Publication dates:
Jamuary, April, July aod October.

Subscription rates:

Rs. 24.00 for India
$\$ 6.50$ for U.S.A.
E 2.25 for U.K.
Equivalent of Rs. 30.00 for other countries.

Subscriptions are accepted only on volume basis.

Enquiries regarding subscriptions and exchange may be addressed to:

Mr. T, K, S. IYENGAR
Associate Editor
Jounal of the Indian Institute of Science Bangalora-12, (Ladia).

JOURNAL OF

THE INDIAN INSTITUTE OF SCIENCE

[Jandary 1971

CONTENTS

$P_{\text {AGE }}$
Propagation of Long Waves of Finite Ampli-
tude. P. L. Sachdev
Raman Spectra of 1,2-Dichloroethane and 2-Chloroethanol. A. Selvarajan, and R. Krishnan 13

A Note on the Hot Wire Method for Measuring
Heat Capacity of Gases at Low Pressures.
K. Govindarajan and E. S. R. Gopal 21
Buckling Coefficients of Variously supported Skew Plates. M. S. S. Prabhu and S. Durvasula 28
Computation of Matrix Inverse by a Power Series Method. Syamal Kumar Sen 43
Numerical Differentiation by Extrapolation. Manas Chanda 51
Ethanol Dehydration over Shevaroy Bauxite.
G. S. Pant, N. Subrahmanyam, M. Chanda and S. S. Ghosh 56Theoretical Studies on Sommerfeld SurfaceWave Resonator. S. K. Chatteriee, Miss.H. M. Girija, Miss Rukmini, Miss Glory Johnand N. Narasimhan63

Publishes orıginal research catricd ont in the Various Departitents of the Institute]

PROPAGATION OF LONG WAVES OF
 FINITE AMPLITUDE

By P. L. Sachadev
(Department of Applied Mathematics, Indian Institute of Science, Bangalore-12, India)

[Received: July 11, 1970]

Abstract

We consider the radiation problem for long waves of small amplirude, caused by on instantaneous disturbance of unit height at the origin. The equations governing this phenomenon were derived by Long (1964). The asymptotic expressions for the wave front and for large times are obtained. The initial value problem for the non-linear system of equations is also solved, using a perturbation scheme based on the small parameter α, the non-dimensional umplitude of the disturbance. The solution holds only for $\mathrm{t} \ll 1 / \alpha$ as a result of the appearance of a secular term in the first order solution.

1. Introduction

Long (1964) derived a set of equations governing the development of arbitrary, small but finite amplitude long waves. These waves are, therefore, characterised by the inequalities

$$
\begin{equation*}
(a / h) \ll 1, \quad(\lambda / h) \gg 1 \tag{1.1}
\end{equation*}
$$

where h is the uniform depth of the water, a is a length representative of the amplitude and λ is a length representative of the wavelength of the disturbance. In contrast to the theory of Airy ${ }^{1}$ which imposes the additional restriction that

$$
\begin{equation*}
(a / h)\left(\lambda^{2} / h^{2}\right) \gg 1 \tag{1.2}
\end{equation*}
$$

and of Jeffereys and Jeffereys (1946) which requires

$$
\begin{equation*}
(n / h)\left(\lambda^{2} / h^{2}\right) \ll 1 \tag{1.3}
\end{equation*}
$$

Boussinesq ${ }^{2}$ derived an equation which governs the propagation of long waves when

$$
\begin{equation*}
(a / h)\left(\lambda^{2} / h^{2}\right) \sim 1 \tag{1.4}
\end{equation*}
$$

The initial-value problems for the Boussinesq equation which were discussed by Korteweg and de Vries?, for example, were for waves for which the wave heights travel only in one direction with not an arbitrary specd but one mearly equal to $(g h)^{1 / 2}$. Long (1964), following Raye gl. ${ }^{11}$, expanded the complex potential for the unsteady motion and derived a set of equations which govern arbitrary long waves of small but finite amplitude without any resuriction on their speed to $(g /)^{1 / 2}$ or the direction of their propagation. With these restrictions these equations properly reduce 10 Boussinesq equations, Long has shown that these equatrons also yield the solitary wave which is a long wave that propagates without change of form. He has also consdered numerical solutions of his equations for some symmetric initial values of elevation and zero intial velocity. After some time, the wave profile in either of the two directions is very nearly that corresponding to a solitary wave.

The purpose of this paper is to study the non-linear hyperbolic system of equations derived by Long (1964). These equations govern the develop. ment of an arbitrary, small (but finite) amplitude long wave discurbances and also yield the solitary wave when they are suitably approximated. Our treament follows the well-known approach of Lighthill and Whith mi and Whitham ${ }^{13}$, particularly the latter, to the system which is obtained by linearising the non-linear system. Whitham showed that the highest order derivative in a partial and differential equation governing wave propagation, yield the phenomenon in the earlier stages of propagation, coupled with a damping caused by lower order terms, while it is the lowest order terms which finally govern the phencmenen, these being accompanied by a diffusion due to the higher order terms. The characteristics of differential equations that we cons der have constant slopes $\pm \sqrt{ } 3,0,0$, which, however, do not introduce any simplicity in the analysis of the equations. First we consider the radiation problem for the linearised form of these equalions and derive the form of the wave ior small and large times respectively. The solu'ion for the initial boundary conditions $t=0$, $\eta=\eta_{s}=\eta_{t t}=\eta_{s 8 z}=0, x>0$ and $\eta=\delta(t)$ at $x=0$, is expressed in terms of Bessel function of fi:si order for small time, that is, when the high frequency waves dominate or in the region where the discontinuities in the wave form appear. The solution is expressed in terms of Airy function when we consider the wave form after a large time. We also consider an initial value problem fo' the non-linear system in a power series in the small parameter α, characterising the non-d mensional amplitude of the disturbance. The first order term in the solution contains a secular term, that is, one containing the independent variable t, so that the soluton is valid only for $\alpha t \ll 1$.
2. Differential Equations and their Characteristic Form

The differential equations describing the two dimensional long gravity weves and satisfying the kinematio and dynamic conditions on the surface of
water were written by Long in terms of the non-dimensional height $\eta=\left(\eta^{\prime} / h\right)$ of the disturbance above the undisturbed level and a non-dimensional velocity $U=-F_{x}=-\left[F_{x^{\prime}}^{\prime}\left(x^{\prime}, t^{\prime}\right) / \sqrt{ }(g h)\right]$. Here the primed quantities denote the dimessional variables so that $y^{\prime}=0$ is the x^{\prime}-axis along the bottom of the channel and $y^{\prime}=h$ is the vertical undisturbed height as shown in the figure. ℓ^{\prime} is time. The function F^{\prime} is a function of x^{\prime} and t^{\prime} in terms of which the real part of the complex velocity potential ϕ^{\prime} is expanded about $y^{\prime}=0$, that is,

$$
\begin{equation*}
\phi^{\prime}\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=F^{\prime}\left(x^{\prime}, t^{\prime}\right)-\left(y^{\prime 2} / 2\right) F_{x x^{\prime} t}^{\prime}\left(x^{\prime}, t^{\prime}\right)+\ldots \tag{2.1}
\end{equation*}
$$

The dimensionless quartities are expressed as

$$
\begin{align*}
& x=\left(x^{\prime} / h\right), y=\left(y^{\prime} / h\right), t=i^{\prime} / \sqrt{ }(g / h) \\
& \phi(x, y, t)=\frac{\phi^{\prime}\left(x^{\prime}, y^{\prime}, t^{\prime}\right)}{h \sqrt{(g h)}}, \eta=\left(\eta^{\prime} / h\right), \quad F(x, t)=\frac{F^{\prime}\left(x^{\prime}, t^{\prime}\right)}{h \sqrt{(g h)}} \tag{2.2}
\end{align*}
$$

U, in fact, is the velocity at the bottom of the channel. Long made certain assumptions as to the order of different terms, which correspond to those employed in the derivation of the solitary wave. Thus, he assumed that if the non-dimensional amplitude of the disturbance is of the order α, a small quantity, that is, if

$$
\begin{equation*}
\eta \sim \alpha, \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
(\partial / \partial x) \sim \alpha^{1 / 2} \tag{2.4}
\end{equation*}
$$

This, in fact, expresses [1.4]. Besides, he assumed that

$$
\begin{equation*}
U \equiv-F_{\star} \sim \alpha,(\partial / \partial I) \sim(\partial / \partial x) \tag{2.5}
\end{equation*}
$$

Fig. 1
Long-wave Propagation

By substituting the nom-dimensional velocity potential in the nondimensional ferm of surface condition, Long obtained the following equations for η and U with an error of $0\left(\alpha^{3}\right)$ in η,

$$
\begin{align*}
& \eta_{s}+U \eta_{x}+U_{x}-\eta \eta_{t}+\frac{1}{6} \Omega_{t}=0_{x} \tag{2.6}\\
& \eta_{x}+U_{t}-U \eta_{s}+\frac{1}{2} \Omega_{x}=0 \tag{2.7}\\
& \eta_{z}-\omega=0_{p} \tag{2.8}\\
& \omega_{z}-\Omega=0_{0} \tag{2.9}
\end{align*}
$$

The equations [2 8] and [29] are alreedy in characteristic form. The former two equations, [2.6] aud [2.7], can be suitably combined to give tie characteristic form:

$$
\begin{align*}
& \partial\left(\eta+\sqrt{ } 3 U+\frac{1}{2} \Omega\right) / \partial z+\sqrt{ } 3 U(\partial \eta / \partial z) \\
& \quad=\frac{1}{2} w[\sqrt{ } 3 \eta+2 U-(2 / \sqrt{ } 3)] \tag{26}\\
& \partial\left(-\eta+\sqrt{ } 3 U-\frac{1}{2} \Omega\right) / \partial z+\sqrt{ } 3 U(\partial \eta / \partial z) \\
& \quad=\frac{1}{2} w[\sqrt{ } 3 \ddot{\eta}-2 U-(2 / \sqrt{ } 3)] \tag{2.7}
\end{align*}
$$

Where the independent vatiables are the characteristics $z=x+\sqrt{ } 3 t, z=x-3 \sqrt{ } t$. Thus, we have a hyperbolic system of equations with explicit characteristics, hisving constant slopes $\pm \sqrt{3}, 0,0$.

3. SOlution of the Linearised Eqtations

If we put $U=U_{0}+U, \quad \eta=\eta_{0}+\eta$, where U_{0} and η_{0} (in particular $\eta_{0}=0$) are the solutions of equations [26]' and [2.7]' giving unform flow and U and η are of order $0\left(\alpha^{2}\right)$, and linearise (thus omitting terms of $0\left(\alpha^{1 / 2}\right)$, wi obtain, after elimination of U, a linear equation in η.

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2}}{\partial t^{2}}-3 \frac{\partial^{2}}{\partial x^{2}}\right)+6\left(1-\eta_{0}\right) \frac{\partial^{2}}{\partial t^{2}}+12 U_{0} \frac{\partial^{2}}{\partial t \partial x}-6 \frac{\partial^{2}}{\partial x^{2}}\right] \eta=0 \tag{3.1}
\end{equation*}
$$

Thus the second order operator gives the lower order waves with speeds $\left[U_{0} \pm \sqrt{ }\left(U_{0}^{2}+1-\eta_{0}\right) / 1 \cdots \eta_{0}\right]$ and the fourth order operator gives the higher order waves with speeds $o, o, \pm \sqrt{ }(3)$. Unlike the differential operators considered by Whitham (1959), here the order of the adjacent differential operators d.ffers by two. If we substitute

$$
\begin{equation*}
\eta \alpha \exp (1 k x-\alpha z) \tag{3.2}
\end{equation*}
$$

in equation [3.1] where k is real and consider long waves so that $k \ll 1$, we easily verify that all roots α of the dispersion relation are pure imaginary. This shows that we have a stable situation, with progressive waves as solutions. Similarly, if we consider a periodic wave maintained at $x=0$ so that

$$
\begin{equation*}
\eta \propto \exp \cdot(\beta x-i w t) \tag{3.3}
\end{equation*}
$$

with ω (real) $\ll 1$, we again get all four roots corresponding to β pure imaginary, leading to the same result as noted above: Thus, for large times, we again have a stable situation. However, to be able to study the general wave motion, we consider the following signalling problem for the differential equation [3.1], an unsteady wave phenomenon on a running stream.

$$
\begin{array}{ll}
\text { Initial conditions: } & \eta=\eta_{t}=\eta_{t t}=\eta_{t t}=0 \text { at } t=0, x>0 \\
\text { Boundary conditions: } & \eta=f(r) \text { at } x=0 \tag{3.4}
\end{array}
$$

In the above we consider waves propagating in the $x>0$ direction due to the signal at $x=0$, but we could also consider the waves in the opposite direction. We find the Laplace transform of the equation [3.1] with the initial conditions [3.4]. We have

$$
\begin{equation*}
\left(3 p^{2}+6\right) \bar{\eta}_{x x}-12 U_{0} p \bar{\eta}_{x}-\left[6\left(1-\eta_{0}\right) p^{2}+p^{4}\right] \bar{\eta}=0 \tag{3.5}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
\bar{\eta}=A_{1}(p) \exp \left[\gamma_{1}(p) x\right]+A_{2}(p) \exp \cdot\left[\gamma_{2}(p) x\right] \tag{3.6}
\end{equation*}
$$

where A_{1} and A_{2} are some functions of p and

$$
\begin{equation*}
\gamma_{1.2}=\frac{\left.6 U_{0} p \pm p\left\{36 U_{0}^{2}+\left(3 p^{2}+6\right) 斤 p^{2}+6\left(1-\eta_{0}\right)\right]\right\}^{8 / 2}}{3\left(p^{2}+2\right)} \tag{3,7}
\end{equation*}
$$

This expression is rather complicated and therefore we approximate this for the following two situations (a) when p is very large i.e., t is small, this approximation is valid when the high frequency waves dominate or near discontinuities in the wave form. (b) when p is very small so that we consider the solution for large times.
(a) When p is large. In this case,

$$
\begin{equation*}
\gamma_{1,2} \approx \frac{ \pm p}{\sqrt{ }(3)}+\frac{1}{3 p}\left[6 U_{0} \pm \sqrt{ }(3)\left(2-3 \eta_{0}\right)\right] \tag{3.8}
\end{equation*}
$$

For the forward moving wave we take negative sign, wrih $A_{\mathrm{l}}(p)=0$, and inverting equation [3.6],

$$
\eta=\frac{1}{2 \pi i} \int_{\gamma_{i}+i \infty}^{\gamma+i \infty} A_{2}(p) \exp \cdot\left\{\left.p\left(t-\frac{x}{\sqrt{(3)}}\right)+\left[6 U_{0}-\sqrt{ }(3)\left(2-3 \eta_{0}\right)\right] \frac{x}{3 p} \right\rvert\, d p \quad[3.9]\right.
$$

where $\gamma=$ Rep is such that all singularities of the integrand are to the left of Rep $=\%$. It is obvious that

$$
\begin{equation*}
A_{2}(p)=\int_{0}^{\infty} \exp \cdot(-p t) f(t) d t \tag{3.10}
\end{equation*}
$$

If we take $f(t)=\delta(t)$, the Dirac delta function, so that $A_{2}(p)=1$, the above integral is easily evaluated, Roberts and Kaufmann ${ }^{12}$, the solution $\hat{\eta}$ is $\hat{\eta}(x, t)=0 \quad 0<t<x / \sqrt{3}$

$$
\begin{align*}
& =\delta\left(t-\frac{x}{\sqrt{(3)}}\right)-\left(\frac{x}{3}\right)^{1 / 2}\left[\frac{\sqrt{ }(3)\left(2-3 \eta_{0}\right)-6 U_{0}}{t-[x / \sqrt{(3)}]}\right]^{1 / 2} \times \tag{3.11}\\
& \quad \times J_{1}\left\{2\left(\frac{x}{3}\right)^{1 / 2}\left(t-\frac{x}{\sqrt{(3)}}\right)^{1 / 2}\left[\sqrt{ }(3)\left(2-3 \eta_{0}\right)-6 U_{0}\right]^{1 / 2}\right\}
\end{align*}
$$

$$
I \geq[x / \sqrt{ }(3)
$$

For any other $f(t)$, we can use the faltung theorem to obtain

$$
\begin{equation*}
\eta=\int_{0}^{t} \hat{\eta}(x, u) f(t-u) d u \tag{3.12}
\end{equation*}
$$

If we were to consider wave propagation in the negative direction, we would have

$$
\begin{align*}
& \hat{\eta}=\delta\left(t+\frac{x}{\sqrt{(3)}}\right)-(-x)^{1 / 2} \frac{\left[\sqrt{ }(3)\left(2-3 \eta_{0}\right)+6 U_{0}\right]^{1 / 2}}{\sqrt{3}[t+x / \sqrt{3}] \frac{1}{2}} \times \\
& J_{1}\left\{\frac{2}{\sqrt{(3)}}(-x)^{1 / 2}\left[\sqrt{ }(3)\left(2-3 \eta_{0}\right)+6 U_{0}\right]^{1 / 2}\left(t+\frac{x}{\sqrt{(3)}}\right)^{1 / 2}\right\} . \\
&=0 .
\end{align*}
$$

The above solution represents higher order progressive waves with speeds $+\sqrt{(3)}$ and $-\sqrt{(3)}$ respectively. The wave height near the front initially decreases from 1 as x increases. We also note that if $70=0$, $U_{0}-[1 / \sqrt{ } 3], \quad \eta(x, t)=\delta[t-x / \sqrt{(3)}]$ in equation [3.11] which gives $\eta(x, t)=1$ on $t=[x, \sqrt{\prime}(3)]$ and $\eta=0$ elsewhere. Of course these results are based on linear theory, the non-linear effects will alter the situation considerably. Unlike the exponential damping of dynamic waves by the kinematic waves, in the flood wave problem of Lighthll and Whitham, we have near the wave front a diminishing of the amplitude from unity and an oscillatory character, given by Bessel function of order one.
(i) In this case p is small, we approximate $\gamma_{1,2}$ to

$$
\begin{align*}
\gamma_{1,2} & =p\left[U_{0}^{2} \pm\left(U_{0}^{2}+1-\eta_{0}\right)^{1 / 2}\right]+p^{3}\left[\pm \frac{4-3 \eta_{0}}{12\left(U_{0}^{2}+1-\eta_{0}\right)}-\frac{1}{2} U_{0} \mp \frac{1}{2}\left(U_{0}^{2}+1-\eta_{0}\right)^{1 / 2}\right] \\
& \equiv B_{1,2} p+C_{1,2} p^{3} . \tag{3.14}
\end{align*}
$$

