies A f given by the difference of the two frequencies 
fe2-fc,. This can be reduced to A f =k' f J l / [ l  - ( J C ' ) ~ ] ,  provided k' is small. 

Sommerfeld surface waveguide (see Fig. 2) consists of an infinitely 
long straight metallic wire of circular cross-section having finite conductivity 
imbedded in a dielectric of infinite extent and excited by E,, wave. Treating 
this as a boundary value problem and matching the fields at the surface 
(p -a), the following characteristic equation for the Eo wave is obtained. 

The following cases are of  interest: 

For o*== eqn. [28] reduces to 

FIG. 2 
Sommcrleld surfaoe wave guide: Coordioats sptnm 



If v is small i.e. for a very thin conductor 

The pr jnc~pal  branch of H,""v) vanishes at a i l  infinite points of the positive 
jmaginary half-plane. The roots of only the principal branch of the multi. 
valued Hankel function are  of interest, but the principal branches of HJI)(,) 

and H j l ) ( o )  have no roots so, 

where, Y = 1.781 

possesses the only solution 0-0  i.e. h=k,. 

This means that when a cylindrical conductor of  infinite conductivity 
imbedded in a dielectric medium is excited by the fundamental E wave, 
the field is propagated in the axial direction with a velocity which is solely 
determined by the characteristics of  the external medium. I f  the conductor 
is imbedded in free space, the field is propagated along the cylindcr without 
attenuation and with phase velocity equal to the free space velocity c .  

If o is large but not equal to  infinity, h # k,  but the difference 
h - k, for E, wave is very small. SO, o is small but Ik, I > > kk, since 
k, I h 1 and u -- k ,  d r > I .  Therefore, representing J,  (u) and J ,  (u) by 
asymptotic expansions and H:) (o)  and Hi1'  (o) by small argument approxim- 
tions, the following equation is obtained from equation [2R]. 

which reduces to ,t In f =  [XI 

where, 

Equation [33] 1s the b x i c  Sommerfeld equation which when solved gives the 
characteristics, such as the propagation factor in the axial direction, 
attenuatlon constant, phase constant and phase velocity of the Sommerfeld 
surface wave . 
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sommerfel@s analysis leads to  the following conclusions. 

(i) A solid cylindrical conductor of  circular cross-section can support 
an infinite number of propagating modes. The amplitudes of 
these modes are coefficients involved, in the field components. 
These coefficients are determined by the nature of the source, 

(ii) of all the modes, only the Eo mode possesess relatively low 
attenuation. All the other symmetric E and symmetric H and 
all the asymmetric modes suffer rapid attenuation within a very 
short distance from the source, even at very low frequencies, 
and as such are of no practical interest. 

(iii) In  order that the Eo  mode may be bound to  the surface of the 
conductor. the conductivity of  the conductor can be high but 
must be finite. 

(iv) The electric lines of forces outside the conductor are almost 
perpendicular but not exactly to the surface of the conductor. 
The wave front in the external medium is slightly tilted forward 
in the direction of propagation. The Poynting vector being 
directed towards the conductor, the energy flow into the 
conductor accounts for the Joule heat losses. 

(v) The phase velocity of the wave is slightly less than the free 
space velocity for conductors having high conductivity and 
radius of curvature greater than the skin depth. 

(vi) The radial field decay in the region outside the conductor is 
governed by the Hankel function.H,(,") (Y,P). The field extension 
in the radial direction is large and can be reduced by decreasing 
the conductivity and radius of the conductor and by increasing 
the frequency of  excitation. 

(vii) Since the wave is guided along the conductor, its attenuation in 
the x-direction is produced solely due to  definite conductivity of 
the wire. In the conceptual limit of  infinite conductivity, 
the E wave passes to a T-wave and decreases in amplitude in the 
radial dircction as 1/P 

(viii) An ohmic loss on  the surface of the guide is essential for the 
Sommerfeld surface wave to  be supported by the conductor. 

Sommerfeld surface waveguide is not of much use in practice. as'the 
Eo wave supported by the structure is not tightly bound to the surface i .e. 
the extent of the field in the radial direction is inconveniently large. AS such 
any dmcontinuity in the path of the wave such as a bend or  kink in the wire 
produces considerable loss of power by radiation. The inherent short-coming 
of the Sommerfeld guide is that its ohmic loss is essential to  its operation 
in contrast with the conventional waveguide for which the ohmic loss is only 
incidental. This difficulty has been 0bv.iated.b~ ~ o u b a u ~ ~  by coating the 



74 S.  K. CHATT~RJEE, et. a?. 

wire with a thin layer of dielectric. The dielectric coating loads the surface 
in such, a way that the Eo wave is guided by the structure and the extent of 
the field spread in the radial direction is comparatively much smaller even 
in the case of  the conductor having infinite conductivity. In a surface wave 
structure of this type, the ohmic loss is only incidental and the extent of the 
radial field spread is controlled solely by the thickness and dielectric constant 
of the dielectric film. The characteristics of the dielectric coated structure 
was first studied by and then more exhaustively by Goubau'6. 

~ a r r n s ~ '  made a theoretical study of the problem of wave propagation 
along a cylindrical wire of radius d coated with a dielectric of thickness 
(b-d) and dielectric constant El (see Fig. 3). O o ~ b a u " ; ~ ~  made a detailed 
theoretical and experimental study of the problem and evaluated its practical 
usefulness as a transmission line for microwaves. Treating this as a boundary. 
value problem and using the impedance matching technique at P -6 for E~ 
wave, the following characteristic equation isobtained. 

which yields the following equations6 after some simplication. 

(,u~/c,)'!' (7:/k2) b In 0,89 Y2b= - ( f i , / ~ , ) " ~  (Tl/kl) b In (bla) 1351 

In order that the radial impedances at P - b  be continuous, it is necessary 
that the axial propgation constant in the two media be the same, i .e .  

F I ~  3 
Harms-Ooubau snrfaco wave guide 
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~h~ radial constant Y, and hence the phase velocity 0 , - 0 2 / ( k , ' + Y l f )  of the 
wave can be determined from equations [35] and [36]. Since, Y ,  is positive 
and real V ~ < W / ~ ,  which is the free space velocity in the case of the medium 
2 being air. 

The division of power between the two media 1 and 2 is calculated from 

the Goubau relation 

where, Pi represents the power of the surface wave which is contained in the 
external medlum. This equation is used to determine the thickness of the 
dielectric coating (b-d) required for a dieleciric material to constrain a 
certain percentage of power of the surface wave within a specified distance 
from the surface of the st'ructure. The above results are derived on the basis 
of no loss. The effect of dissipation is determined by using the perturbation 
method i e .  by assuming ihai the field distribution in an tquiphase plane is 
the same as that in the case when there is no loss. The conclusions drawn 
from the foregoing analysis are : 

(i) The field structlire of Harms-Goubau guide is the same as that 
of Sommerfeld guide. 

(ii) The extent of the field spread in the radial direction decreases 
with increasing dielectric constant and thickness of coating i.e. 
the radial extension of the field can be controlled by modifying 
the surface of Sommerfeld guide. 

(iii) In the case of Sommerfeld guide, if the couductivity is increased 
indefinitely, the radial extension of the field would increase in 
such a way that the power carried by a wave of finite amplitude 
would become infinite whtch is physically inadmissible. But in 
the case of Harms-Goubau guide, the wave will still remain a 
guided wave with a limited rad.al extension of the field, even in 
the case when the conductivity of the wave is increased 
indefinitely, The field 1s only slightly affected, 

(iv) Compared to c he Sommerfeld guide the Harms-Goubau guide 
possesses higher loss. Losses of this type of guide consists of 
(a )  the ohmic loss in the conductor which is also present in the 
Sommerfeld guide (6) the loss in the dielectric film which is not 
present in the Sommerfeld guide (c) the loss due to  the finite 
size of the launching device. As the radial field spread is more 
in Sommerfeld guide, it requires a much longer dimension of the 
launching device than Goubau guide. For the same dimension 
of the launching device, Somrnerfeld line will have more loss. 



(v) The phase, velocity of the wave guided by the dielectric coated 
structure is less than the free space velocity. 