Again if we consider wave propagation in the positive direction only, then taking the lower sign,

$$
\begin{equation*}
\eta=\frac{1}{2 \pi i} \int_{\gamma-i \omega}^{\gamma+i \omega} F(p) \exp \cdot\left[p\left(t+B_{2} x\right)+C_{2} x p^{B}\right] d p \tag{3.15}
\end{equation*}
$$

where $R I \%$ is dafined in the usual way. Again if we choose $f(t)=\delta(t)$ so that $\bar{f}(p)=1$, the above integral can be easily integrated, Magnus et al ${ }^{\text {io }}$. We can transform this integral into the form

$$
\begin{equation*}
\hat{\eta}=(1 / x) \int_{0}^{\infty} \cos \left[z\left(t+B_{2} x\right)-c_{2} x z^{3}\right] d z \tag{3.16}
\end{equation*}
$$

which is expressible in terms of Airy functions

$$
\begin{align*}
\hat{\eta} & =\frac{1}{\left(3 C_{2} x\right)^{1 / 3}} A_{1}\left(-3^{-1 / 3} \frac{B_{2} x+t}{\left(C_{2} x\right)^{1 / 3}}\right) \\
& \approx \frac{1}{\sqrt{\pi\left[3 C_{2} x\left(B_{2} x+t\right)\right]^{1 / 4}} \cos \left[\frac{2}{3} \frac{\left(B_{2} x+t\right)^{1 / 2}}{\left(3 C_{2} x\right)^{1 / 2}}-\pi / 4\right]} . \tag{3.16}
\end{align*}
$$

the asymptotic expression of $A i$ for large value of t when x / f is kept fixed. We briefly verify this result by the method of saddle points. The exponential term in the integral [3.15] can be written as

$$
\exp t\left\{p\left[1+B_{2}(x / t)\right]+C_{2}(x / t) p^{3}\right\}
$$

For fixed value of x / f, we evaluate this integral for large f. The saddie points of $\left.F(p)=p\left[1+B_{2}(x / t)\right]+C_{2}(x / t)\right] p^{3}$ are

$$
\begin{equation*}
P 0,1= \pm i\left[\left(t / x+B_{2}\right)\left(1 / 3 C_{2}\right)\right]^{j / 2} \tag{3.16}
\end{equation*}
$$

both of these being equally important. Therefore, by the usual method of saddle points,

$$
\left.\begin{array}{rl}
\eta \sim & \frac{1}{\left[48 \pi^{2} C_{2} x\left(t+B_{2} x\right)\right] \frac{1}{4}}-\bar{\eta}\left(p_{0}\right) \exp i\left\{\frac{2}{3}\left(t+B_{2} x\right) V\left[\left(t / x+B_{2}\right)\left(1 / 3 C_{2}\right)\right]-\pi / 4\right\} \\
& \left.+\bar{\eta}\left(p_{1}\right) \exp -i\left\{\frac{2}{3}\left(t+B_{2} x\right) \vee\left[\left(t / x+B_{2}\right)\left(1 / 3 C_{2}\right)\right]-\pi / 4\right\}\right] \\
& =\frac{1}{\sqrt{\pi\left[3 C_{2} x\left(B_{2} x+t\right)\right]^{1 / 4}}} \cos \left[\frac{2}{3} \frac{\left(B_{2} x+t\right) \frac{3}{2}}{\left(3 C_{2} x\right)^{1 / 2}}-\pi / 4\right. \tag{3.17}
\end{array}\right]
$$

when $\bar{\eta}(p)=1$. This is the same as in [3.16]. This represents essentially the lower order waves. We find that the solution does not hold at the observation point $x=0$ and the front $B_{2} x+t=0$, Lighthill and Whitham ${ }^{9}$. We also note that $\eta \propto(1 / \sqrt{ } x)$ or $\eta \propto(1 / \sqrt{ } t)$ for fixed x / t, showing diffusion of the lower order wave by the higher order ones.

The solution in the negative x direction can be easily obtained by changing B_{2} and C_{2} to B_{1} and C_{1} respectively.

Before we consider the non-linear wave propagation, we briefly indicate the resulis as obtained by the quick method, Whitham ${ }^{13}$. For example, for the wave corresponding to $(\partial x / \partial t)=\sqrt{3}$ we put $(\partial / \partial t)=-\sqrt{3}(\partial / \partial x)$ in equation $[3.1]$ and introduce the variable $\xi=x-\sqrt{ } 3_{I}$, we get the equation

$$
\begin{equation*}
\left(\partial^{2} \eta / \partial x \partial \xi\right)=-\frac{1}{3}\left[2-3 \eta_{0}-2 \sqrt{ } 3 U_{0}\right] \eta . \tag{3.18}
\end{equation*}
$$

With the conditions that $\eta=0$ on the front $x-\sqrt{3} t=\xi=0$ and $\eta=f(t)$ on $x=0$. the solution of equation [3.18] can be written in the form, Garabedians,

$$
\eta(x, \xi)=\frac{f(0) J_{0}(2 \sqrt{ } \lambda x \xi)}{2}+\int_{0}^{\xi} f^{\prime}\left(\eta_{1}\right) J_{0}\left[2 \sqrt{ } \lambda\left(\xi-\eta_{1}\right)\right] d \eta_{1}
$$

Similarly, the solution near the wave front $x=-\sqrt{3} t$ is obtained by simply changing ξ to $\xi^{r}=x+\sqrt{3} t$. For the lower order waves, if we put ($(\mathrm{O} / \mathrm{o}$) $=-C_{1,2}(\partial / \partial x)$ in equation where $C_{1,2}=\left[U_{0} \pm \sqrt{ }\left(U_{0}^{2}+1-7 / 0\right] / 1-\eta \pi\right.$

We get

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}+C_{i} \frac{\partial \eta}{\partial x}-\frac{C_{i}^{2}\left(C_{i}^{2}-3\right)}{6\left(1-\eta_{\mathrm{a}}\right)} \frac{\partial^{3} \eta}{\partial x^{3}}=0, i=1,2 \tag{3.20}
\end{equation*}
$$

after integrating out once with respect to x. The solution of this equation can be expressed in terms of Bessel functions.

4. Initial Value Problem

Now we consider the initial value problem for the hyperbolic system $(2.6)^{\prime}-(2.9)^{\prime}$ where equations [2.8] and [2.9] are expressed in terms of the characteristic variables z and \bar{z} as

$$
\begin{align*}
& (\partial \eta / \partial z)-(\partial \eta / \partial \bar{z})=(w / \sqrt{3}) \tag{2.8}\\
& (\partial w / \partial z)-(\partial w / \partial \bar{z})=(\Omega / \sqrt{3}) . \tag{2.9}
\end{align*}
$$

We assume that $\eta(x, 0)$ and $U(x, 0)$ ate given. We seek the solution in the form

$$
\begin{align*}
& \eta=\alpha\left(\eta_{0}+\alpha \eta_{1}\right), \quad U=\alpha\left(U_{0}+\alpha U_{1}\right), \quad \omega=\alpha^{3 / 2}\left(\omega_{0}+\alpha \omega_{1}\right), \\
& \\
& \Omega=\alpha^{2}\left(\Omega_{0}+\alpha \Omega_{1}\right),
\end{align*}
$$

since the equations of Long give η with an error of $0\left(\alpha^{3}\right)$. Here η and U are functions of 2 and \bar{z}. We substitute the expressions [4.1] in equations $[2.6]^{\prime}-[2.9]^{\prime}$, taking note of the assumprions [2.4] and [2.5].

After some calculation, we get the following equations. Zero order system:

$$
\begin{align*}
& \frac{\partial\left(\eta_{0}+\sqrt{ } 3 U_{0}\right)}{\partial z}-(1 / \sqrt{ } 3) \omega_{0} \\
& (\partial / \partial \bar{z})\left(-\eta_{0}+\sqrt{ } 3 U_{0}\right)=\left(-\omega_{0} / \sqrt{ } 3\right) \tag{4.3}\\
& \left(\partial \eta_{0} / \partial z\right)-\left(\partial \eta_{0} / \partial \bar{z}\right)=(\omega / \sqrt{ } 3) \tag{4.4}\\
& \left(\partial \omega_{0} / \partial z\right)-\left(\partial \omega_{0} / \bar{z}\right)=\left(\Omega_{0} / \sqrt{ } 3\right) \tag{4.5}
\end{align*}
$$

First order system :

$$
\begin{gather*}
\frac{\partial\left[\eta_{1}+\sqrt{ } 3 U_{1}+\left(\Omega_{0} / 2\right)\right]}{\partial z}+\sqrt{ } 3 U_{0}\left(\partial \eta_{0} / \partial z\right) \\
\because\left(\omega_{0} / 2\right)\left(\sqrt{ } 3 \eta_{0}+2 U_{0}\right)-\left(\omega_{1} / \sqrt{ } 3\right) \tag{4.6}
\end{gather*}
$$

$$
\begin{align*}
& \frac{\partial\left[-\eta_{1}+\sqrt{ } 3 U_{1}-\left(\Omega_{0} / 2\right)\right]}{\partial \bar{z}}+\sqrt{ } 3 U_{0}\left(\partial \eta_{0} / \partial \bar{z}\right) \\
& =\left(\omega_{0} / 2\right)\left(\sqrt{3} \eta_{0}-2 U_{0}\right)-\left(\omega_{1} / \sqrt{3}\right) \tag{4.7}\\
& \left(\partial \eta_{1} / \partial z\right)-\left(\partial \eta_{1} / \partial \bar{z}\right)=\left(\omega_{1} / \sqrt{3}\right) \tag{4.8}\\
& \left(\partial \omega_{1} / \partial z\right)-\left(\partial \omega_{1} / \partial \bar{z}\right)=\left(\Omega_{1} / \sqrt{ } 3\right) \tag{4.9}
\end{align*}
$$

The equations satisfied by η_{0} and η_{1} are found to be

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial z^{2}}-4 \frac{\partial^{2}}{\partial z \partial \bar{z}}\right) \eta_{0}=0, \tag{4,10}\\
& \left(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial \bar{z}^{2}}-4 \frac{\partial^{2}}{\partial z \partial \bar{z}}\right) \eta_{1}=F(z, \bar{z}) \tag{411}
\end{align*}
$$

Where $F(z, \bar{z})$

$$
\begin{align*}
= & \frac{\partial^{y} \Omega_{0}}{\partial z}+\sqrt{ } 3
\end{aligned}\left[\frac{\partial}{\partial \bar{z}}\left(U_{0} \frac{\partial \eta_{0}}{\partial z}\right)-\frac{\partial}{\partial z}\left(U_{0} \frac{\partial \eta_{0}}{\partial \bar{z}}\right)\right] \quad \begin{aligned}
& -\frac{\sqrt{ } 3}{2} \frac{\partial}{\partial \bar{z}}\left(\frac{\partial \eta_{0}}{\partial z}-\frac{\partial \eta_{0}}{\partial \bar{z}}\right)\left(\sqrt{ } 3 \eta_{0}+2 U_{0}\right) \\
& \\
& \quad+(\sqrt{ } 3 / 2)(\partial / \partial z)\left[\left(\partial \eta_{0} / \partial z\right)-\left(\partial \eta_{0} / \partial z\right)\right]\left(\sqrt{3} \eta_{0}-2 U_{0}\right) \tag{4.12}
\end{align*}
$$

We easily verify that the characteristics of the differential operator on the left hand side equations [4.1] and [4.2] are $\dot{z}+(2 \pm \sqrt{ } 3) z=(3 \pm \sqrt{3})(x \mp t)=$ const, agreeing with the linearised equation [29] of Long (1964). Thus the characteristic slopes of the zero order solutions are ± 1, while those of the non-hinear system are $\pm \sqrt{ } 3$. We consider, in particular, the initial value problem $\eta(x, 0)=2 \alpha \cos x, U(x, 0)=0$, so that we find from equations [4.10], [4.2] and [4.3] that

$$
\begin{equation*}
\eta_{0}(x, t)=\cos (x+t)+\cos (x-t), \quad U_{0}(x, t)=\cos (x-t)-\cos (x+t) \tag{4,13}
\end{equation*}
$$

Thes, it is more convenient to introduce the characteristic variables

$$
\begin{equation*}
\alpha_{1}=x-1, \quad \beta_{1}=x+t \tag{4.13}
\end{equation*}
$$

so that η_{1} can be shown to sarisfy the equation

$$
\begin{align*}
& \left(\partial^{2} \eta_{1} / \partial \alpha_{1} \partial \beta_{1}\right)=-\frac{1}{2} \cos \left(\alpha_{1}+\beta_{1}\right)+\frac{3}{4}\left[\cos 2 \alpha_{1}+\cos 2 \beta_{1}\right] \\
& \quad-\frac{1}{1}\left(\cos \alpha_{1}+\cos \beta_{1}\right) . \tag{4.14}
\end{align*}
$$

The solution of this hyperbolic differential equation with the initial condition $\eta_{!}=\left(\partial \eta_{1} / \partial \alpha_{1}\right)=\left(\partial \eta_{1} / \partial \beta_{1}\right)=0$ on the initial line $\alpha_{1}=\beta_{1}$ from equations [4.6] and [4.7] is

$$
\begin{align*}
\eta_{1}= & \left.\left(\beta_{1}-\alpha_{1}\right)\left[\frac{3}{8}\left(\sin 2 \alpha_{1}-\sin 2 \beta_{1}\right)+\frac{1}{1}-\sin \beta_{1}-\sin \alpha_{1}\right)\right] \\
& \left.+\frac{1}{2} \cos \left(\alpha_{1}+\beta_{1}\right)-\cos 2 \alpha_{1}\right]+\frac{1}{4}\left(\cos 2 \alpha_{1}-\cos 2 \beta_{1}\right) \\
= & \left\{\left[\frac{3}{4}\{\sin 2(x-t)-\sin 2(x+t)\}+\frac{1}{6}\{\sin (x+t)-\sin (x-t)\}\right]\right. \\
& +\frac{1}{2}[\cos 2 x-\cos 2(x-t)]+\frac{1}{4}[\cos 2(x-t)-\cos 2(x+t)] . \tag{4.15}
\end{align*}
$$

We find that a secular term in the first order term of the solution appears so that the solution is valid only for $\alpha t \ll 1$. While the secular terms in ordinary differential equations have been treated quite successfully, the re does not seem to be any general way of tackling them for partial differential equations. For example, Broer (1965) has considered some simple cases when a transformation of the time variable can be guessed from the solution. The term $(\alpha t / 6)[\sin (x+1)-\sin (x-t)]$ in [4.15] can be easily combined with the zero order term by the transformati in $t^{\prime}=1+(\alpha t / 6)$ but the other secular terms cannot be removed. The divergence of the solution for large t is not due to the linearising of the characteristres since we can easily fit the exact characteristics by stretching the x-co-ordinate by $1 / \sqrt{ } 3$, but does not remove the singularity for large t. This perturbation scheme is not suited to give solution for the far field for which a different procedure similar to that given by Cole (1968) would lead to the Korteweg equation which provides the solitary wave and other periodic solutions, Kruskal and Zabusky ${ }^{8}$. In any case, the above solution for $t<(1 / \alpha)$ shows that in the first order solution we get zero order solution and its double harmonic out of phase with the zero order solution by $\pi / 2$ and these together have their amplitude increasing linearly with time while the other double harmonic in η, remains bounded.

5. Acknowledgement

The author wishes to express his gratitude to Prof. P. L. Bhatnagar for help and encouragement during the preparation of this paper.

Referrences

1. Airy, ©. E. Encyclopaedia Metropolitanar. 1845, 241.
2. Boussinesq, J. J. Math. pures appl., 1872, 17, 55.
3. Broer, L. J. F. Z. angew. Math. Phys., 1965, 16, 13.
4. Cole, J. D. Perturbation Metho is in Applied Mathematics. Blaisdell Publishin; Company, London, 1968, 252.
5. Garabedian, P.R.

Partial Diferential Equations. John Wiley and Sons, 1964.
6. Jaffereys, H and Jaffereys, B, S.

Methods of Mathematical Physics, Cambridge University Pre $\mathrm{s}, 1946$.
7. Korteweg, D. J. and DE Vries, G. . . Phil. Mag, 1895, 39, 422.
8. Krushkal, M. D. and Zabusky. N. I J. math. Phys., 1964, 5, 231.
9. Lighthinl, M. J. and Whitham. G. B. Proc, R. Soc. 1955, 229A, 281.
10. Magnus, W., Oberheitinger, F. and Soni, P. R.
11. Rayleıgh, Lord
12. Roberis, G. E. and Kaufman, H ;
13. Whitham, G. B.

Formulas and Theorems for the special functions of Mathematical Physics, 1966, 75.
Phil. Mag , 1876, 1, 257.
Table of Laplace Transform. W.P Suunders Company, 1966, 60.
Communs. pure appl Math., 1959, 12, 113.

RAMAN SPECTRA OF 1,2:DICLOROETHANE AND 2-CHLOROETHANOL

By A. Selvaraian and K. Krishnan
(Department of Physics, Indian Insriture of Science, BamgaIore-12, India.)

[Receives: August 17, 1970]

Abstract

Raman spectra of 1,2-dichloroethane and 2-chloroethanol have been recorde. d using both the $4358 \dot{\AA}$ and the $2537 \dot{\mathrm{~A}}$ excitations In the spectra obtained with the latter excitation, many new Ruman lines are found for the first time. Assignments of these lines are discussed. When the exciting wavelength is changed from $4358 \AA$ to 2537 A, the relative intensities and depolaritation ratios of scme of the Raman lines of the two substances are seen to change also. These changes are explained on the basis of the resanance Raman effect.

1. Introduction

The Raman spectrum of 1,2-dichloroethane and 2-chloroethanol has been studied by numerous investigators ${ }^{1-5}$. The problem of internal rotation in substituted ethanes has been studied in detail by Mizushima ${ }^{2}$. It is now well known that both in the gaseous and liquid states 1,2 -dichloraethane exists as a mixture of two rotational isomers, having the trans- and the gauche forms respectively. The trans- form of the molecule belongs to the symmetry point group $C_{2 h}$ and the gauche form to the point group symmetry C_{2}. Complete vibrational assignments from normal coordinate analyses for these two forms has been given by Nakagawa and Mizushima ${ }^{6}$. The molecular structure of 1,2-dichloroethane has also been studied by X-ray ${ }^{7}$, electron diffraction ${ }^{8}$ and infrared ${ }^{2,9}$ methods.