(vi) AS H,(') ( i  Y2 b) is negative imaginary and H,(') ( i  Y2 b) is negative 
real for positive imaginary argument, it follows that the surface 
impedance is negative imaginary, i. e. the surface impedance of 

this guide is purely inductive. Or, in other words, coating the 
wire with a dielectric amounts to loading inductively the surface 
of the conductor. 

(vii) The axial component of the Poynting Vector integrated over a 
plane perpendicular to the axial direction yields a finite value 
which leads to the physical realisability of Goubau wave. 

5.1 Sommerfeld Line : 

* From the relations 

and assuming that at microwave frequencies 

.k,2 > r (a;-b:) ; a2 2' 2 4 

the attenuati.on constant of the ~omrnerfeld' line is", 

5.2 Harms-Goubau Line 

Assuming that there is no loss due to radiation, the total loss in 
Harms-Goubau line is due to the ohmic loss in the wire (a3 and dielec~ic 
loss in the coating (a,). The attenuation constants a, and ad ares6 

The radial propagation factor is obtained from 
- G (7,b) - - ( 7,b/2 n), In (0.89 7,b) 

where, 
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The attenuation Constant or (Warms-Goubau line) - a, i. a, 
where, 

k = free space wave propagation 

constant - w (I+, 

E,-dielectric constant of the dielectric coating 

6. COMPARATIVE STUDY OF THE SOMMERFELD AND HARMS GOUBA~T LINES 

A comparative study of the characteristics such as radial decay factor ( 7 )  
as a function of the radius of the Sommerfeld line and as a function of the 
dielectric constant for different coating thickness in the case of the Harms- 
Goubau line for different wavelength of excitation, ratio of the radii of the 
constant percentage power contour as a function of coating thickness b - d - n  
for different wavelength of excitation and percentage reduction in phase 
velocity as a function of wire radius are presented in figures (4-7) respectively. 
Fig. 8 shows the percentage power flow for the Harms Goubau and Sommerfeld 
line as a iunction of the radial distance from the line. Fig. 9 shows a com- 
parative study of the conduction and dielectric loss in the case of ihe Harms- 
Goubau line as a function of dielectric coating thickness in the X and K band. 

7. THEORY OF THE SURFACE WAVE RESONATOR 

The resonator (see Fig. 1) consists of a metallic wire of radius d termi- 
nated at both ends by large circular metallic plates each of radlus a > > d. 
The length 1 of the wire is adjusted such that it is an integral multiple of half 
the guide wavelength A, corresponding to the mode of excitation. The 
resonator is open on all sides except ar the two ends. 

7.1 field Components o f  Resonant Waves 

The components of resonant waves, when the resonator oscillates in pure 
E or H modes are re~~ect ively '~.  

E mode : 

E,, (P)=2Xcos 0 cos (m,.rr/l) z J, (Yep) 

Epr (P) -2 j  (h T,/wZ poco) XCOS % sin (m,.rr/l) z J,' (7, P) 

E8, (P) = - 2j X (hi w2 P ~ E ~ )  l/P sin 0 sin (m,.rr/l) z J, (Yep) 



FIG. 4 
Radial decay factor as a functnon o f  dielectric consianl of the c ~ a t i n g  

Ior d1Eeren1 wavelengths Wbre radlus, o=O I 0  cm. 



RADIUS OF THE SOMMERFELO LlNC 1U Cn 

FIG. 5 
Radial decay factor as a function of wire radius for different wavelengths. 
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DIELECTRIC COATIbAG THUltYLSS W C m  

Frc. 6 
Ratioof  radii of the censtant percentages power contoar as a function of the d t r l e c h  

eoarlng thickness for different wyek~lgths  o=O.LOcm. e=2.4. 
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0.0. 0.10 0.15 0.: 

RADIUS OF THC WIRE IU Cm 

FIG. 7 

Percentage reduction in phase v~locity an a function of wire radius 
for different wavelengths. ~ = 2  4. 



RADIAL DISTANCE IN CM 

FIG. 8 
Power distribufion curves for a wire o f  radius a=0.08 cm, 

coating thickness a"=O.OOS cm. A0=3.57 cm. 



- GONDUCTION LOSS ---- D I L C C T N  LOSS i 
$ 

I 

o f l  0.004 0 4 0 8  Q 4 3 l Y  

DIELECTRK. COATINO THICUNCSS (Y cm 

Fro. 9 
Menuation wnstitnt as n funciion o f  dielecfrrcoatlng thsknoss for di5ercn6 

dielectric constants and wavelengths. Wire radius a-QIOcm. 
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The above field components are derived on the assumption that the 
energy is contained wholl' within the  volume n $ 1  of the 

resonator and that there is no loss of energy by radiation. 

7.2 Conditions o f  Resonance 

The conditions of no radiation leads to 

H,'" (Y,'f) - - H,"' (Y,d) 
which yields 

as the condition of resonance when the resonator is oscillating in a pure 
E-mode. The condition of resonance when the  resonator is oscillating in a 
pure H-mode and the energy is completely enclosed w ~ t h i n  the  volume of the 
resonator is 

HI'*" (Yhd) = -H](~)' (Y,d) 

which yields 

The eigen values Y,d which satisfy the above equation is obtained when 
J ,  (Y,d) is maximum i.e. Y,d= 1.84, 8.54, 14.86, etc. 

7.3 Coupled E and H mode! 

In the case of a co~~venl ional  type of cwi ty  resonator enclosed on all 
sides by highly conducting metallic walls, no loss of energy occurs by rad~at~on 
and E or H modes can exist independeiiily, whereas,. In the case of an open 
type resonator, due to  the discontinuity which is invariably present at the 
edge (P-a) of the end plates, some energy will be  10s. by ~ a d ~ a t i o n .  As the 
radiated wave in flee space is a T-wave, E; ,  If; and Eh,. H: o f  the E and H 
modes respectively, must vanish inside the resonator or approach zero value 
at P =a.  But the radial componen~s of E and H modes of the non-rad~ating 
standing wave part of the  total field w1th111 the reson..tor cdnnor independenlly 
become zero. So, it may be said that 
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p=a, which signifies that the E and H modes are coupled 

The characteristic equation f d r  the coupled mode obtained by imposing 
proper bourdary conditions on appropriate 'field components and utilising the 
no-radiati~n condition is.. :. . . , , 

. . 

where, 

and 

and Y - Y,, 

It can be shown that for the resonance conditions 5, (7, d) -0, x =  1 and! 
similarly y =  -1 from the definition of x and y. By using appropriate 
recurrence relations and x =  1, y =  -1 eqn. [50] reduces to 

which yields on differentiation with respect to. Y a  , , 

?aJ; (Ya) -2J l (Ya) . IO(Ya)+~aJ~(Ya)=O , . . [531 

since 

Jl<?L = constanis. 
Ya Jo ( Y o ) - J ,  ( Y a )  

Let the roots o f  eqn. [53] be 6, (,I= I ,  ?,3, . . . ). F3r m.h m,de, the eigen 
values Ye,= Y is given by Y,,-8,/a and the condition of resonance for the 
coupled mode is 

P ., .. 
since, m, =/l is positive and real (S,,,/a) c (Zx/Ao\  and (6;/a2) -= <(4n2/%. 
Hence, . . . . I  

I - nr, h,/2 .,.. . [55l 
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which states that th.: resonance condition is established, when the distande 
between the two terminating end plates is an integral multiple of half wavei 
lensh.  

In practice d c  <a and if Td, < 1, Then by making small argument 
approximation of JQ ( T d )  1 and J, (Td) a ?d/2, eqn. [52] reduces ro 

which gives the success!ve eigen values when resonator in osciilating under 
the condition that the modes are coupled, 

7.4. Q of the Resonator 

The Q of the resonator is defined as 

where, w is the angular frequency at resonance, WE and W, represent the 
maximum energy stored in the electric and magnetic fields respectively ins& 
~c resonator and P is the total power loss inside the resonator. 