The Raman spectrum of 2 -chloroethanol has also been the subject of numerous investigations ${ }^{10-15}$. Infrared obsorption ${ }^{16-18}$, electron difraction ${ }^{19,20}$ and microwave ${ }^{21}$ studies of 2 -chloroethanol have also been reported in the literature. These studies have shown that the 2 -chloroethanol molecule also exists in two rotational isomeric forms-the trans- and the gauche-ones. Whereas in 1,2 -dichloroethane the trans- form is more stable, in 2 -chloroethanol the guache form is the more stable one. In the latter case, the chlorine atom and the hydroxyl groups take part in the formation of an internal hydrogen borrd.

All these earier studies on the Raman spectra of the above two compounds hed been carried out using the visible mercury 4358 A excitation methods. Pure 1,2-d.chloroeihane and 2 -chloroettanol were found to bs sufficiently transparant to the $.2537 \mathrm{~A}=$ mercury radiation. It was though warthwhle; therefore to re-examine the Raman spectra. of the above two Huquis using the 2537 A excitation, with a view to firfo out the changes if any, which take plece in ute spectra, as the exoiting frequency in this case will be much "loser to the electronic absorp: ion frequencies of the compounds.

$\because 2$ EXPERIMENTAL DETAILS.

Two sets of Raman spectra were-recorded for each compound, one using the vis.ble mercury 4358 A excitation and the other using the uitraviolet mercury 2537 A radiation. A Toronto type helical mercury, are was the sources of the visible radiation, while a watercooled, magnet-controlled quartz mercury are served to produce an intense beam of the ultravolet radiation. A saturated solution of sodim nitrite was used to cat off all radiations cf wavelength less then $4358 \AA$ in the firs: case ; for the ultraviolet studies, a filter of dilute acetic acid was used to cut off all radiations of wavelength less than 2537 A The vis'ble Raman spectra were recorded using a H lger two prism spectiograph on Ilford Astra III plates. For the ultraviolet Raman spectra, a Hilger med um quartz spectrograph was used, the spectra beirg photographed on Ilford Zenith Astronomical plates. For the depolarization measuremencs, a double image prism was inserted in the path of the scattered light. The light coming cut of the double image prism was concicrsed on to the slit of the specircereph using a crystal quartz lens. The lens wcs so chosen that by its opl cal activity and birefringence the two componets of the scattered 1 ight ccming out of the double image prism, were effectively cepolarized. Thus the two beams d.d not suffer unequal reflection losses inside the spectrograph. The Raman spectra were microphotemetered using a Moll m crophotemeter.

Analar qu: lity 1, 2-dchlorcethane, and 2 -chlorcethanol were used in the study. Both tle liquids were distilled twice before use. For the ultraviolet study, the samples were kept in a high optical quality fused silica Wood's tubs.

3. Results

Figures ia and 16 show the Raman spectra and the microphotometer tracing of 1 , 2 -dichloroethane as excited by the 2537 A and the 4358 A radiations, respectively. Figures $2 a$ and $2 b$ show the corresponding Raman spectra of 2 -chloroethanol. The observed Raman frequency shifts, their visually estimated relative intensities, and depolarization ratios of 1,2 -dichloroehane are listed in Table 1. The frequency shifts of the Raman lines of 2 -Chloroethenol, along with their visually estimated relative intensities are given in Tuible 2 .

Table 1
Raman Spectrum of 1,2-Dichloroethane

3537 A excitation		4538 A excitation			ssignments	Species	
$\begin{aligned} & \text { Frequencies } \\ & \left(\cos ^{-1}\right)(\alpha) \end{aligned}$	ρ	$\overline{\text { Frequencies }} \underset{\left(\mathrm{cm}^{-1}\right)}{ }$	$\rho^{(b)}$			$\bar{T} \overline{\text { Trans }} \begin{gathered} \mathrm{C}_{2} h \end{gathered}$	$\begin{gathered} \text { Gachue } \\ \mathrm{C}_{\mathbf{x}} \end{gathered}$
125(3)	dp	125(4)	0.63	v_{10}^{\prime}	torsion		a
223(0)		223(1)		ν_{18}	$\mathrm{C}-\mathrm{Cl}$ bending	b_{u}	
265(2)	0.47	263(2)	0.31	ν_{6}^{\prime}	$\mathrm{C}-\mathrm{Cl}$ bending		a
301(8)	0.54	300(8)	0.40	ν_{6}	$\mathrm{C}-\mathrm{Cl}$ bending	a_{8}	
414(4)	0.94	412(4)	0.81	ν_{18}^{\prime}	$\mathrm{C}-\mathrm{Cl}$ bending		b
$465(0)$.			$\nu_{5}-\nu_{6}$	or $\nu_{16}-\nu^{9}$		or B_{g}
$537(0)$				$\nu_{5}^{\prime}-\nu_{6}$	or $2 \nu_{6}$	A_{g}	A
650(10)	0.13	652(10)	0.18	ν_{5}^{\prime}	C-Cl stretching		a
680(8)	0.88	678(6)	dp	ν_{17}^{\prime}	$\mathrm{C}-\mathrm{Cl}$ stretching		b
$752(10)$	0.39	754(10)	0.23	ν_{5}	C-Cl stretching	$g a_{g}$	
883(4)	0.18	881(3)	0.88	ν_{13}^{\prime}	CH_{2} rocking		b
944(5)	0.34	942(4)	0.26	ν_{9}^{\prime}	CH_{2} rocking		a
990(1)		989(1)	p	ν_{13}	CH_{2} rocking	b_{8}	
1032(1)		1032(1)		ν_{4}^{\prime}	C-C stretching		a
1054(3)	0.57	1052(4)	0.47	ν_{4}	$\mathrm{C}-\mathrm{C}$ stretching	a_{8}	
1145(2)	dp	1143(2)	dp	ν_{12}^{\prime}	CH_{2} twisting		b
1169(0)				$\nu_{2}^{\prime}-\nu_{6}^{\prime}$			A
1209(7)	0.71	1206(6)	0.65	ν_{8}^{\prime}	CH_{2} twisting		a
1264(0)		1262(1)	dp	$\nu_{3}^{\prime}, \nu_{12}$	CH_{2} wagging	b_{g}	a
1305(9)	0.35	1303(7)	0.45	$\nu_{3}, \nu_{16}^{\prime}$	CH_{2} twisting	a_{3}	b
1432(8)	0.72	1439(8)	0.82	ν_{2}^{1}, ν_{15}	CH_{2} bending		a, b
1444(6)		1443(5)	dp	y_{3}	CH_{2} bending	a_{8}	
1507(1)				$2 v_{j}$		A_{g}	

Table 1-(conta.)

2537 Å excilation		4358 A excitatio		Assignmets	Species	
Freguencige. $\left(\mathrm{Nm}^{-1}\right)(6)$	p	Frequencies $\left(\mathrm{cm}^{-1}\right)(a)$	$p^{(b)}$		$\begin{gathered} \text { Trans } \\ C_{2 h} \end{gathered}$	$\begin{aligned} & \text { Canch } \\ & \mathrm{C}_{\mathrm{t}} \end{aligned}$
1630 (0)	- .	- .	" -	$z_{17}^{\prime}+p_{9}^{\prime}$		B
2062 (1)	- .	-•	-•	$v_{3}+v_{5}$	A_{8}	
2095(1)	, -	-•	.	$\nu_{8}^{\prime \prime}+\nu_{13}^{\prime}$ or $\nu_{2}^{\prime}+\nu_{5}^{\prime}$		B or A
$2260\left(\frac{1}{3}\right)$.	.	-	$\nu_{8}{ }^{\prime}+v_{4}^{\prime}$		A
$2316(0)$	- .	-	-•	$v_{2}^{\prime}+v_{13}^{\prime}$		B
2470(1)	, .	-	.	$w_{2}^{\prime}+w_{4}^{\prime}$ or $v_{8}^{\prime}+\nu_{3}^{\prime}$		A
$2525\left(\frac{1}{2}\right)$.	\cdots	-•	$\nu_{8}^{\prime}+v_{16}^{\prime}$		B
2569(1)	-	-•	-•	$\nu_{2}^{\prime}+v_{12}$ or $\nu_{3}+v_{12}$		A
2603(0)	.	*	, -	$2 \nu_{3}$ or $2 \nu_{16}^{\prime \prime}$	A	A
2712($\frac{1}{3}$)	- .	-•	"	$\nu_{2}+\nu_{12}$	B_{E}	
2744(1)	-		-	$\nu_{2}+\nu_{3} \quad A$	A_{g}	
2844(5)	p	2841(4)	p	$2 v_{2}^{\prime}$		A
2375:5)	p	2875(4)	p	$2 \nu_{2}$	A_{8}	
$2950(0)$	53	2960(10)	0.23	$v_{1} v_{1}^{\prime} \nu_{14}^{\prime} \mathrm{CH}$ stretching		a, b
3005(8)	1.00	3007(7)	dp	$\nu_{11} \nu_{7}^{\prime} \nu_{11}^{\prime} \mathrm{C}$ - H streiching b	b_{8}	a,b

(a) Numbers w thin brakets give the relative intenstis estimatid vissually.
(b) Values reported by Neu et al. (4).

4. Discussion

A study of the Tables 1 and 2 shows that besides the Raman lines already reported by earlier workers, the Raman spectra of 1,2-dichloroethane and 2 -chlorocthanol excited by the 2537 A radiation contain many new lines. These lines are mainly in the region of combsation and overtone bands. We have used the assignments for the fundamental vibrations of 1,2 dichloroethane as given by N.kagawa and M zushima ${ }^{6}$. Table 1 gives these assignments, together with our assignments of the newly observed Raman lines which have been essigned as combinations and overtones. In making the latter assignments, the following facts were taker into account : (i) only the overtones and combinations expected are thase involving in general, the stronger fundameritals : ad (ii) the resultant states of the combinations and the overtones should belong to a Raman active species.
A. Selvarajan, et al
J. Ind Inst Sci., Vol 53, No. 1

A. Selvarajan, et al
J. Ind. Inst. Sci., Vol. 53 No. 1

Plate I b
Raman Spectrum and the microphotometer record of 12 -dichloroethane (4358 \& excitation)

PLATE II a
Raman Speetrum and the microphotometer record of 2-chloro ethanol (2537 A A excitation)

PLATE IIb
Raman Spectrum and the microphotometer record of 2-chloro ethanol (4358 \& A excitation)

TAble 2

Raman Spectrum of 2-Chloroethanol

The last column of Tables 2 gives the vibrational assignments for the 2 -chloroethane molecule. These a ssignments have been made by a comparison of the Raman spectrum of 2-chloroethanol with the Raman spectra of 1,2edichloroethane and 1,2-ethanediol 22.

A comparison of the Raman spectrum of 1,2 dichloroethane excited by the 2537 A radiation with that obtained by the 4358 A excitation shows that the relative intensities of the two Raman lines at $\mathrm{Ca} . \quad 1305 \mathrm{~cm}^{-1}$ and a Ca . $1432 \mathrm{~cm}^{-1}$ are reversed. A comparison of the depolarization ratios of these two lines shows that in the $2537 \AA$ excited spectrum, these two Raman lines have lower depolarization values. Similary, the Raman lines at 848 and 939 cm^{-1} have their intensities reversed in the 2537 A excited Raman spectrum of $2-$ chloroethanol. The changes observed in the relative intensities, though small, are bellieved to be genuine. In the short wavelength ranges where these Raman lines occur, the variation of the sensitivity of the photographic plate cannot introduce any appreciable error. And, in our depolarization measurements, any error in the determination will only tend to increase the depolarization ratio to the limiting value. Thus the decrease in the depolarization ratios of the two 2537 A excited Raman lines of 1,2 -dichloroethane must also be genuine.

It is well known that in the phenomenon of the resonance Raman effect there is a many fold increase in the intensities of some of the Raman lines of the molecule, when the exciting frequency approaches the electronic absorption frequency of the molecule ${ }^{23}$. If the molecule has a non-degenerate ground and excited electronic states, the depolarization ratio tends to 0.50 as the exciting frequency approaches the electronic absorption frequency. This has been verified experimentally in the case of substituted nitrobenzenes by Rea ${ }^{26}$. However, in the case of saturated molecules, such as cyciohexane, 1,4-dioxne, etc., there does not seem to be a consistent pattern in the intensity changes as the exciting frequency is in the resonance region ${ }^{25}$, ${ }^{26}$. In the latter case, however, Bernard and Dupeyrat ${ }^{22}$ have shown that the depolarization values do tend to 0.5 .

Thus we can conclude that the changes observed in the spectra of 1,2 dichloroethane and 9 -chloroethanol, when the exciting frequency is increased, arise due to the resonance effect. It is quite possible, in both cases, that alt the lines that do change in intensity in the $2537 \AA$ excitation, actually increase in intensity; only, say, in the case of 1,2 -dichloroethane, the Ca . $1305 \mathrm{~cm}^{-1}$ Raman line increases intensity much more than the line at Ca . $1432 \mathrm{~cm}^{-1}$.

The Raman lines at Ca. 1305 and Ca. $1432 \mathrm{~cm}^{-3}$ in 1,2 -dichlorethane arise from the twisting and bending vibrations of the methylene group. The $848 \mathrm{~cm}^{-1}$ and $939 \mathrm{~cm}^{-1}$ lines of 2 -chlorethanol arise from the methylene rocking vibrations. It is interesting to note that in cyclohexane and also in 1,4 -dioxane, it is the CH_{2} group frequencies which show the resonance effects ${ }^{25}$, ${ }^{26}$.

The electronic absorption spectrum of 1,2 -dichloroethane was recorded using a Unicam absorption spectrophotometer, and it was found to be continuous below 2520 A . This is very similar to the absorption spectrum of ethane ${ }^{\text {ti }}$, and can be connected with the fact that all the valance electrons are used up in forming the single bonds and the only non-occupied orbitals arising from the valence electrons will be antibonding ones and so will lie fairly high. In this case, therefore, it will be a good approximation to think of the continum level to be replaced by a single non-degenrate level and this might account for the changes observed in the intensities and depolarization ratios of the Rman lines on going to the resonance region. Similat explanati'ns have been given by Albrechi ${ }^{29}$, Tsenter and Bobovich ${ }^{39}$ and Leite and Purto ${ }^{21}$ to explain the resonance Raman scattering from various substances.

5. ACKNOWLEDGEMENT:

The authors wish to express their gratitude to Prof. R. S. Krishnan and Prof. P. S. Narayanan for their encouragement during this investigation.

References

1. Kholrauch, K. W. F. and Wittek, H. . . Z phys. Chem 1940, B47, 55.
2. Mizushima, S. . . Structure of Molecules and Internat Rotation. Academic Press, 1954.
3. Bishui, B. M. . . Indian. J. Phys. 1948, 22, 319.
4. Neu, J. T., Ottenberg. A axd .. J. chem. Phys. 1948, 16, 1004. Gvina. W. D.
5. Venkateswaralu, K. and Thyagrajan, G. Z. Phys. 1959, 156, 569.
6. Nakagawda, I. and Mizushima, S. . . J. chem. Phys. 1953, 21, 2195.
7. Lipscomb. W. N. Wang. F. E.s May, Acta crystallogr 1961, 14, 1100. W. R. and Lippert, EL. \quad.
8. Ainsworth, I. and Karle, J. .. J chem. Phys. 1952, 26, 425.
9. Bernstein, H. Ilid. 1949, 17, 258.
10. Kohlrausch, K.W.F. and Ypsilanti, P . Z. phys. chem. 1935, 829, 274.
11. Mizushima, S., Morino, Y. and .. Sct. Papers Inst Phys. Chew. Researek Nakamura, S. (Tokyo) 1940, 37, 207.
12. Mizuchimi, S., Shimanouchi, T. . . J. chem Phys. 1951, 19, 1477. Mivazaga. T., Abe, K. and .. Yasumi M.
13. Bishui, B. M. Indian J. Phys. 1948, 22, 333.
14. Mazumier, M. . . . Ibid. 1955, 29, 361.
15. Hariharan, T. A. J. Indlon Inst. Sci. 1954, 36 A, 224.
16. Mazumder, M. Indian J. Phys. 1959, 33, 346.
17. Zurnwalt, L. R. and Eadger, R. M. . . J. Am. Chem. soc. 1940, 62, 305.
18. Krueger, $\mathrm{P}_{\mathrm{a}} \mathrm{J}$. and Mettee, H. D.
19. Yamaba, M.
20. Bastiansen, O.
21. Battacharayya, T. J.

Can. J. Chem. 1964, 42, 326.
Bull. chem. soc. Japan, 1956, 29, 869.

22 Krishnan, K. and Krishnan, R.S.
Acia chem scand. 1949, 3, 415.
23. Behringer, ll. nad Brandmuller, J.

Indian J. Phys. 1959, 33, 498.
Proc. Indian Acad Sci. 1966, 64A, 111.
24. Rea, D. O.
Z. Elektrochem. 1956, 56, 643.
25. Bernard, L. and Dupeyrat, R.
J. molec. Spetrose 1960, 4, 499.
26. Bernard, L. J. chim. Phys. 1964, 61, 1334.
27. Bernard, L. and Dupeyrat, R. lbid. 1966, 63, 641 \& 772.
28. Herzberg, C.

Compt. Rend. 1967, 265B, 986.
29. Albrecht, A. G. ..

Electronic Spectra of Polyatomic Molecules. Van Nostrand Co. Inc., 1966, p. 545.
30. Tsenter, M. Ya. and Bobovisch, .. Optics spectrosc. (Eng. trans.) 1964, 16, 134 Ya. S.
J. chem. Phys. 1961, 34, 1476.
31. Leite, R.C.C. and Porto, S.S.P. .. Phys. Rev. Lett., 1966, 17, 10.

A NOTE ON THE HOT WIRE METHOD FOR MEASURING heat capacity of gases at low pressures

By K. Govindarajan and E. S. R. Gopal
(Department of Physics, Indian Institute of Science, Bangalore-12, India

[Received: June 3, 1970]

Abstract

A hot wire cell has been devised for measuring the specific heat of gases at low preasures, in paricular of vapurs below their normal boiling point. The method is based on the heat loss from an electrically heated fine wire immersed in the fluid. When the pressures are greater than about 10 torr, the heat loss is proportional to the thermal conductivity of the gas, while at pressures below I torr, the heat loss depends on the specific heat. Thus, in a single experiment the thermal conductivity, the accommodation coefficient and the specific heat of the gas are determined. Measurements on dry air at $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ are reported.