The total power lost is equal to the sum of the power lost in the end 
( P J  and power lost in the Wire (P,) and the power lost by radiation> 

Assuming that there is no loss of power by radiation and that the resonator 
is oscillating in pure E or H modes and calculating 

far both the end 'plates and 
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Q H =  179 x 108,f" I [+ Y i  a2- I) J f  (?,,a) -I-+ Y?n2J; (7, a) 

-(+ ? i d 2 - I )  J: ( 7 , d ) - f  Y,2d2J; (Y,, d)]  

-: 1 6 9 4 . 2 2 ~  1022h2 f-'"[(* 7ha2-1) J :  (Yha)+:  Y ~ a 2 J ~  (Yhu) 

-(: ? i d 2 - I )  Jz  (Y,, d ) - -+  Yhd2J2 (Y,, d ) ]  

1-2 61 x 10-7dlf'"[52x 1029(k1/d) f- '-l lJJ: (Yhd)]  

The Q factor for the coupled EH and HE modes are respectively 

Q,=81.64x102yf-"'hZI[{2-72a'~ J : ( ? o ) - { : ! - - ~ ~ d ~ ]  J ?  ( Y d )  

+ { 7 ' d 2 - 1 - 2 7 - 2 )  J: ( Y ~ f ) + 1 . 5 7 f ~ ~ ~ I [ a ~ J :  (Yo) 

-d2J :  ( Y d ) + d Z J o ( Y d ) J 2 ( Y d ) ] c { - 1 2 0 . 3 1  X I O - ' ~ ~  

[ -  Y 2 d 2 J i  ( 7  d ) - t ( l  -(Yad2/2))J: (Y d ) - ( I  - : y2uZ) J :  (YCJ)] 

-52.2 ~ ~ d l : i  ln-39[J: (Yd)+(J:  ( 7  d ) / ??d2)  

- ( 2 J O ( ? d ) J I ( ~ t l ) / Y d ) l j  [611 

where, Y = Y,,, 
Q H E - - 1 7 9 ~  lO"f-'[(t ?'a2-I) J :  (Y a) 

- ( + Y 2 d - - l ) J ? ( Y d ) - :  7 ' d 2 J i ( ? d ) ]  

: 694.22 s 1022,f-712 h2 [(& ? l a 2 -  1) J i  (Ya) 

-(: Y2d2-I)J :  (Yd) -+Y2d2J ; (Yd) ]  

+2.61 x 10'71df1f2[52x 10'9f-'h2d-1-l]J: (Y d )  1 [621 

where, Y = Y,,, 

7.5 Guide Wuveleng~h 

The values of the axial propagation constant h in the case of the reso- 
nator oscillating in pure E or H mode are obtained from the condition 
WE= Wa at resonance from the following equations. 
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W mode : 

26x  l0Z9 f - ' h ' [ - Y ~ d 2 ~ ~  (Y,,d)-I2 (J: ( Y h d )  

The total propagation constants h for the coupled EH and HE modes is 
obtained from eqn. [55] and [561 respectively by replacing Y, by Y, and 7, by 
7, in equations [53] and 1541 respectively and using the resonance cond~rion 
J,, ( Y e , , 4 - 0 ~  

EN Mode : 

+ 2  J: ( Y a )  - J: (Yd) ]  + 2Y J: ( Y d ) - 2  J i  (Yd)] 

where, 7 = Y,, 
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HE Modode : 

26 x I U ' ~ J " ~ ~ [ - Y  ' d 2 J f  ( y d )  t 2 {J:(LYd)+9; ( ~ d ) )  + y2 0 2 ~ : ( y o )  

- 2  J: (Yo ) ]  

=22x  1 0 ' ~ f - ' [ ( Y ~  0'12) J : ( Y n ) - ( Y 2 d 2 / 2 )  { J ; ( Y d ) + J : ( Y d ) )  

- { J :  ( Y ~ ) - J : ( Y ~ ) ] ]  - f d 2  { J : ( Y ~ ) - J ~ ( Y ~ ) - J ~  ( 7 d ) J z  ( Y d ) )  

+ f  a 2 J : ( Y a ) - ( Y 1 / 2 )  { J : ( Y d ) - J ~  ( Y a ) t J , 2 ( Y d ) ]  

4-(l/-Y2) J: ( Y d )  [GI 

where, Y  = 7, 

I t  is evident that the guide wave length A, determined from h  in each case 
is a function of (1, a, and f,. 