1. Introduction

The hot wire cell method of evaluating the heat capacity of gases at constant volume has some advantages over the other methods. Firstly, only a small amount of gas sample is required and secondly it is possible to measure the heat capacity of gases at low pressures. The low pressure specific heat is the ideal value which can be directly compared with the spectroscopic calculations. Moreover it is possible to study the specific heat of vapours at a temparature below their normal boiling point. This feature is valuable because the region of interest in a few gases is at a temperature below their normal boiling point.

The hot wire assembly is widely used in other areas also. For example, it can be used to evaluate the thermal conductivity of gases ${ }^{1}$ and has indeed been used for the measurement of thermal conductivity of vapours below their normal boiling point ${ }^{2}$. It is als, used in aerodynamic studies to evaluate the velocity of flow of gases ${ }^{3}$. The present note is confined to a brief discussion of the specific heat measurements.

2. Principle of the Method

The hot wire cell consisis of an electrically hented wre of radius r_{1}, length L, mounted along the axis of a tube of radius r_{2} The gas unde ${ }_{i}$ investigation of molecular weight M is at a pressure p. A study of the beat transfer through gases ${ }^{\pi, S}$ shows that when the mean free path λ of the gas is much smaller than r_{1} the heat loss is proportional to the thermal conductivity of the gas. Molecular flow conditions occur near the wire when $\lambda \gg r_{1}$ and over the whole tube if $\lambda \gg r_{2}$. In the molecular flow region the heat loss from the wire at an absolute temparature $T_{\dot{2}}$ to the tube at a temparature T_{1} is given by

$$
\begin{equation*}
Q_{z}=2 \pi r_{1} L p \alpha\left(\beta+\frac{1}{2}\right)\left[R /\left(2 \pi M T_{1}\right)\right]^{1 / 2}\left(T_{2}-T_{1}\right) \ldots \tag{1}
\end{equation*}
$$

In this expression, originally due to Knudser ${ }^{* / 4}, \beta=C_{v} / R$ and α is the accommodation cofficient.

It is evident from Eqn. [1] that by studying the heat conductivity of the gas at low pressures it is possible to evaluate C_{b}, prov ded α can be obtained. Now the mechanics of gas interaction on the solid sutface are quite complicated, and it is best to consider the a.c. as an effective parameter to be determined under the operating conditions. Therefore attempts have been made to evaluate α as well as C_{*} from the same arrangement.

Following the ealier suggestion of Eucken ${ }^{7}$, Kistiakowsky and coworkers ${ }^{5}$, assumed that the ratio of the α 's for different gases approach unity at low temparatures ard studied the specific heats of ethane ete, in relation to a standard gas, viz. Argon. A d flerent procedure was used by Vanderkooi and de Vries following the earlier arrangement of Eucken and Krome ${ }^{10}$. A wire and a flat ribbon are both used inside the same outer tube. The heat losses determined in the usual way will be of the form.

$$
\begin{equation*}
Q_{\text {wire }}=A_{w}\left(T_{2}-T_{1}\right) p\left(M T_{2}\right)^{-1 / 2}+A_{w \sigma}\left(T_{2}-T_{1}\right) p\left(M T_{2}\right)^{-1 / 2} \tag{2}
\end{equation*}
$$

where A_{w} depends in addition to the geometrical parameters, on the ac. $\alpha_{\text {wire }}$ and $\left(\beta+\frac{1}{2}\right)$. $A_{w r}$ is a coupling term depending on α_{w} and α_{R}. A similar equation holds for the ribbon also. α_{w} and C_{p} are obrained by studying the heat loss from the wire at different settings. A third procedure has baen suggested by Gregory and coworkers ${ }^{11}$. They have used Eqn. [1] at low pressures. At high pressures the heat loss, including the temperature jump, is written as

$$
\frac{1}{Q}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi \AA L\left(T_{2}-T_{1}\right)}+\frac{A}{p\left(T_{2}-T_{1}\right)}\left[\frac{\sqrt{2}}{r_{1}}+\frac{\sqrt{ } T_{1}}{r_{2}}\right]
$$

where

$$
\begin{equation*}
A=\left(\frac{2 \star M}{R}\right)^{1 / 2} \frac{1}{2 \pi L} \frac{2-\alpha}{2 \alpha\left(\beta+\frac{1}{2}\right)} \tag{3}
\end{equation*}
$$

It is suggested that at 'high' preasures the plot of $1 / Q$ against $1 / \mathrm{p}$ is a sitaight line from which K and $\left[(2-\alpha) / \alpha\left(\beta+\frac{1}{2}\right)\right]$ can be known. This combined with the value of $\alpha\left(\beta+\frac{1}{2}\right)$ obtained in the 'low' pressure Eqn, [1] enable all the quantities to be evaluated.

3 Experimental Arrangement and Results

Because of the interest in the study of the specific heat of some vapours below their normal boiling point, it seemed worthwhile to investigate the possibility of using a hot wire cell for the evaluation of the specific heats. Of the procedures for estimating α the method suggested by Gregory was adopted. It allows a simpler hot wire cell than the wire and ribbon procedure. Further, the thermal conductivity may also be compared with the standard values to check the procedure, whereas, such a check on K is not possible in the more complicated wire-ribbon method of Eucken. The method used by Kistiakowsky and coworkers does not appear to be free from objections.

Two compensated hot wire cells of the type used by Gregory and coworkers ${ }^{11}$, have been used in the present arrangement; one cell was of glass and the other of copper. Platinum wire of radius 0.00375 cm has been used for the central wire. The glass cell had a diameter of 0.830 cm and the copper tube 0625 cm . The compensating cell had a length of $\sim 5 \mathrm{cms}$ which is adequate for the elimination of end conduction. The glass cell had an effective length of 15.72 cms and the copper cell 13.90 cms . The hot wires of the cell were included in the two arms of a Callendar Griffith Bridge. The temperature of the wire was measured by previously calibrating the platinum wire resistance as a functian of temperature. The current through the wire was measured by connecting a series standard resistance and using a Vernier potentiometer. The cells were placed in an ice bath or in an electronically regulated paraffin oil bath.

An all glass high vaccum apparatus was used for the purpose, A Toepler pump was used for adjusting the pressures while a manometer and a McLeod gauge were used to measure the absolute pressures. The vacuum techiques were of conventional design.

The observed heat loss $I^{2} R$ should be corrected for several factors. The radiation loss is obtained by measuring the heat loss in the highest yaccum $\sim 10^{-6}$ torr. Convection effects under the conditions of the experiment are negligible if the hot wire cell is mounted vertically. Finally, the end losses are eliminated by employing, as mentioned above, a compens.ted pair of cells.

The two hot wire cells were tested with pure dry air at the two temperatures of 0° and $40^{\circ} \mathrm{C}$. Figure (1) shows performance of the glass cell at $t_{2}=0^{\circ} \mathrm{C}$ and Figure (2) that of the copper cell at $\sim 40^{\circ} \mathrm{C}$. The plots are quite linear and the values of the various quantities obtained from the tlgures are:

Fig. Ia

Fig. 1 b
Behaviour of the glass cell at an ambient temperaturo of $40^{\circ} \mathrm{C}$ (a) bigh pressure region. (b) low pressure region.

Fig. II a

Fig. II b
Belavioar of the metal cell at an ambient temperature of $40^{\circ} \mathrm{C}$.
(a) bigb pressurc region (b) low pressure region.

At $0^{\circ} \mathrm{C}: \quad \mathrm{K}=5.8_{1} \times 10^{-5} \mathrm{cal} / \mathrm{cm}$ deg. sec $; \mathrm{C}_{\nu} / \mathrm{R}=25_{0} ; \quad \alpha-0.48_{4}$
At $40^{\circ} \mathrm{C}: \mathrm{K}=6.2, x 10^{-5} \mathrm{cal} / \mathrm{cm}$ deg. sec $; \mathrm{C}_{2} / \mathrm{R}=2.4_{9} ; \alpha=0.55_{8}$
The value of the specific heat is as expected very close to that of an ideal diatomic gas $C_{p}=(5 / 2) R$. The values of K compare well with the values, summarized for example, by Dickins ${ }^{12} ; K$ at $0^{\circ} \mathrm{C}=5.84 \times 10^{-5} \mathrm{can} / \mathrm{cm}$ sec. deg. and K at $40^{\circ} \mathrm{C}=6.5_{1} \times 10^{-5}$. The value of the a.c. are not comparable for they refer to the specific experimental conditions. They are of the same order as those for fully absorbed surfaces. It is only for very clean surfaces in much higher temperatures that smaller values of α are obtained.

In conclusion, Gregory's method of evaluating the a.c. appears to be suited for using the hot wire cell to evaluate the specific heat vapours and that the present arrangement is suitable for studying gases under various conditions.

4. Acknowledgement

The authors thank Prof. R. S. Krishnan for his sustained encouragement and the Department of Atomic Energy Govt. of India for financial assistance and fellowship to one (K.G.) of them.

References

1. Westenberg, A. A. . . . Critical Survey of Methods for measurement of dilute gas transport properties in Advances in Heat Transfer, Vol. 11I, p. 253, Eds. Irvine Jr. T. F. and Hartnetr, J. P., Academic Prsss, N. Y $=1966$.
2. Vines, R. G. Aust. J. Chem. 1953, 6. 1.
3. Bradshaw, P. Experimental Fluid Mechanics, Pergamon Press, 1964, pp. 90-99.
4. Devienne, F. M. 'Low density Heat Transfer', Ch. IIl in Advances in Heat Transfer, Vol. II, Eds. Hartnett, J. P. and Irvine Jr. T. F., Academic Press, N. Y., 1965.
5. Keanard, E. H. Kinetic Theory of Gases,-McGraw Hill, N. Y, 1938. pp. 312-315.
6. Knudsen, M Annin. Phys., 1911. 34, 593.
7. Eucken, A. and Weigert, K. .. Zeits Phys. Chem, 1933, B25, 265.
8. Eucken, A. and Franck, E. U. .- Z. Electro Chem, 1948, 52, 195.
9. Kistiakowsky, G. B. . .J. chem. Phys. 1938, 6, 18.

Kistiakowsky, G. B., Lacher, J. R .. J. chem. Phys. 1939. 7, 289. and Stitt F, 3 .

Kistiakowsky, G. B. Lacher, J. R... Ibid. 1940, 8, 970. and Ransom, W. W.
9. Vanderkooi, N. and de Vries, T. .. J. phys. Chem. 1956, 60. 636.
0. Eucken, A. and Krome, H. .. Z. phys. Chem. 1933, 8.45, 144.

1, Gregory, H. S. . . . Phil. Mag. 1936, 22(7), 257,
Gregory. H. S. and Stephen, . . Nature 1937, 139, 28.
R. W. B.

Gregory H, S. and Sherif, I. I. . . Ibid. 195I, 168, 1123.
Sherif, I. I. Nuovo Cim 1956, 3 (Ser. X), 6.
2. Dickins, B. G. Proc. R. Soc. 1934, A143, 517.

buckling coefficients of varioùsly supported SKEW PLATES*

By M. S S. Prabhu and S. Durvasula
(Department of Aeronautical Engineering, Indian Institute of Science, Bangalore-12, India)

[Received: October 5, 1970]

Abstract

The buckling problems of skew plates with different edge support conditions involving simple support and clamping are considered. The in-plane stresses ar represented in terms of oblique components. Rayleigh-Ritz method is used employing a double series of functions appropriate to the combinalion of the edge conditions. Numerical results are presented for severdl combinations of side iatio, skew angle and different loadings.

1. Introduction

Skew plates have their application in construction of modern swept wing aircraft. The buckling problems of plates of such shape are of interest to the designer. The boundary conditions obtaining on individual panels are more nearly in the nature of elastic restraint against rotation. Analytical treatment of this boundary condition, however, is somewhat tedious and it is even more so for skew geometry. Consequently, the ideal boundary conditions of simple suppert or clamping are usually analysed.

While considerable literature is available on buckling of rectangular plates under different loadings (Refs. $1,2,3$) yet buckling coefficients for the many different combinations of edge conditions involving simple support and clamping are not fully available.

The problem of buckling of clamped skew plate under uniform compression was studied by Guest ${ }^{4}$. He applied the Lagrangian Multiplier method to get upper bounds and rather doubtful lower bounds (see Ref. 5), In another paper ${ }^{6}$ he considered the buckling of clamped rhombic plate under bending and compression. Using Rayleigh-Ritz method, Wittrick studied the buckling problem of clamped skew plates under uniform compression ${ }^{7}$

[^0]and pure shear ${ }^{8}$. He used Iguchi functions and found that the convergence was slow particularly in the case of positive shear. Hasegawa ${ }^{9}$ calculated the buckLing coefficients of clamped rhombic plate under the action of pure shear by the Rayleigh-Ritz method using polynomials. Hamada ${ }^{\text {to }}$ used Lagrangian multiplier method to study the problem of buckling of clamped skew plates under the action of uniform compression and oblique shear. Matrix methods have also been applied ${ }^{11}$ to find the buckling coefficients of the parallelogramic plates under the action of shear and compression. Durvasula ${ }^{5}$ investigated the above problem using Galerkin Method and expressing the deffection as a series of beam characteristic functions. The buckling coefficients have been calculated when direct and shear forces are acting either individually or in combination. Ashton ${ }^{12}$ also investigated the problem using beam characteristic functions and Rayleigh-Ritz method. Mansfield ${ }^{13}$ obtained a rough estimate for the buckling coefficient under uniform compression.

Yoshimura and Iwata ${ }^{14}$ obtained the buckling coefficients for the simply supported skew plates under oblique shear and compression. Durvasula ${ }^{15}$ solved the problem using double Fourier sine series and Rayleigh*Ritz method with in-plane stresses expressed in terms of orthogonal components. Durvasula and Nair ${ }^{16}$ have also considered the buckling problem of simply supported skew plates with in-plane stresses expressed in terms of oblique components. Extensive numerical results were presented for various combinations of skew angles and side ratios. Interaction curves have also been given.

In this paper, the buckling problems of skew plates supported differently on different edges are considered. The support conditions considered are confined to different combinations of simple support and clamping on the four edges. The in-plane stresses are represented in terms of oblique components. Rayleigh-Ritz method has been used with the buckling mode expressed as a double series of beam characteristic functions appropriate to the combinations of the edge conditions in each case. Numerical calculations have been mıde to obtain the buckling coeffizients mainly when each of the stress components is present indıvidually for different combinations of side ratio, skew angle and boundary condition and for a few combined loadings. Convergence has been examined in a few typical cases and is found to be satisfactory.

Notation:

a, b	dimensions of the plate
$C_{r s}$	Coefficient in the series expansion of deflection
D	flexural rigidity of the plate. [Eh $\left.{ }^{3} / 12\left(1-\nu^{2}\right)\right]$
E	Young's Modulus of the material of the plate
G, $H^{(1)}, H^{(3)}, H^{(8)}$	Matrices defined in Equation [15]
\boldsymbol{C}_{1}	matrix defined in Equation [18]
h	plate thickness
$I_{m m}^{p q} J_{n s}^{p q}$	integrals defined in Equation [14]
M	maximum value of indices m, r
N	maximum value of indices n, s
$N_{x}, N_{y}, N_{x y}$	midplane forces (oblique components), $h \sigma_{x}, h \sigma_{y} h \sigma_{x y}$ respectively
m, n, r, s	integers
M_{n}	normal bending moment
$\bar{R}_{x}, \bar{R}_{y}, \bar{R}_{x y}$	non-dimensional midplane force parameters $\sigma_{x} b^{2} h / \pi^{2} D$, $\sigma_{y} b^{2} h / \pi^{2} D, \sigma_{x y} b^{2} h / \pi^{2} D$ respectively.
$\bar{R}_{y}^{*} \bar{R}_{y}^{*} \bar{R}_{x y}^{*}$	$\begin{aligned} & \text { non-dimensional midplane force parameters } \\ & \left(\sigma_{x} a^{2} h \cos ^{3} \psi\right) / D,\left(\sigma_{y} a^{2} h \cos ^{3} \psi\right) / D,\left(\sigma_{x y} a^{2} h \cos ^{3} \psi\right) / D \\ & \text { respectively. } \end{aligned}$
U	strain energy of the plate
V	potential energy of the middle surface forces.
$\boldsymbol{W}(\xi, \eta)$	deflection of the plate
$X_{m}(\xi), Y_{n}(\eta)$	beam characteristic functions
x, y, z	oblique coordinate system defind in Fig. 1
$\xi \%$ \%	non-dimensional coordinates, x / a and y / b respectivaly
ν	Poisson's ratio
$\sigma_{x}, \sigma_{y}, \sigma_{x y}$	oblique stress components defined in Fig. 1
∇^{2}	Skew differential operator $=\operatorname{Sec}^{2} \psi\left[\partial^{2} / \partial x^{2}-2 \operatorname{Sin} \psi\left(\partial^{2} / \partial x \partial y\right)+\left(\partial^{2} / \partial y^{2}\right)\right]$
F_{1}^{2}	Non-dimensional skew differential operator $-\operatorname{Sec}^{2} \psi\left[\partial^{2} / \partial \xi^{2}-2 \lambda \operatorname{Sin} \psi\left(\partial^{2} / \partial \xi \partial \eta\right)+\lambda^{2}\left(\partial^{2} / \partial \eta^{2}\right)\right]$
ψ	Skew angle as defined in Fig. 1
λ	a / b. side ratio

2. Formulation of the Problem

A sketch of the skew plate is shown in Fig. 1 along with the in-plane stresses represented in terms of oblique components. Since the geometry of the plate is oblique in nature, the use of oblique stress components instead of usual orthogonal components is preferable. In terms of oblique components, expressions for the strain energy of the plate and the potential energy of the middle surface forces are simpler and the structure of these expressions is similar to those in the case of rectangular plates with orthogonal stress components. The plate is assumed to be thin, uniform and isotropic.

Using the classical, small deflection thin plate theory, the differential equation for the deflection of a plate of constant thickness under the action of middle surface forces is given by ${ }^{27}$,

$$
\begin{equation*}
D \cos \psi \nabla^{4} W=-h\left[\sigma_{x}\left(\partial^{2} W / \partial x^{2}\right)+2 \sigma_{x y}\left(\partial^{2} W / \partial x \partial y\right)+\sigma_{y}\left(\partial^{2} W / \partial y^{2}\right)\right] \tag{1}
\end{equation*}
$$

In terms of oblique coordinates, the boundaries of the skew plate are given by.

$$
\begin{equation*}
x=0, x=a ; \quad y=0, y=b \tag{2}
\end{equation*}
$$

Fig. I
Sketch of the Skew Plate and the in-plane Stress System (Oblique Components)

The boundary conditions considered are confined to combinations of simple support and clamping. These conditions are stated as follows:

$$
\begin{equation*}
\text { Simple support : } \quad W=M_{a}=0 \tag{3a}
\end{equation*}
$$

or atternatively for a polygonal plate ${ }^{18}$

$$
\begin{equation*}
W=\nabla^{2} W=0 \tag{3b}
\end{equation*}
$$

Clamping: $\quad W=[(\partial W / \partial n)]=0$
If the edge $x-a$, for example, is simply supported, then boundary condition, Eq (3b) takes the form,

$$
\begin{equation*}
W=\left[\left(\partial^{2} / \partial x^{2}\right)-2 \sin \psi\left(\partial^{2} / \partial x \partial y\right)\right] W=0 \tag{4}
\end{equation*}
$$

If the edge $y=b$ is clampcd, then the boundary condition Eq. (3c) takes the form ${ }^{6}$.

$$
\begin{equation*}
W=[(\partial W / \partial y)]=0 \tag{5}
\end{equation*}
$$

In this paper, the buckling problems with different edges supported differently are considered. An approximate solution of the buckling problem stated by Equation [1], together with boundary conditions such as given by Equations [3b, 3c] appropriate to each edge is solved using the Rayleigh-Ritz method.

Non-dimensional coordinates ξ and η are defined as follows:

$$
\xi=x / a ; \eta=y / b
$$

For the stress system shown in Fig. 1. the expressions for the strain energy of the plate and the potential energy of the middle surface forces are given respectively by ${ }^{17}$,

$$
\begin{align*}
& V=\frac{D \cos \psi b}{2 a^{3}} \int_{0}^{1} \int_{0}^{1}\left[\left(\nabla_{1}^{2} W\right)^{2}-2 \lambda^{2}(1-\nu) \sec ^{2} \psi\left\{W_{, \xi \xi} W_{, \eta \eta}-W_{\cdot \xi \eta}^{2}\right\}\right] d \xi d \eta[7] \\
& V=\frac{h b}{2 a} \int_{0}^{1} \int_{0}^{1}\left(\sigma_{x} W^{2},{ }_{\xi}+2 \lambda \sigma_{x y} W_{, \xi} W_{, \eta}+\lambda^{2} \sigma_{y} W_{\cdot \eta}^{2}\right\} d \xi d \eta \tag{8}
\end{align*}
$$

For polygonal boundaries with $W=0$ along the edges the expression for U reduces to ${ }^{17,4}$

$$
\begin{equation*}
U=\frac{D \cos \psi b}{2 a^{3}} \int_{0}^{1} \int_{0}^{1}\left(\nabla_{1}^{2} W\right)^{2} d \xi d \eta \tag{9}
\end{equation*}
$$

The deflection W is expressed as a double series in terms of " admissible functions", i.e., functions which satisfy the geometric boundary conditions. Beam characteristic functions which have been widely used in the literature have been made use of in the present analysis. The serres is written as,

$$
\begin{equation*}
W(\xi, \eta)=\sum_{M^{\prime}=1}^{M} \sum_{n=1}^{N} C_{m n} X_{m}(\xi) Y_{n}(\eta) \tag{10}
\end{equation*}
$$

where $X_{m}(\xi), Y_{n}(\eta)$ are the beam characteristic functions which are appropriate to the particular boundasy conditions specified. For example, if the edges $\xi=0$ and $\xi=1$ are both clamped, the clamped-clamped beam functions are taken for $X_{m}(\xi)$. Similarly, if the edge $\eta=0$ is clamped and edge $\eta=1$ is simply supported, the clamped-sinply supported beam functions are taken for $Y_{n}(\eta)$.

Substituting the expressions for W in Eqs. [8] and [9], we get,

$$
\begin{align*}
U= & \frac{D \sec ^{3} \psi b}{2 a 3} \int_{0}^{1} \int_{0}^{1} \sum_{m=1}^{M} \sum_{n=1}^{N} \sum_{r=1}^{M} \sum_{s=1}^{\mathcal{N}} C_{m n} C_{r s}\left[X_{m}^{\prime \prime} Y_{n}-2 \lambda \sin \psi X_{m}^{\prime} Y_{n}^{\prime}\right. \\
& \left.+\lambda^{2} X_{m} Y_{n}^{\prime \prime}\right]\left[X_{r}^{\prime \prime} Y_{s}-2 \lambda \sin \psi X_{r}^{\prime} Y_{s}^{\prime}+\lambda^{2} X_{r} Y_{s}^{\prime \prime}\right] d \xi d \eta \tag{11}\\
V= & -\frac{h b}{2 a} \int_{0}^{1} \int_{0}^{1} \sum_{m=1}^{M} \sum_{n=1}^{N} \sum_{r=1}^{M} \sum_{s=1}^{N} C_{m n} C_{s s}\left[\sigma_{x} X_{m}^{\prime} X_{r}^{\prime} Y_{n} Y_{s}\right. \\
& \left.+2 \lambda \sigma_{x y} X_{m}^{\prime} X_{r} Y_{n} Y_{s}^{\prime}+\lambda^{2} \sigma_{y} X_{m} Y_{n}^{\prime} X_{r} Y_{s}^{\prime}\right] d \xi d \eta \tag{12}
\end{align*}
$$

The coefficient $C_{m n}$ are determined from the condition ${ }^{19}$

$$
\begin{equation*}
\left[\left(\partial / \partial C_{m n}\right](U+\mathrm{V})=U \text { for } m=1,2 \ldots M, \text { for } n=1,2, \ldots N\right. \tag{13}
\end{equation*}
$$

The integrals involving the functions $X_{m}(\xi), Y_{n}(\eta)$ and their derivatives are defined as follows:

$$
\begin{equation*}
I_{m r}^{p q}=\int_{0}^{1} X_{m}^{p}(\xi) X_{r}^{q}(\xi) d \xi ; J_{n s}^{p q}=\int_{0}^{1} Y_{n}^{p}(\eta) Y_{s}^{q}(\eta) d \eta \tag{14}
\end{equation*}
$$

where p and q represent the order of the derivative. The formulae for such integrals were given by Felgar ${ }^{20}$ and the numerical yalues of some of these integrals are given in Ref. 21. Using the expressions for U and V from Eqs. [I1] and [12] in Eq. [13], and using the relationships between the integrals, we get, finally, a set of linear simultaneous algebraic equations in $C_{r s}$ which can be expressed in the form of a matrix equation as follows:

$$
\begin{equation*}
[G]\left\{C_{r s}\right\}=\bar{R}_{x}^{*}\left[H^{(1)}\right]\left\{C_{r s}\right\}+\bar{R}_{y}^{*}\left[H^{(2)}\right]\left\{C_{r s}\right\}+\bar{R}_{x y}^{*}\left[H^{(3)}\right]\left\{C_{r s}\right\} \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{m n r s}=\left\{I_{m r}^{22} J_{m s}^{00}+\lambda^{4}\left(I_{m r}^{00} J_{n s}^{22}\right)-2 \lambda \sin \psi\left[I_{m r}^{21} J_{n s}^{01}+I_{m r}^{12} J_{n s}^{10}+\lambda^{2}\left(I_{m r}^{10} J_{n s}^{12}\right.\right.\right. \\
& \left.\left.\left.I_{m r}^{01} J_{n s}^{21}\right)\right]+2 \dot{\lambda}^{2}\left(1+2 \sin ^{2} \psi\right) I_{m r}^{11} J_{n s}^{21}\right\} \tag{16}\\
& H_{m n r s}^{01}=I_{m r}^{11} J_{n s}^{00} ; H_{m a r s}^{(2)}=\lambda^{2} I_{m r}^{00} J_{n s}^{11} ; H_{m n r s}^{(3)}=2 \lambda I_{m r}^{01} J_{n s}^{01} \tag{17}
\end{align*}
$$

This is an algebraic eigenvalue problem. To get the bucking loadz When $N_{x}, N_{y}, N_{x y}$ are present individually or in combination, mumerical values are given to two of the three parameters $\bar{R}_{x}^{*}, \bar{R}_{y}^{*}, \bar{R}_{x y}^{*}$, and the third is treated as the eigenvalue. For example, if we wish to determine the buckling parameter \bar{R}_{x}^{*}, when both $N_{x y}$ and N_{y} are acing, we assign appropriate numerical values to \bar{R}_{y}^{*} and $\bar{R}_{x y}^{*}$ and oblain the G_{1} matrix as,

$$
\begin{equation*}
\left[G_{1}\right]=[G]-\bar{R}_{x}^{\star}\left[H^{(2)}\right]-\bar{K}_{x y}^{*}\left[H^{(3)}\right] \tag{18}
\end{equation*}
$$

Equation [15] then reduces to

$$
\begin{equation*}
\left[G_{1}\right]\left\{C_{r s}\right\}=\bar{R}_{x}^{*}\left[H^{(t)}\right]\left\{C_{r s}\right\} \tag{19}
\end{equation*}
$$

which can be written as,

$$
\begin{equation*}
\left[G_{1}^{-1}\right]\left[H^{(v)}\right]\left\{C_{r s}\right\}=\left(1 / \bar{R}_{x}^{*}\right)\left\{C_{r s}\right\} \tag{20}
\end{equation*}
$$

For combinations of boundary conditions symmietric about the diagonals, the Equation [15] splits, into two cases: $(m+n)$ Even and $(r+s)$ Even; ($m+n$) Odd and $(r+s)$ Odd. The Even case corresponds to skew symmetric case consisting of modes which are doubly symmetric and doubly antisymmetric. The Öd case corresponds to skew antisymmetric case consisting of modes which are symmetric-antisymmetric and antisymmetric-symmetric. Tin splitting reduces the order of the matrix to be considered for finding out the eigenvalues and eigenvectors. If $K(=M \times N)$ is the order of the original matrix, then the size of matrix for the even case will be $(K+1) / 2$ if K is Odd and $K / 2$ if K is Even; and the matrix size for the Odd case will be $(K-1) / 2$ if K is Odd and $K / 2$ if K is Even.

The eigenvalue \vec{R}_{x}^{a} can now be determined by using any of the standard methods. The two groups give two eigenvalues; the lower of the two is the desired critical buckling load. Similar procedure can be adopted to determine the eigenvalues for other combinations of loads.

For cases where such symmetry of boundary conditions about the d!agonals is not present, this splitting is not possible and the full matrix of order K will have to be handled.

3. Numerical Calculations

Numerical calculations have been made for differen combinations of side radio a / b and skew angle ψ for different edge conditions. Since the accuracy of the eigenvalues decreases with increasing value of ψ, more terms have been considered for higher skew angles. For skew $\psi \in 30^{\circ}$, the number of terms considered is upto $M=N=6$ except in the case of N_{x} atting alone in which case the number of terms considered is upto $M=N=5$ only. For $\psi=45^{\circ}$, terms upto $M=N=8$ have been taken. The calculations made are mainly for N_{x}, N_{y} or $N_{x y}$ acting alone, though the combined action of N_{x}, N_{y} and $N_{x y}$ has also been studied in a typical case. Convergence study has been made for one representative boundary condition when N_{x} and $N_{x p}$ are each acting alone. The numerical valueq are presented in Tables 1 to 5.

4. Results and Discussion

Results of the convergence study for one typical boundary condition in the case of a rhombic plate wilh $\psi=30^{\circ}$ are given in Tables 1 and 2 . Table 1

Table 1
Convergence Study : N_{x} Acting Alone

$$
\lambda=a / b=1, \psi=30^{\circ}
$$

Bounfary conditions	M	N	Matrix size	$\begin{gathered} \text { Eigen value* } \\ \vec{R}_{x} \end{gathered}$
	2	2	2	12.89
	3	3	4	10.41
	4	4	8	9.663
	5	5	12	9.510
	6	6	18	9.391
	7	7	24	9.352
	8	8	32	9.302
	9	9	41	9.282

[^1]Table 2
Convergence Stady: N, Acting Alone

$$
\lambda=a l b=1 ; \psi=30^{\circ}
$$

Positive Shear

- These values are all from ($\mathrm{M}+\mathrm{N}$) EVEN case. $(\mathrm{M}+\mathrm{N})$ ODD ease gives higher values.
gives the eigenvalues when N_{x} alone is acting. Table 2 gives the eigenvalues when $N_{x y}$ alone is acting: It can be seen from Table 1 that the convergence of the eigenvalues is satisfactory. When $N_{x y}$ is acting the convergence is equally good for positive as well as negative shears (Table 2).

The buckling coefficient \bar{R}_{x} has been obtained for seven different combinations of boundary conditions for a / b equal to 0.5 and 1 and ψ equal to $0^{\circ}, 15^{\circ}, 30^{\circ}$ and 45°. These are given in Table 3 along with results, where available, for comparison. Similarly for the same combinations of a / b and ψ and different boundary conditions, the buckling coefficients $\bar{R}_{x y}$ and \bar{R}_{y} are given in Tables 4 and 5 respectively. In Table 6 , the buckling coefficient \bar{R}_{x} in the presence of inplane forces $N_{x y}$ and N_{y} is given for a rhombic plate with skew angle $\psi=30^{\circ}$ for a typical boundary condition. From Table 3 it may be seen that even for rectangular plates complete results are not available. For skew plates with different combinations of boundary conditions no results could be found in the literature for comparison. The results of the present paper are in good agreement with the available results.

The buckling coefficient $\vec{R}_{x}=N_{x} b^{2} / \pi^{2} D$ increases with the skew angle, as may be expected, and decreases with a / b. Also the values in Table 3 are indicative of the relative stiffnesses of the plates with different combinations of boundary conditions for a given combination of a / b and ψ. One can expect that for a given a / b and ψ the buckling coefficient for a plate with combination of clamped edge conditions (C) and simply supported edge conditions (S) should be in between the values for a plate of the same geometry with all edges clamped and all edges simply supported; this is borne out by the present results except for $a / b=0.5$, for the obvious reason that in this case the order of approximation is lower $(M=N=4)$.

In Table 4, the buckling coefficients under positive and negative shears are given along with some available results for rectangular plates. The agreement between the present results and available results is quite good. As in the case of \vec{R}_{x}, the buckling coefficient $\stackrel{\overparen{R}}{x y}^{\text {decreases with } a / b \text { and }}$ increases with ψ. The buckling coefficient $\vec{R}_{x y}$ for positive shear is less than that for negative shear irrespective of $a / b, \psi$ and ${ }_{8}^{\text {b }}$ boundary condition. This is in conformity with the observation made previously ${ }^{16}$.

In Table 5, the critical buckling coefficient \bar{R}_{y} is given for differnt combination of a / b, and boundary condition. The buckling coeficient \vec{R}_{y}, for a certain a / b and ψ and boundary condition, can be related to $\overline{\boldsymbol{R}}_{x}$ for corresponding b / a and ψ, for appropriate boundary conditions. For example for $\psi=0^{\circ}, a / b=0.5$ for; boundary: conditions (Case 6) \bar{R}_{y} can be interpreted as the value of $\overline{\bar{R}}_{x}$ for $\psi=0$ and $a / b=2$ for boundary conditions (Case 5). For this to be valid, the corresponding orders of approximations have to be necessarily equal; the slight difference that is seen in the case of \vec{R}_{x} for $a / b=1$ (Table 3) and \bar{R}_{y} for $a / b=1$ (Table 5) is because the corresponding orders are not the same.

In Table 6 , the critical buckling coefficient \tilde{R}_{x} in the presence of different combinarions of inplane forces $N_{x y}$ und N_{y} is given for a typical combination of $a / b, \psi$ and boundary condition. The computer programme, however, can generate data for other combinations of $a / b, \psi$ and any combined loading and is thus capable of generating interaction surfaces which should prove useful in design.

Table 3

Buckling Coeffeient \bar{R}_{x} For Different Edge Conditions

	18.7	8.07	20.2	8.47	25.9	9.83	38.3	12.5
9	11.6	8.09	12.6	8.58	16.0	10.2	24.8	13.1
9	19.4	10.1	20.8	10.5	26.3	11.8	38.8	14.3

[^2]
Table 4

Negative Shear

Bückling Coefficient $\bar{R}_{x} y$ For Different Edge conditions

${ }^{3}$ ase	Boundary Conditions	$\psi=0^{\circ}$		$\psi=15^{\circ}$		$\psi=30^{\circ}$			$4=45^{\circ}$
		$a / b=0.5$	1	0.5	1	0.5	1	0.5	. 5 11
			± 9.40		7.15 -14.71		6.52 -27.4		
2		$\begin{aligned} & \pm 26.5 \\ & (26.88)^{a} \end{aligned}$	$\begin{aligned} & \pm 10.7 \\ & (10.98)^{a} \end{aligned}$	$\begin{array}{r} 20.3 \\ -40.3 \end{array}$	$\begin{array}{r} 8.05 \\ -16.7 \end{array}$	$\begin{array}{r} 17.8 \\ -72.5 \end{array}$	$\begin{gathered} 7.09 \\ -30.6 \end{gathered}$	$\begin{array}{r} 18.0 \\ -163 \end{array}$	$\begin{array}{r} 7.26 \\ -70.0 \end{array}$
3		$\begin{aligned} & \pm 32.4 \\ & (33.72)^{a} \end{aligned}$	$\begin{aligned} & \pm 10.7 \\ & (10.98)^{a} \end{aligned}$	$\begin{array}{r} 24.6 \\ -49.6 \end{array}$	$\begin{array}{r} 8.05 \\ -16.7 \end{array}$	$\begin{array}{r} 21.7 \\ -89.5 \end{array}$	$\begin{gathered} 7.09 \\ -30.6 \end{gathered}$	$\begin{array}{r} 22.2 \\ -199 \end{array}$	$\begin{array}{r} 7 .-6 \\ -70.0 \end{array}$
4		$\begin{array}{r} 33.1 \\ -33.2 \end{array}$	$\begin{array}{r} 11.7 \\ -11.9 \end{array}$	$\begin{array}{r} 24.9 \\ -50.9 \end{array}$	$\begin{gathered} 8.79 \\ -18.4 \end{gathered}$	$\begin{array}{r} 21.9 \\ -90.7 \end{array}$	$\begin{array}{r} 7.63 \\ -33.6 \end{array}$	$\begin{array}{r} 22.4 \\ -201 \end{array}$	$\begin{array}{r} 7.66 \\ -76.2 \end{array}$
5		$\begin{aligned} & \pm 40.1 \\ & (40.16)^{a} \end{aligned}$	$\begin{aligned} & \pm 12.6 \\ & (12.6)^{a, b} \end{aligned}$	$\begin{array}{r} 30.8 \\ -60.3 \end{array}$	$\begin{array}{r} 9.52 \\ -19.3 \end{array}$	$\begin{array}{r} 26.7 \\ -\quad 107 \end{array}$	$\begin{array}{r} 8.31 \\ -34.8 \end{array}$	$\begin{array}{r} 26.8 \\ -238 \end{array}$	$\begin{gathered} 8.37 \\ -78.5 \end{gathered}$
6		$\begin{aligned} & \pm 26.9 \\ & (2.688)^{a} \end{aligned}$	$\begin{aligned} & \pm 12.6 \\ & (12.6)^{\underline{r}, b} \end{aligned}$	$\begin{array}{r} 205 \\ -41.0 \end{array}$	$\begin{gathered} 9.52 \\ -19.3 \end{gathered}$	$\begin{array}{r} 18.2 \\ -73.9 \end{array}$	$\begin{array}{r} 8.31 \\ -34.8 \\ \hline \end{array}$	$\begin{array}{r} 18.3 \\ -166 \end{array}$	$\begin{gathered} 8.37 \\ -78.5 \end{gathered}$
7	$c_{5}^{6} c$	± 40.5	± 13.4	$\begin{array}{r} 30.9 \\ -61.1 \end{array}$	$\begin{array}{r} 10.1 \\ -20.5 \end{array}$	$\begin{array}{r} 270 \\ -109 \end{array}$	$\begin{array}{r} 8.75 \\ -37.0 \end{array}$	$\begin{array}{r} 269 \\ -242 \end{array}$	$\begin{array}{r} 8.71 \\ -831 \end{array}$
		± 342	± 13.4	$\begin{array}{r} 25.7 \\ -51.8 \end{array}$	$\begin{array}{r} 10.1 \\ -205 \end{array}$	$\begin{array}{r} 223 \\ -91.7 \end{array}$	$\begin{array}{r} 8.75 \\ -37.0 \end{array}$	$\begin{array}{r} 22.5 \\ -203 \end{array}$	$\begin{array}{r} 8.71 \\ -83.1 \end{array}$
,		± 41.0	± 14.7	$\begin{array}{r} 31.2 \\ -62.2 \end{array}$	$\begin{array}{r} 11.1 \\ -22.3 \end{array}$	27.2 -111	$\begin{array}{r} 9.50 \\ -40.0 \end{array}$	$\begin{array}{r} 27.1 \\ -246 \end{array}$	$\begin{array}{r} 935 \\ -893 \end{array}$