When Y  nnd the argument o f  the Bessel functions are large equations 
[59] to [66] reduce respectively t o  

QEs { [-(2Yollr) ( c o s Z ( Y a - 3 ~ 1 4 )  +cosa (?a-m/4))  

4-27 J i  ( Y d ) ]  f - 3 f 2 h z I x 8 1 . 6 4 x  loz9 

- t [ (Za /xY)  (cos2 (Yo-3 m/4)1-cosl(Ya-714)) 

- (4/mY2)  COS (Ya -3x14)  cos ( Y a - x / 4 )  

- d 2  Ji ( ~ d ) ]  f5lZ 1  x 1.57) 

t { 120.31 x  [f Y2 d P  J: ( ~ d )  - t (Yn / l r )  cos 2701 

- 5 2 . 2 ~  7' d l  J i  ( Y d ) )  W I  
where, Y  - Y,  - 

QH-179x lo8 f  'I  I [ (Ya /m)  {cos2 ( Y O - ( 3 ~ 1 4 ) )  

+cos2 ( Y U - ( T / ~ ) > ]  - (+ Y ' ~ ~ - I )  J: ( 7 d ) - +  Y z d 2  Ji ( Y 4 1  

-. 1694.22 x  LOz2 h2 f  -7f2 [ (Ya /m)  (cos2 ( ? a - 3 ~ 1 4 )  + cos' (?a-.rr/4)) 

-($ Y2 d 2 - I )  J: (Yd)-+ y 1 d Z J : ( Y d ) l  

+2.61 x  1 d d ( f )  [52 x  loR9 (h2/d)  f  - 4 -  11 1 J: ( Y J ) ]  1681 

where Y  - Yh 

QEH=81.64x1029f-312hZl[{2-~2a2~ (2/mYa) cos"Ya-3x /4 ) -2J : (YJ j  

+(2Y -2).l:(Yd)]+1.57 f5 '21 ( [2a /mY)  cos2 ( Y a - 3 ~ / 4 )  

- d Z  J: ( ~ d )  - [ 2 ~ ,  ( Y d )  J ,  ( Y d ) / ( Y d ) l  + J :  ( 7 J ) ) )  

1 1120.31 x  lo-" [J: ( Y d )  - (2/m ?a) ( I  - f  Y2 a2) xcos2 (Ya -3%/4)1 

-52.2 Y ' d l  x  ( J i  ( Y ~ ) + - J :  ( ~ d ) / ( Y ' d ~ )  

-2 Jo ( Y d )  J ,  ( ? d ) l ( Y d ) ) j  I691 

where, Y  - Ye, 



where, Y - Yhr 

The var~atlon of A, and QE with respect to the ftequency of excitation and 
the varint~on of QE with respect to the length of the resonator are shown 
figures 10 and 1 1  respectively. The following values Sor the constants hdve 
been used in computing the results 

FIG. 10 
Variation of guide wayelength and Q factor of E mode with frequency of 

excilation of the resonator 
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Variation of Q (E-mode) with respect to the length of the resonator 
at different frequencies of excitation. 

n = l  metre ; d=lO-' metre ; u , ( A l )  53.54~ lo7 ulm; 

u, (Cu) =5.8 x 10' u/m ; r o - 4 n  x lo-' H/m : co=8.85 x lo-" F/m. 

8 .1 .  Field Components : 

The mode of practical intest in  cylindrical vurface wave transmission 
is rhe E, mode, since all other modes have very high attenuation. For  
Sommerfeld surface wave line having radius d and immersed in  air the field 
components for the resonant waves E, are4' 

H B , - 2  B ( w  c , / Y , )  H i l ' ( j  Y, P )  cos (n .tr :/I) 

where Y,=a,-jb, 



8 2 .  h4aximum Energy Stored ; 

- The maximum energy W ,  stored inside the resonator is 

8.4. Q Factor : 

The Q factor for the Sommerfeld surface wave resonator is 

Q ( E 0 ) = o  ( W , ' i p ~  +p& 

=2/0 , u , [ - j  Y; d H I 1 ) ( j  T Z d ) H i ( - j  7 :  d )  

- j  Y, dHil'  ( j  Y 2 d )  H ! ~ )  ( - j  Y; d ) ]  

-- [4/1 . \ / (20, ) ] [ - j  7 ;  d H , " ) ( j  Y , d )  H$ ' ( - j  Y; d )  

- j  Y 2 r i H ~ " ( j  Y 2 d ) H j 2 )  ( - j  Y; d ) ]  

- [ d ( Y ;  2 - ~ : ) / 4 ( 2  ow)  [ H i l ' ( j  Y, d )  Hi2) ( - j  7; d ) ]  [751 

The magnitude of the arguments of the Hankel functions in  most of the 
practical cases is less than 0.05. Therefore, using the following smzll 
argument approximations 

HI'' ( j  Y 2 d ) =  - ( ? / n Y , d )  

H $ ( - j Y : d ) = - ( 2 / x Y ; d )  

H:" ( I  Y? d )  = j  ( 2 1 ~ )  (m + i n) 

H'?) (- j 7 :  d ) - - , i ( 2 / n ) ( m t  j n )  

where, 
rn = In  [ (0  89 d j2  (u: f h:)] 

n n  arc tan (h,/a,) 
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the expression for Q ( E c )  reduces to 

where, the values of a, b, are determined from the solution of the following 
equation given by Barlow and Brown5' 

where, 7, is the radial propagation constant for the region inside the con- 
ductor and E, represents the dielectric constant of the conducting medium. 
By using large argument approximation Ij Y,dj > > 1 for the Bessel functions 
and small argument approximation Ij ?,d l  < 1 for the Hankel functions, 
eqn. [78] is solved to yield 

where, 

The Q (En) of the Sommerfeld resonator at/=9500 MHz and with 

which for 1 ~ 0 . 7 5  m and d -  1.1 x lo-' m yields 

Q (E,)= 18.830 and for I=0 I m Q (E,) - 14660. 

In deriving the expression For Q (E,,), it has been assumed that the only 
losses in the resonator occurs due to ohmic dissipation in the end plates and 
the wire surface and the loss due to the radiation has been ignored. An idea 
of the radiation loss can be gained from the power flowing outside a radius 
P. corresponding to the radius of the terminating end plates. 



The totai power flow F,  outside the Sommerfe'elc line i$ 

where, h= a +j/I,- jj3 and small argtmenr approxrrnativns for thc  Wankel 
functions have been used. 

Therefore, the percentage of eowcr Aoiv outside a radius 

P. is 

( P  ,JP$I x 100 

- loo(& (a: + t:) P.18 P )  
Rr [h  { j Y ;  H,'" ( j  'I, P,) H,"' ( -j 7",J 

The variation of the percentage of power flow outside a radins P,= 1 m and 
P,=0.45 m as function of the radius of  the Sommerfield line having d,and 
a, values same as stated previously is shown in fig. 12. Tt is found that for 
25 s.w.g. wire and end plate radius of 1 metre only about .03% power flows 
outside the resonator, whereas, for end plate of radius 0.45 meire, the per- 
ceniagc of power %ow outside the resonator, is about 1%. 
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B! 

RADIUS OF BARE CONDUCTOR IN NiCllbS 

FIG. 12 
Power flow outside a radius P,=lm and P,-0.45 rn as a function of 

the radius of Sommerfeld Line. 
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$'he following work in connection with the surface waiie resonator 
has been developed (see fig. 13) is under progress. 

(i) The effect of the tilt of one of the terminating end plates on the 
Q of the resofiator. 

(ii) The problem of edcitation of a metallic corrugated surface wave 
structure. 

(iii) Experimental study of the field decay guide wavelength, 
attenuation OF surface wave lines with metd disc loading. 

(iv) Extension of the surface wave resonator technique to the study 
of corrugated dielectric rod characteristic. 

The investigator-in-charge is grateful to Dr. S. Dhawan, Director of the 
Indian Institute of science for permission to accept the scheme and giving all 
facilities to conduct the Work. He expresses his deep gratitude to 
Dr. J. R. Wait, Monitor, denior Scientist ESSA for his unstinted support and 
encouragemeut and technical advice towards this project. He expresses his 
grateful thanks to U. S. Department of Comnierce for providing the necessary 
PL-480 funds for this project. His thanks are also due to U. G. C. New Delhi 
for permission to o'onduct the project. 
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FIG. 13 
Photograph of the experimental setup of Sommerfsld surface wave resonator 
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