[^3]Tables

Bucking Coefflcient \vec{R}_{7} For Different Edge Condrion

		$\pm=0^{\circ}$		$\psi=15^{\circ}$		$\psi=30^{\circ}$		$4=45^{\circ}$	
Case	Conditions	$a b b=05$	1	0.5	1	0.5	1	0.5	1

* These values are taken from Ref. 16.

Table 6

Buckling Coefficient $\overline{R_{x}}$ under combined Loading for SCSC case

$$
a / h=1 ; \psi=30^{\circ} ; N_{\dot{y}}=\alpha N_{x} ; N_{x y}=\beta N_{x}
$$

5. Conclusions

The buckling problems of skew plates with different edge conditions involving simple support and clamping are considered with the in-plane stresses represented in terms of oblique components. Rayleigh-Ritz method is used expressing the deflection in terms of beam characreristic functions in oblique coordinates. Buckling coefficients have been obtained mainly when the in-plane forces $N_{x}, N_{x y}, N_{y}$ are acting individually for different combinations of $a / b, \psi$ and boundary condition and for a few combined loadings. For buckling under shear loading (oblicue components) two critical values exist ; the positive shear (acting in a way so as to reduce the skew angle) is found to be less than the negative shear in magnitude for all the plate configurations and boundary conditions considered. The compute programme developed can be used for generating extensive design data in the form of buckling charts and interaction surfaces for buckling under combined loading.

6. Acknowledgements

The authors express their sincere thanks to Prof. C. V. Joga Rao for his keen interest and heipful criticism. One of us (MSSP) is thankful to Mr. P. S. Nair for many useful discussions.

7. Referinces

1. Anonymus
2. Gerard, G , and Becker, H .
3. Leggett, D. M. A.

4 Guest J.
5. Durvasula ${ }_{7}$ S.
6. Getest, 1.
T. Wittrick, W, H.
8.
9. Hasegawa,
10. Hamada, M.

1f. Argyris, J. H.
12. Asivton. J. E.
13. Mansfield, E; H.
14. Yoshimura, Y. and Iwata
15. Durvasuata, S.
16. Durvasula, S and Nair, E.S.
17. Morley, L. S, D.
18. Timoshenko, S. and Gere. J. M.
19. Bleich, F.
20. Felgar, R. P.
21. Durvasula, S Bhatid, P. ant Nair, P. S.
22. Flugge, W. (Ed.)

23: ChIVar, H. H. (Ed.)

Data Sheets. Siressed Skin Struetures: R Aero. Soc., 2.

Handbook of Structural Srability, 1957, NACA TN 3781.
A. R. C. Tech. Rep. 1941. R \& M No. 1991.

Rep. SM. 172 , Aero. Res. Lab., M Hibourne, 1951.

Rep, No AE 2458, Dept. Aero. Engg., I.I Sc., 1959.

Rep. SM. 227, Aero. Res. Lab, Melbourne, 1955.

Acro, Qhari., 1953, 4, 15t.
Ibid, 1954, 5. 39.
.. J. Aero. Soc., 1954, 21, 720.
Bull. Jap. Soc. Mech Engrs., 1959, 2, 520.
Matrix Methods in Strtr:tural Mechances, (Pro. ceedings of the Conference held at WrightPatterson Arr Force Base), 1966.11 .
.. J. Appl. Mech., Tranr. ASME, 1969, E 91, 139.
.. Aircraft Eng., 1952, 24, 48.
․ J. Appl. Mech., 1963, 30, 363.
.. Paper presented at the 17th Annual General Meeting of the Aero. Soc. India, held at Bangalore, 1965.

Jsrael.J. Tech., 1969. 7. 303.
Skew Plates and Structures, Pergamon Press, 1963.

Theory of Elastic Stability, MrOraw Hill Book Co., 1952.

Buckling Strength of Metal Structures, McGraw Hill Book Co, 1952 .

Unty. Texas, Bur Eng. Res. Circular No. It ${ }^{*}$ 1950

Rep No. AE 220, S, Dept. Aero. Enge., I.l.Sc., 1969.

Hand book of Enginecrinq Mechanics, McGraw H1ll Book Co., 1962, 44-35.
Tbin Walled Structuress, Chatto and Windus, 1967. 251. ..

COMPUTATION OF MATRIX INVERSE BY A POWER SERIES METHOD

By Syamal Kumar Sen
(Central Instruments and Services Laboratory, Indian Institute of Science, Bangalore-12, India)

[Received: August 28, 1970]

Abstract

Discussed here is a computational procedure for the inverse of a square matrix by using a power series method ${ }^{1}$ that first transforms a matrix into one whose inverse can be equated to a convergent power sertes and then finds the inverse by a procedure reverse to the aforesaid one that rests on only matrix addition, subtraction and mulaplication but no inversion.

1. Discussion

Cofactor method or triangular decomposition methods ${ }^{2}$ obtain the inverse of a matrix directly. Almost all these methods are variants of the Grass's method and they are very susceptible for the ill-conditioned (with respect to inverse) matrices. A suggested method of Maulik ${ }^{3}$, since it is independent of the the spacing of the characteristic roots of the matrix and since it does not demand division except at the last step and avoids redundant multiplications, is much more rapid as also more accurate than the co-factor method. This novel method, though not a variant of Gaussian type, can be applied only to matrices of order $2^{n}, n$ being a positive integer. The present method cannot be classified in either of the aforesaid two categories. The method, in the first phase, converts any arbitrary square matrix into one whose inverse is replaced by a convergent power series. This inversion then allows the method, in the second phase, to obtain the inverse of the original matrix, that requires matrix addition, subtraction and multiplication but no inversion.

The general form for the conversion of the original matrix $A\left(=a_{13}\right)$ of crder n into one whose inverse is approximated by a convergent power series is

$$
\begin{equation*}
A_{p-1}=A_{p}+B_{p}, \quad p=1,2, \ldots, n \tag{1.1}
\end{equation*}
$$

where A_{p} is identically equal to A_{p-1} excepting the $p-t h$ diagonal element of A_{p-1} and $A_{0} \equiv A$ and

$$
\begin{equation*}
B_{p}=u_{p} v_{p} \tag{1.2}
\end{equation*}
$$

where the colum vector u_{p} and row vector v_{p} are

$$
u_{p}=\left(\begin{array}{c|ccccc}
0 \tag{1.3}\\
0 & v_{p}=\left[\begin{array}{lllll}
0 & 0 & \cdots & 1 & 0
\end{array}\right. & 0 & 0 \\
: & & & & & \\
a_{p p}-a_{p p}^{\prime} \\
0 & & & & & \\
\vdots & & & & & \\
0 & & & &
\end{array}\right.
$$

$a_{p p}^{\prime}$ is itie p-th diagonal element of A_{p} and

$$
\begin{equation*}
a_{p p}^{\prime}>n\left(\sum_{\psi=1}^{n} a_{p q}\right), q \neq p \tag{1.4}
\end{equation*}
$$

$a_{p p}-a_{p p}^{\prime}$ in u_{p} and 1 in v_{p} are the $p-t h$ elements of u_{p} and v_{p}, respectively. We take $a_{p p}^{\prime}$ such that A_{n} possesses only non-zero diagonal elements. This is very easy since we are at liberty to choose $a_{p p}^{\prime}$ satisfying condition [1.4]. The matrix A_{n}, thus obtained, is the final transformed matrix. For the above procedure of conversion the following theorem will be true.

Theorem: In an arbitrary row, if the diagonal element of a matrix is greater than n times the sum of the moduli of the off-diagonal elements, the inverse of the matrix can be equated to a convergent power series.

We write

$$
A_{n}=P+Q
$$

i.e.

$$
\begin{equation*}
A_{n}^{-1}=\left(I-P^{-1} Q+\left(P^{-1} Q\right)^{2}-\left(P^{-1} Q\right)^{3}+\left(P^{-1} Q\right)^{4}-\ldots\right) P^{-1} \tag{2.1}
\end{equation*}
$$

where P is a diagonal matrix having the diagonal elements identical to those of A_{n} whose diagonal elements are already non-zero as $a_{D p}^{\prime}$ has been chosen in the manner where no zero can appear on the diagonal of $A_{n} \cdot Q$ is a matrix identical to A_{n} excepting its diagonal elements which are exactly zeros.

In Newton-Horner's scheme ${ }^{4}$

$$
\begin{equation*}
A_{n}^{-1}=\left\{I-P^{-1} Q\left\langle I+P^{-1} Q\left[I+P^{-1} Q\left(I+P^{-1} Q+\ldots\right)\right]\right\rangle P^{-1}\right. \tag{2.1a}
\end{equation*}
$$

We determme first $P^{-1} Q\left(I+P^{-1} Q\right)$ and call it X. We then obtain $P^{-1} Q(I+X)$ and call it X_{1}. Next we find $P^{-1} Q\left(I+X_{1}\right)$ and call it X_{2} and so on. We stop this procedure when the Erhard-Schmidt's norm ${ }^{5}$ of $X_{t}-X_{i-1}$ i.e.,

$$
\begin{aligned}
& \left\|X_{i}-X_{i-1}\right\|_{\text {E.s }}<\text { a pre-assigned accuracy, say, } 10^{-10} \\
& i=2,3, \ldots
\end{aligned}
$$

Hence

$$
\begin{equation*}
A_{n}^{-1}=\left(I-P^{-1} Q X_{i}\right) P^{-1} \text { for sufficiently large } i \tag{2.1b}
\end{equation*}
$$

The evaluation of A_{n}^{-1} from [2.1a] is preferred to that of A_{h}^{-1} from [2 1] $]$: :r Newton-Horner's scheme requires less arithmetic operations (n matrix multiplications and n additions) and consequently results in less rounding errors.

It is easy to see that $\left|P^{-1} Q\right|_{E . s .}<1$. If can, furthermore, be noted that we can increase the speed of convergence indefinitely by taking the diogonal elements of A_{n} sufficiently large. We should, however, refrain from taking too large diagonal elements for too rapid convergence, since these introduce rounding errors due to matrix addition operations the effect of which, however, is very much dependent on the precision of the computer employed. This fact is illustrated through numerical examples that find description in subsequent pages.

The method, in the second phase, obtains A^{-1} using the knowledge of A_{n}^{-1}. The general form of the recurrence relations for obtaining A^{-1} is

$$
\begin{align*}
& \gamma_{p}=1+v_{p} A_{p}^{-1} u_{p} \tag{3.1}\\
& B_{p}=u_{p} v_{p} \tag{3.2}\\
& A_{p-1}^{-1}=A_{p}^{-1}-\left(1 / \gamma_{p}\right) A_{p}^{-1} B_{p} A_{p}^{-1} \tag{3.3}\\
& p=n, n-1, \ldots, 1
\end{align*}
$$

The above recurrence relations demand only simple matrix multipications and additions and no inversion. We can, moreover, see that number of multiplications and additions are only a few because, all elements are zeros except one in u_{p} and one v_{p}. An efficient computer program is easy to prepare for the aforesaid procedure.

2. Programming Aspect

(I) Store $A=A_{o}=\left(a_{i j}\right) i=1.2, \ldots, n ; j=1,2, \ldots, n$
(II) $c_{p}=a_{p p} \quad p=1,2, \ldots, n$
$c_{p}(p=1,2, \ldots, n)$ are the diagonal elements $a_{i l}(i=1,2, \ldots, n)$ of A.
(I11) $\left\{\begin{array}{l}d_{p}=m \cdot n \sum_{q=1}^{n}\left|a_{p q}\right| p=1,2, \ldots, n, q \neq p \\ m>1, m=5, \text { say } \\ \text { If } d_{p}=0 \text { for any } p, \text { put } d_{p}=\text { any non-zero number, say, } 1 .\end{array}\right.$
$\dot{\sigma}_{p}(p=1,2, \ldots, n)$ are the diagonal elements $a_{i t}^{\prime}(i=1,2, \ldots, n)$ of P which is a diagonal matrix.
(IV) $a_{p p}=0 \quad p=1,2, \ldots, n$

The matrix A is now our Q . The problem is to find A_{n}^{-1}.

$$
\begin{aligned}
& \text { (V) }\left\{\begin{array}{l}
a_{i i}=0 \quad i=1,2, \ldots, n \\
a_{i j}=b_{i j}=-\frac{a_{i j}}{d_{i i}} \quad i=1,2, \ldots, n ; j=1,2, \ldots, n
\end{array}\right. \\
& \text { (} \left.a_{i j}\right) \text { and }\left(b_{i j}\right) \text { are the elements of matrix }-p^{-1} Q . \\
& \text { (VI) } k=1 \\
& \text { (VII) } b_{i j}=1+b_{i i} \quad i=1,2, \ldots, n
\end{aligned}
$$

Now (b_{y}) are the elements of the matrix $I+\left(-P^{-1} Q\right)$. The following two steps, namely, steps VIII and IX obtain the value of ($\left.I+P^{-1} Q\right)^{-1}$ using Newton-Horner's scheme.

$$
\begin{aligned}
& \text { (VIII) } e_{i j}=\sum_{p=1}^{n} a_{i p} b_{p j} \quad i=1,2, \ldots, n ; j=1,2, \ldots n \\
& \text { (IX) } b_{i j}=e_{i j} \quad i=1,2, \ldots, n ; j=1,2, \ldots, n \\
& \text { (X) }\left\{\begin{array}{l}
f_{k}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j}^{2}\right)^{1 / 2} \\
\text { if } k>1 \text { go to step (XI), if } k \neq 1, \text { replace } k \text { by } k+1 \text { and go to } \\
\text { step (VII). }
\end{array}\right. \\
& \text { (XI) }\left\{\begin{array}{l}
f_{3}-\bmod \left(f_{1}-f_{2}\right) \\
\text { if } f_{3}<10^{-8} \text { say, go to step (XII) otherwise go to step (VI). } \\
\text { (XII) } b_{i i}=1+b_{i j} \quad i=1,2, \ldots, n
\end{array}\right.
\end{aligned}
$$

Now $\left(b_{3}\right)$ produce the $A_{n}^{-1} P$ matrix.

$$
\text { (XIII) } b_{v}=\frac{b_{y}}{d_{j}} \quad i=1,2, \ldots, n ; j=1,2, \ldots, n
$$

$\left(b_{v}\right)$ are now the elements of A_{n}^{-1} matrix.
(XIV) $\left\{\begin{array}{l}k=n, n-1, \ldots, 1 \\ \gamma_{k}=1+b_{z k}\left(c_{k}-d_{k}\right) \\ e_{i \mathrm{j}}=\frac{b_{i k}\left(c_{k}-d_{k}\right)}{\gamma_{k}} b_{\lambda \mathrm{J}}, i=1,2, \ldots, n ; j=1,2, \ldots, n . \\ b_{i j}=b_{v j}-e_{\mathrm{J} \mathrm{J}} \quad i=1,2, \ldots, n ; j=1,2, \ldots, n\end{array}\right.$

Relations [3.1], [3.2] and [3.3] are computationally represented in step (XIV). $\left(b_{i j}\right)$ thus obtained are the elements of A_{o}^{-8} or A^{-1}. For $k=n$, we determine γ_{n}, all $e_{i j}$'s and all $b_{i j}$'s. We then take $k=n-1$, and obtain γ_{n-1}, all $e_{i j}$'s and then all $b_{i j}$'s and so on. Thus for $k=1$, we calculate γ_{1}, all $\mathrm{e}_{i j}$'s and subsequently $b_{i j}$'s. The latest $b_{i j}$'s are the elements of A^{-1} matrix. The ${ }^{\prime}=$, sign in all the aforesaid computational steps has the identical meaning as that in Fortran.

Numerical Results: 8 dit floating point arithmetic has been employed for all the calculations.

Example 1. A matrix that does not satisfy row (or column)-sum criterion.

$$
\left\{\begin{array}{lll}
1 & 4 & 3 \\
4 & 2 & 1 \\
3 & 2 & 2
\end{array}\right\}
$$

Three times the sum of the off-diagonal elements in the first, second and third tows are 21,15 and 15 respectively. If we choose their multiplying factor 10 , the number of effective terms in the power series becomes 6 and the final inverse $\left(A^{-1}\right)$ is correct up to 6 significant figures.

Any additional terms in the power series will oot contribute anything towards improving or diminishing the accuracy of $A_{n 1}^{-1}$. An extra term in the series does, however, improve the accuracy when the precision of calculations is considerably increased.

If the multiplying factor ($\mathrm{m} . \mathrm{f}$.) is 10^{2}, the A^{-1} is correct up to 5 significant figures. The number of effective terms in this power series for A_{n}^{-1} is 4. For the m.f. $10^{3}, A^{-1}$ becomes less accurate and the accuracy is up to 4 significanr figures. When the m . f. is $10^{4}, A^{-1}$ is correct up to 3 significant figures, the number of terms in the power series for A_{n}^{-1} being 3. The inverse is, for m. $\mathrm{f}=1.1$,

$$
\left\{\begin{array}{rrr}
-.1666667 \times 10^{0} & .1666667 \times 10^{0} & .1666667 \times 10^{0} \\
.4166667 \times 10^{0} & .5833333 \times 10^{0} & -.9166667 \times 10^{0} \\
-.1666667 \times 10^{0} & -.8333333 \times 10^{0} & .1166667 \times 10^{1}
\end{array}\right\}
$$

and $A A^{-1}$ is

$$
\left\{\begin{array}{rrr}
.1000000 \times 10^{i} & .1862645 \times 10^{-8} & .3725290 \times 10^{-8} \\
-.2980232 \times 10^{-7} & .1000000 \times 10^{1} & -.1490116 \times 10^{-7} \\
.1490116 \times 10^{-7} & .0000000 \times 10^{0} & .1000000 \times 10^{1}
\end{array}\right\}
$$

The number of terms in the series for the aforesand $\mathrm{m} . \mathrm{f}$. is 16 and the result is correct up to all significant figures noted. When m . f . is 10^{5}, the accuracy of A^{-1} comes down still further and it is correct up to 2 significant figures. When it is 10^{6}, the A^{-1} is correct up to 1 significant figure.

The $m \mathrm{f}$., when increased, reduces the number of terms (in the power series) and consequently the computing time at the cost of introducing more error due to matrix addition. The other examples which we have attempted produce good results for m. f. lying between 1.1 and 10 .

Example 2. A matrix satisfying row (or column)-sum criterion

$$
\left|\begin{array}{rrrr}
10 & 5 & 3 & 1 \\
2 & 8 & 2 & -3 \\
3 & 2 & 19 & 7 \\
5 & 2 & 1 & 15
\end{array}\right|
$$

When m. f. $=10$, number of terms in the power series is 5 and the inverse is correct up to 7 significant figures. When it is 10^{2}, the result is correct up to 6 significant figures with effective number of terms in the series $=4$. The inverse, for m.f. I. I, is

$$
\left\{\begin{array}{cccr}
.1265405 \times 10^{0} & -.7185299 \times 10^{-1} & -.1149868 \times 10^{-1} & -.1744058 \times 10^{-1} \\
-.4467430 \times 10^{-1} & .1462368 \times 10^{0} & -.1428829 \times 10^{-1} & .3702685 \times 10^{-1} \\
-.1980634 \times 10^{-2} & -.5831866 \times 10^{-2} & .5496259 \times 10^{-1} & -.2668354 \times 10^{-1} \\
-.3609155 \times 10^{-1} & .4841549 \times 10^{-2} & .1540493 \times 10^{-2} & .6932218 \times 10^{-1}
\end{array}\right\}
$$

and $A A^{-1}$ is
$\left(\begin{array}{llll}.1000000 \times 10^{1} & .3259629 \times 10^{-8} & .1804437 \times 10^{-8} & .1862645 \times 10^{-8} \\ .9313226 \times 10^{-9} & .1000000 \times 10^{1} & -.1746230 \times 10^{-8} & .0000000 \times 10^{6} \\ .0000000 \times 10^{0} & -.4656613 \times 10^{-9} & .1000000 \times 10^{1} & -.1862645 \times 10^{-8} \\ .1862645 \times 10^{-8} & -.1862645 \times 10^{-8} & -.4656613 \times 10^{-9} & .1000000 \times 10^{1}\end{array}\right\}$

The number of effective terms here is 12 and the result is correct in all the signficant figures shown. For $m . f .=1.5$, the number of terms in the series is 10 and the result is identical to the above result up to all the significant figures retained. When $\mathrm{m} . \mathrm{f}=10^{5}$, number of terms in the power series is 2 and A^{-1} is correct up to 3 significant figures.

Example 3. A near-singular matrix

$$
\left(\begin{array}{rrrr}
1 & 5 & 3 & 7 \\
2 & 4 & 1 & 6 \\
3 & 1 & -2 & 3 \\
2 & 9.90 & 6 & 14
\end{array}\right)
$$

The (4,2) th element is made 9.9 instead of 10 to make it slightly nearsingular.

When the multiplying factor $=10$, number of terms in the power series is 6 and the inverse is correct up to 4 significant figures. The inverse is, for m. f. 15 with number of terms in the series 12 ,
$\left\{\begin{array}{cccc}.6750068 \times 10^{2} & -.1150010 \times 10^{2} & .5500045 \times 10^{1} & -.3000031 \times 10^{2} \\ .2000022 \times 10^{2} & -.3179908 \times 10^{-4} & .1478940 \times 10^{-4} & -.1000010 \times 10^{2} \\ .4600046 \times 10^{2} & -. .9000064 \times 10^{1} & .4000030 \times 10^{1} & -.2000021 \times 10^{2} \\ -.4350045 \times 10^{2} & .5500064 \times 10^{2} & -.2500030 \times 10^{1} & .2000021 \times 10^{2}\end{array}\right\}$
and $A A^{-1}$ is
$\left(\begin{array}{cccc}1000003 \times 10^{1} & -.3814697 \times 10^{-5} & -.1907349 \times 10^{-5} & -.1335144 \times 10^{-4} \\ .1072884 \times 10^{-5} & .9999990 \times 10^{0} & -.4768372 \times 10^{-6} & -.3814697 \times 10^{-5} \\ .2145767 \times 10^{-5} & -.1907349 \times 10^{-5} & .9999981+10^{0} & -.1144409 \times 10^{-4} \\ -.2145767 \times 10^{-5} & .9536743 \times 10^{-6} & .1907349 \times 10^{-5} & .1000010 \times 10^{8}\end{array}\right\}$

When the (4,2)-th element is made 999 , the inverse becomes, for $\mathrm{m}, \mathrm{f} .10$ with number of terms in the series 6 ,
$\left(\begin{array}{cccc}.6076449 \times 10^{9} & -.1150218 \times 10^{2} & .5501015 \times 10^{1} & -.3000717 \times 10^{3} \\ .2000490 \times 10^{3} & -.7378161 \times 10^{-3} & .3428161 \times 10^{-3} & -.1000242 \times 10^{3} \\ .4060965 \times 10^{3} & -.9001453 \times 10^{1} & .4000676 \times 10^{1} & -.2000478 \times 10^{3} \\ -.4035970 \times 10^{3} & .5501461 \times 10^{1} & -.2500679 \times 10^{1} & .2000480 \times 10^{8}\end{array}\right)$
and $A A^{-1}$ is
$\left\{\begin{array}{cccc}.1000088 \times 10^{4} & .4577637 \times 10^{-4} & .7629394 \times 10^{-3} & -.1831055 \times 10^{-3} \\ .2670288 \times 10^{-4} & .1000004 \times 10^{1} & .0000000 \times 10^{0} & -.7629395 \times 10^{-4} \\ .5531311 \times 10^{-4} & .1525879 \times 10^{-4} & .1000008 \times 10^{1} & -.1525879 \times 10^{-3} \\ -.5722046 \times 10^{-4} & -.2288818 \times 10^{-4} & .7629394 \times 10^{-5} & .1000137 \times 10^{1}\end{array}\right\}$

When the m. $\mathrm{f}=1.5$, the accuracy of A^{-1} is nearly the same as above; the number of cfective rerms, however, is doubled.

When (4,2)-1h element is made 9.999, the inverse becomes, for m.f. 1.1 With number of effective terms 14 ,
$\left.\begin{array}{cccc}.6006932 \times 10^{4} & -.1150117 \times 10^{2} & .5500659 \times 10^{1} & -.2999716 \times 10^{4} \\ .1999808 \times 10^{4} & -.3841519 \times 10^{-7} & .2170578 \times 10^{-3} & -.9599039 \times 10^{3} \\ .4005622 \times 10^{4} & -.9000781 \times 10^{1} & .400044 \times 10^{1} & -.1999811 \times 10^{4} \\ -.4003120 \times 10^{4} & .5500776 \times 10^{1} & -.2500438 \times 10^{1} & .1999810 \times 10^{4}\end{array}\right)$
and $A A^{-1}$ is
$\left(\begin{array}{cccc}.1000488 \times 10^{1} & .0000000 \times 10^{0} & .0000000 \times 10^{0} & .9765625 \times 10^{-3} \\ .1678467 \times 10^{-3} & .1000061 \times 10^{1} & .3051758 \times 10^{-4} & .3662109 \times 10^{-3} \\ .3204346 \times 10^{-3} & .0000000 \times 10^{0} & .1000061 \times 10^{4} & .6103516 \times 10^{-3} \\ -.3356934 \times 10^{-3} & -.1220703 \times 10^{-3} & -.6103516 \times 10^{-4} & .9992676 \times 10^{0}\end{array}\right\}$

Any result better than above can only be achieved by using higher precision arithmetic.

We have, in all the aforesaid examples, used Newton-Horner's scheme for the evaluation of the power series $\left(I+P^{-1} Q\right)^{-1}$.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to Prof. P. L. Bhatnagar and Prof. S. Dhawan for their constant encouragement.

References

1. Sen, S. K. . . . A Power Series Method for the Inverse of Matrices, communicated to Computer J.
2. Sen, S.K. Proc. Ist Mastech Conference on Marrix Analys is held at NAL. Bangalore, (Sept. 25-Oct. 3, 1969) pp 113-123.
3. Maulik, T. N. .- .. Ibld, 1969, pp 149-160.
4. Eve, J. . . . Num. Math., 1964, 6, 17.
5. Collatz, L. . . Functional Analysis and Numerical Maths., Academic Press (1966), 174.

NUMERICAL DIFFERENTIATION BY EXTRAPOLATION

By Manas Chanda
(Deparimem of Chemical Engineering, Indian frstitute of Scrence, Bingolore-I2. India
AND
Syamal Kumar Sen
(Central Instrmments and Services Lahoratory, Indian Irstifute of Selience, Bangatore-12, Indin) (Received: Decamber 23, 1970)

ABSTRACT

Presented in this paper is a simple exirapolation technque to obtain numerical derivative of an analytic function, complex or real. The function may be in tabular form or in functional form. A few numerical examples are added for the purpose of illustration.

1. Discussion

The method of finding the temperature at which the volume of a gas becomes zero (a situation which camnot be reached in practice) by extrapolating the curve of relative volume versus temperature (${ }^{\circ} \mathrm{C}$) to zero volume, prompted the idea of obtaining the numerical derivative of a function (that cannot be obtained numerically using the theoretical definition.

$$
L t_{\Delta x \rightarrow 0_{ \pm}} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}
$$

for any analytic function because of the precision limitation of any arbitrary computer used) by extrapolation.

Let us first consider a real function of a single real variable. The generalization to many variable functions and to complex functions then follows readily from it. Let $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}$ be three small positive real numbers satisfying the inequality

$$
\Delta x_{1}>\Delta x_{2}>\Delta x_{9}
$$

and let x_{0} be the point at which we want to obtain the derivative of $f(x)$. The problem is then posed as follows:

$$
\Delta x_{0} \rightarrow \frac{f\left(x_{0}+\left[\Delta x_{i} / 2\right]\right)-f\left(x_{0}-\left[\Delta x_{1} / 2\right]\right)}{\Delta x_{1}}
$$

$$
\begin{align*}
\Delta x_{2} & \rightarrow \frac{f\left(x_{0}+\left[\Delta x_{2} / 2\right]\right)-f\left(x_{0}-\left[\Delta x_{2} / 2\right]\right)}{\Delta x_{2}} \\
\Delta x_{3} & \rightarrow \frac{f\left(x_{0}+\left[\Delta x_{3} / 2\right]\right)-f\left(x_{0}-\left[\Delta x_{3} / 2\right]\right)}{\Delta x_{3}} \\
0 & \longrightarrow ? \tag{1}
\end{align*}
$$

Evidently, the answer to the question mark (?) is the numerical derivative of the function at x_{0}, and it can be obtained only by extrapolation since the quantities

$$
\frac{f\left(x_{0}+\left[0_{+} / 2\right]\right)-f\left(x_{0}-\left[0_{+} / 2\right]\right)}{0_{+}}
$$

or

$$
\frac{f\left(x_{0}+\left[0_{-} / 2\right]\right)-f\left(x_{0}-\left[0_{-} / 2\right]\right)}{0}
$$

cannot be obtained numerically due to obvious physical limitation. (0_{+}indicates that $\Delta x \rightarrow 0$ from the positive direction and 0^{-}indicates that $\Delta x \longrightarrow 0$ from the negative direction.)

2. Extrapolation Method

The aforesaid problem is one of quadratic extrapolation since r.h.s. informations are provided corresponding to three quantities $\Delta x_{1}, \Delta x_{2}$, Δx_{3} only. One can as well pose the problem as cubic, biquadratic or any other extrapolation considering 4,5 or more r.h.s. informations corresponding to 4,5 or more quantities $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \Delta x_{4}, \Delta x_{5}$ etc. It is, however, the fact that the use of biquadratic or higher-order extrapolation does not offer any significant advantage over quadratic or cubic extrapolation which is simpler and more economici. It is worth mentioning that the aforesand situation is analogous to the fact that the Wilkes-Harvard and NewtonRaphson iterative division scheme with an order of convergence more than two or three are uneconomical for realization in computers ${ }^{1}$. We therefore restrict ourselves to the discussion of quadratic and cubic extrapolation. The next problem is how to choose $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}$ etc. Since we do not possess definite knowledge about what Δx 's should be so that the numerical derivative turns out to be the most accurate within the allowed precision of the computer, we devise the filowing iteration process.

We extrapolate the r.h.s. quantities to $x=0$, using Lagrange's interpolation formula of order 2 or 3 . We choose for this purpose Δx_{2} as $\left[\Delta x_{1} / 2\right], \Delta x_{3}$ as $\left[\Delta x_{2} / 2\right], \Delta x_{4}$ as $\left[\Delta x_{3} / 2\right]$ and so on. We can, however, choose any other spacing of $\Delta x^{\prime} s$, equidistant or non-equidistmnt. After
obtaining the numerical derivative of $f(x)$ by extrapolation, we reduce Δx_{1} to half and pass through the identical procedure to obtain the second teration value of numerical derivative. The process is repeated, halving the interval Δx_{1} at each iteration till the continuously iacreasing or continuously decreasing numerical derivative attains a maximum or. minimum value. The maximum or minimum value is the required numerical. derivative. For greater accuracy, Δx_{1} should be small (starting with, say, 1 or 2) but not 100 small.

It can be seen that we have used in [1] the central difference scheme and not forward or backward difference schemes for initial approximate derivatives. This is because central difference scheme produces a truncation error of the order of h^{2} while forward or backward difference scheme produces an error of the order of h.

The suggesied lechnique is also true for complex functions. The arithmetic employed here has to be complex. Functions of many variables do not pose any extra problem; in this case we obtain numerical partial derivatives.

If we use both the quadratic and cubic extrapolations, then the difference between the values of $f^{\prime}\left(x_{0}\right)$, so obtained, provides us in the first place an idea of the accuracy and also an idea about the interval size to be chosen for the argument of the function. If the interval is big, so far as the nature of the variation of $\Delta f(x) / \Delta x$ is concerned, both quadratic and cubic fittings may produce results almost completely different, thereby indicating that the interval should be reduced.

A function $f^{\prime}(x)$ is said to be ill-conditioned with respect to its derivatives if $f(x)$ is violently fluctuating, i.e, a little change in x causes a very large change in $f(x)$. The degree of ill-conditionng ${ }^{2}$ is dependent on the degree of fluctuation of $f(x)$. Such a function of $f(x)$, however, is a problem under any treatment. The basic fact is that the function $f(x)$ is a near approach to a discontinuous function.

If we denote $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}$, by p_{1}, p_{2}, p_{3} respectively and the corresponding right hand quantities in [I] by q_{1}, q_{2}, q_{3} respectisely, we then write, by Lagrange's interpolation formula, the extrapolated numerical derivative as
$q_{1}(0)=\frac{p_{2} p_{3}}{\left(p_{1}-p_{2}\right)\left(p_{1}-p_{3}\right)} q_{1}+\frac{p_{1} p_{3}}{\left(p_{2}-p_{1}\right)} \frac{-}{\left(p_{2}-p_{3}\right)} q_{2}+\frac{p_{1} p_{2}}{\left(p_{3}-\tilde{p}_{1}\right)} \frac{\left(p_{3}-p_{2}\right)}{q_{3}}$
The formula in [II] is the result of quadratic fitting. Similarly we can obtain $f^{\prime}(x)$ using cubic fitting.

3. Nemerical Results

We have taken the Bessel functions $J_{0}(x), J_{1}(x), Y_{0}(x), Y_{1}^{\prime}(x), I_{0}^{\prime}(x)$; $I_{1}(x), K_{0}(x)$ and $K_{\mathrm{t}}(x)$ with real argument x as examples. The calculations are carried out in about 8 荡t foating point arithmetic. The computer used is National Elliot 803 computer with fixed word-length of 40 bits. Numerical derivatives of the aforesaid functions at $\dot{x}=2$, obtained by the present method are presented in Table 1. The starting value of Δx_{y} is 2 in each case. The calculation of the functions $J_{0}, J_{1}, Y_{0}, Y_{1}, I_{0}, I_{1}, K_{0}, K_{1}$ are earried out using Chebyshev polynomial expansion ${ }^{3}$.

TABle 1

Function $f\left(x_{0}\right)$	Quadratie Fittings		Cubic fitting	
	$f^{\prime}\left(x_{0}\right) \quad N$	No. of iteration	$f^{\prime}\left(x_{9}\right) \quad N$	No. of iteration
$J_{0}(2)$	$\begin{gathered} -.57672439 \\ (\mathrm{~min}) \end{gathered}$	5	$\begin{gathered} -.57672486 \\ (\max) \end{gathered}$	3
$J_{1}(2)$	$\begin{gathered} -64470331 \pi 10^{-1} \\ (\mathrm{~min}) \end{gathered}$	7	$\begin{gathered} -.64471851 \times 10^{-1} \\ (\max) \end{gathered}$	13
$Y_{0}(2)$	$\begin{gathered} .10703253 \\ (\mathrm{~min}) \end{gathered}$	5	$\begin{gathered} 10703247 \\ (\max) \end{gathered}$	3
$Y_{1}(2)$	$\begin{gathered} .56389175 \\ (\mathrm{~mm}) \end{gathered}$	5	$\begin{gathered} .56389244 \\ (\max) \end{gathered}$	5
$I_{0}(2)$	$\begin{gathered} .15906365 \times 10 \\ (\mathrm{~min}) \end{gathered}$	4	$\begin{aligned} & .15906397 \times 10 \\ & (\mathrm{max}) \end{aligned}$	4
$I_{1}(2)$	$\begin{aligned} & .14842662 \times 10 \\ & (\mathrm{~min}) \end{aligned}$	5	$\begin{aligned} & .14842662 \times 10 \\ & (\max) \end{aligned}$	3
$K_{0}(2)$	$\begin{gathered} -.13986553 \\ (\mathrm{~min}) \end{gathered}$	5	$\begin{gathered} -13986603 \\ (\max) \end{gathered}$	3
$\mathrm{X}_{1}(2)$	$\begin{gathered} -.18382511 \\ (\mathrm{~min}) \end{gathered}$	6	$\begin{gathered} -.18382710 \\ (\max) \end{gathered}$	4

It is noted that in the quadratic fitting the derivative value decreases with iterations and after attaining a minimum walue with 4 or 5 iterations starts increasing. The situation is just reverse in case of cubic fitting. In

Table I the word 'min' within closed parenthesis under the headng 'quadratic fittings indicates the minimun value attained by the derivative at the corressonding number of iterations mentioned alongside; this minimum value is our requited numerical derivative. Smilarly, in the case of cubic fiting, the maximum value of the derivative is the required derivative. The results are seen to be correct up to about 6 significant figures.

4. ACKNOWLEDGEMENT

The authors wish to express their sincere thanks to P:of. S. Dhawan for hi* constant encouragement.
5. References

1. E. V. Krishnamurthy "Economieal Iterative and Range-Transfor. mation Schemes for Division", io appear in IEEE Tranis. on Computers.
2. S. K. Sen .. .: J. Indian Inst. Sci, 49, 1967, pp 37.
3. M. Abramowitz and I. A. Stegun . . Handbook of Math. Functions, Doyet Publication, Nzw York, 1965, pp. 355-435.

ETHANOL DEHYDRATION OVER SHEVAROY BAUXITE

By G. S. Pant, N. Subrarmanyam, M Chanda and S. S. Ghosh (Deparment of Chemical Engineering, Indiam Instifute of Science, Bumgalore-12, India)

[Received: August 20, 1970]

Abstract

AbSTBACT Vapour phuse dehydration of ethanol to ethyleme over Shevaroy bauxite has been studied in a fluidised-bed reactor. Factorial design of experiments has been carried ouf. A nsathematical expression representing the dependenee of conversion as a function of temperature and tine foctor has been proposed.

1. Introduction

Vapour phase dehydration of ethanol to ethylene using bauxitegalumina as catalysts has been a well studied reaction. However, most of the work yeported in literature is for the reaction in fixed-bed reactors. Therefore, in the present study of alcohol dehydration over bauxite from Shevaroy (Tamilnadu Siate) a fiuidised bed reactor was employed. Factorical design of experiments was carried out to determine the nature of dependence of conversion as a function of temperature and time factor.

2. Catalyst

Bauxite obtained from Shevaroy was first washed to remove clay material present and dried to remove free water. It was then activated to remove combined water and to increase its adsorptive power.

A few important characteristies of this bauxite are :
(1) Particle size
$-65+80$ T.S.S.
(2) Bulk density
$1.30 \mathrm{gms} / \mathrm{cc}$.
(3) Surface area
68.34 sq. cm./gm.

- The surface area of bauxite was determined by benzene adsorption method in a desiccator. ${ }^{\text { }}$

3. Experimental

The equipment was of laboratory scale, as illustrated schematically in Figure 1. It consisted of feed system, vaporiser, reactor, condenser and

gas collection system. Ethanol from storage carboy was pumped to the overhead by using compressed air, from where it was fed continuously to a vaporiser at constant rate. The vaporiser was $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ stainless steel tube of $24^{\prime \prime}$ length, preked with porcelain beads and electrically heated. The temperature of the vaporiser was maintained at $125 \pm 1^{\circ} \mathrm{C}$. The reactor was a stainless steel tube $2^{\prime \prime}$ dia. and $12^{\prime \prime}$ long. A stainless steel wire mesh was used as the catalyst support and feed distributor. The reactor was heated by external resistance colls to the required temperature and controlled to within $\pm 5^{\circ} \mathrm{C}$ by a simmerstat. Hot gases leaving the reactor were passed through a double walled surface condenser to condense out the water produced by the dehydration of alcohol, as also any unconverted atcohol. The gas collection system consisted of a low pressure gas holder of 250 litres capacity. Suitable weights were used for the gas collection under positive pressure. A T-stop cock was placed midway between the liquid-product collector and the gas holder for tapping gas samples for analysis.

The vaporiser and the reactor were heated to the desired temperature and then alcohol was allowed to flow at a predetermined rate. The vapours then passed through the reactor containing a known weight of bauxite for a period of one hour. The condensate was collected in a flask and the gaseous product in the gas holder.

The gaseous product was analysed in a modified Orsat gas analysis set-up. The liquid product being mainly water and unreacted alcohol was not analysed even though very small amounts of acetic acid, ethyl acetate and acetaldehyde were present.

A design was used involving two factors namely temperature (A) and time factor (B), each at four levels with equal intervals. The experimental runs were carried out in a random order so as to improve the expermental efficiency. Care was taken to avoid batch to batch variation in the raw materials.

5. Results and Discuagion

The responses obtained at various levels of temperature and time factor are presented in Table 1. The method of analysis employed is as suggested by Davies. ${ }^{2}$ The first step is to calculate the linear, quadratic and cubic components of the effect of factor A for each level of factor B and that of factor B for each level of factor A. The interaction of components of the factors A and B are then calculated. The analysis of variance of Table 1 is presented in Table 2.

The conclusion that can be drawn within the range of experiment are therefore :
(i) There is a significant linear increase in conversion with increase in temperature.
(ii) There is a significant linear decrease in conversion with increase in time factor.
(iii) The quadratic and cubic effects of temperature are small, so that a linear function provides an adequate represehtation.
(Iv) The interactions of linear temperature with linear and quadratic time factor are significant which means that slope of the line is not the same for different levels of time factor.

All the components of the effect of temperature and the linear and cubic components of the effect of time factor are significant which imply that there occurs a minimum or maximum conversion at some intermediate combination of temperature and time factor, or a point outside the range examined. Taking into consideration only those effects and interactions which are significant at 5% level (see Table 2) the conversion of ethanol to ethylene as a function of temperature and time factor could be represented as:

$$
\begin{equation*}
x=K_{4} y+K_{2} z+K_{3} y^{2}+K_{4} z^{2}+K_{5} y^{3}+K_{6} y z+K_{i} y z^{2} \tag{1}
\end{equation*}
$$

Table I
Responses obrained at various levels of temperature and time factor

Temperature (A)	$\mathrm{A}_{1}=380^{\circ} \mathrm{C}$
	$A_{2}=420^{\circ} \mathrm{C}$
	$\mathrm{A}_{3}=460^{\circ} \mathrm{C}$
	$\mathrm{A}_{4}=500^{\circ} \mathrm{C}$
Time factor (B)	$\mathrm{B}_{1}=28.97$
	$\mathrm{B}_{2}=38.30$
	$\mathrm{B}_{3}=47.63$
	$\mathrm{B}_{4}=56.96$

Response: Mole $\%$ conversion of ethanol to ethylene.

| | B_{1} | B_{2} | B_{3} | B_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A_{1} | 34.78 | 38.25 | 28.65 | 26.54 |
| A_{2} | 46.22 | 55.03 | 43.10 | 39.64 |
| A_{3} | 80.70 | 92.37 | 71.70 | 47.63 |
| A_{4} | 78.30 | 89.43 | 75.20 | 51.28 |

Table II
Analysis of Variance of Table I

Source of variation	Suny of squares	Degrees of freedom	Mean square	Variance ratio
Main Effects				
Linear	4597.00	1	4597.00	200.20*
A Quadratic	182.005096 .10	$1\} 3$	182.00	7.93*
Cubic	317.10	$1)$	317.00	13.81*
Linear	988.30.	$1)$	988.30	43.04*
B Quadratic	$491.00 \quad 1590.70$	1.3	491.00	21.38*
\cdots Cubic	111.40	$1)$	111.40	4.84
Interactions				
Linear A x Linear B		1	183.80	8.01*
Linear A x Quadratic B	-156.30	1	156.30	6.81*
Quadratic A x Linear B	-6.02 480.86	$1 \int 9$	6.02	0.26
Remainder = Error	$134.74{ }^{-1 m}$	6	22.47	
Total	7167.66	15	\cdots	

*Significant at 5% level of the F statistio, because with 1 and 6 degrees of fredom, 5% significance level requires a variance ratio of 5.99 .
where x is the mole\% conversion of ethanol to ethylene
y is the temperature
z is the time factor, and
K^{\prime} 's are constants.

By least square fitting their values are found to be :
$K_{1}=1.09 \times 10^{2}$
$K_{2}=-1.06 \times 10^{3}$
$\cdots \cdots-K_{3}=-3.28 \times 10^{-1}$
$K_{4}=1.21 \times 10$
${ }^{-} K_{5}=2.43 \times 10^{-4}$
$K_{6}=1.82$
$K_{7}=2.09 \times 10^{-2}$
Given a temperature and time factor, with in the range studied in the present investigation, Eq. [1] can be employed to calculate the conversion.

Fig. 2
Pilot of constant conversion contours.

6. Optimum Conditions

The relationship between mole $\%$ conversion and the two independent veriables viz., tcmperature and time factor, is represented as a contour diagram consisting of lines of constant mole $\%$ conversion as parameter, the coordinates being temperature and time factor. Figure 2 shows such contours, on which the circles represent experimental points, while the crosses represent theoretical points calculated from Eq. [1]. In order to obtain theoretical points on any contour the corresponding value of the mole $\%$ conversion (x) is put in Eq. [1] and a value is assumed for temperature (y), so that the equation reduces to a quadratic equation by solving which one gets two values of time factor (z). It is evident from the contour diagram that an optimum point of temperature and time factor lies inside the region bounded by the contours V and VI

7. Conclusions

In the range of variables employed in the present factorial study viz., temperature, $380^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ and time factor, 28.97 to 56.96 gms . of bauxite per gm.mole alcohol per hour, the effects and interactions which are significant (at 5% level) are the linear, quadratic and cubic effects of remperature, the linear and quadratic effects of time factor and the interaction of linear temperature with linear-time factor and quadratic-time factor.

At all combinations of temperature and time factor in the shaded region of Fig- 2 the conversion is more than 95%.

References

1. Emmett, P. H. . . Catalysis, Vol. 1, Reinhois, New York, 1964, pp. 1-26.
2. Davies, O. L. The Design and Analysis of Indusrrial Experiments, Oliver \& Boyd, 1956, pp. 247.327.

THEORETICAL STUDIES ON SOMMERFELD SURFACE WAVE RESONATOR

By S. K. Chatterjee, Miss H. M. Girla, Miss Rukmin. Miss Glory John and N. Narasimhan
[Received October 21, 1970]

Abstract

The present report consists of a brief ve sume of the froperties of microwave resonators, such as, mode degeneracy, coupling of companion modes etc, and the derivation of the equivalent circuit by using Lugrangian method. After making a comparative study of the Sommerfeld and Harms-Goubau surface wave lines, the repart deals with the theory of surface wave resenator excited in E_{a} and EH and HE modes. As each of the latter two modes are coupled modes it is expected that the Q fuctor will be very low, so emphasis is laid on the E_{o}-mode resonator, which may be called the Sommerfeld surface wave resonator. Numerical Computations for $\mathrm{Q}\left(\mathrm{E}_{\mathrm{a}}\right)$ and guide wavelength $\lambda_{\mathrm{g}}\left(\mathrm{E}_{\mathrm{o}}\right)$ as function of the lenth I of the resonator and frequency of excitation for the Sommerfeld resonator show that $\mathrm{Q}\left(\mathrm{E}_{9}\right)$ increases linearly with increasing length of the resonator for different frequencies of excitation, whereas, λ_{g} decreases almost exponentially with increase in frequency.

1. Introduction

The study of electromagnetic oscillations in resonators is inherentiy associated with Maxwell's equations and the concept of standing waves. The study of standing waves in resonant cavities first made by Lord Rayleigh remained for many years a subject of theoretical speculation. Almost half a century elapsed before the piactical importance of standing waves could be realised and resonators became very useful practical tools for microwave work. The obvious answer as to why standing waves were for such a long period of only academic interest is that the technique of generation of microwave power was not sufficiently advanced so as to make microwave work possible; and yet this is hardly an adequate answer as the original experiments of Hertz were done with millimeter waves. The practical

[^4]application of resonators to microwave work was made possible due mainly to the work of Southworth and Schelkunoff at the Beli Telephone Laboratories, and Barrow, C hu and Stratton at the Massachusetts Institute of Technology in the middle of 1930 s.

The resonance phenomena in microwave resonators of simple and some complicated shapes have been studied by several authors ${ }^{1-35}$. The concept of resonance in enclosed type of microwave cavities has been uilised by several authors ${ }^{3641}$ to study the surface-wave properties of Sommerfeld and Harms-Goubau lines. The investigations on electromagnetic wave propagation ${ }^{42}$ initiated by Sommerfied and Zenneck ${ }^{43}$ and followed by Wail ${ }^{44-46}$, Bowwkamp ${ }^{47}$, Barlow and many others ${ }^{48-66}$ have led to the modern concept of surface-waves and the evalution of different types of surface-wave structures which can be used as waveguides or antennas depending on the nature of surface-reactance.

The present investigations have been motivated with the object of making a theoretical study of the resonance properties of a surface-wave tesonator consisting of Sommerfeld surface-wave line of radius termmated by identical plane metalic circular plates of each of radius $a(a \gg d)$ at both ends such that the surface-wave line forms the axis of the resonator (Fig. 1). The resonator has been developed with a vtew to make a systematic experimental study of the surface-wave properties such as field distribution, attenuation constant, etc. of a corrugated cylindrical metallic structurc. The present study is the first step towards undertaking the more involved probiem of surface wave modulated structures. It is thought worth while to give a brief résume of some of the fundamental properties of a microwave cavity resouator ${ }^{21}$ which will have some bearing on the study of the resonance properties of the Sommerfeld surface wave resonator.

Fio. 1
Fiek components and coordinate system in surface wave resonator.

2. Microwave Resonator-Brief Résumé

2.1 Equivalent Circuit

A microwave cavity resonator, like the conventional resonant circuit, can be described as composed of an inductance-capacitance network with the help of the Lagrangian equation, which for a holonomic system is expressed as follows, in terms of the generalised co-ordinates $q_{1}, q_{2}, q_{3} \ldots q_{n}$ and the corresponding velocities $\dot{q}_{1}, \dot{q}_{2}, q_{3} \ldots \dot{q}_{n}$

$$
\begin{equation*}
p\left(\partial L / \partial \dot{q}_{k}\right)-\left(\partial L / \partial q_{k}\right)=F_{k} ; k=1,2,3 \ldots n \tag{1}
\end{equation*}
$$

where, $p=d / d t . \quad F_{k}$ represents the dissipative forces and any external applied forces present in the system. The symbol L representing the Lagrangian is a function of q and \dot{q} and is expressed in terms of the kinetic energy T and the potential energy V of the system as $L=T-V$. The charges $Q_{1}, Q_{2}, Q_{3} \ldots$ Q_{n} and the currents $\dot{Q}_{1}, \dot{Q}_{2}, \dot{Q}_{3} \ldots \dot{Q}_{n}$ in an electrical network can be considered as equivalent ${ }^{66}$ to $q_{1}, q_{2}, q_{3}, \ldots q_{n}$ and $\dot{q}_{1} \dot{q}_{2}, \dot{q}_{3} \ldots \dot{q}_{n}$ respectively. So, the Lagrange equation for a single lossless cavity can be written as

$$
\begin{equation*}
p(\partial T / \partial \dot{Q})+(\partial V / \partial Q)=0 \tag{2}
\end{equation*}
$$

The kinetic and the potential energies of the cavity of volume V can be written as

$$
T=1 / 2 \mu \sum_{a} k_{a}^{2} u, \dot{Q}_{a}^{2}=1 / 2 \sum_{a} \mathcal{E}_{a} \dot{Q}_{a}^{2}, V=1 / 2 \in \underset{a}{\Sigma} k_{a}^{4} v, Q_{a}^{2}=1 / 2 \sum_{a}\left(Q_{a}^{2} / C_{a}\right)[3]
$$

where k_{a} represents the wave number for the $a^{\text {th }}$ mode of oscillation. The constants of the medium inside the cavity are represented by μ and ϵ. The equivalent lumped inductance and capacitance of the cavity are represented by L_{a} and $C_{d} r$ respectively.

From equations [2] and [3], the differential equation for a lossless cavity is obtained as follows:

$$
\begin{equation*}
\mathcal{L}_{a} \ddot{\mathrm{Q}}+\mathrm{Q} / C=0 \tag{4}
\end{equation*}
$$

which represents a parallel inductance and capacitance network having resonant frequency.

$$
\begin{equation*}
\omega_{a}=\sqrt{ }\left(1 / \mathcal{E}_{a} C_{a}\right) \tag{5}
\end{equation*}
$$

A microwave cavity is usually coupled to external circuits by means of loops or coupling holes. The equivalent circuit of a single or a double loop coupled cavity can be similarly found with the help of Lagrange's equation.

2.2 Resonam Frequcncies of aCavity

Let us consider the case of an ideal right circular cylindrical cavity having infinitely conducting walls and end-plates and enclosing completely a lossless dielectric. Natural electromagnetic oscillations once started in such a cavity will persist indefinitely and would be subject to Maxwell's equations expressed as follows in m.k.s. rationalised units.

$$
\nabla \times \vec{E}=-\mu(\partial \vec{H} / \partial t) ; \quad \nabla \times \vec{H}=\epsilon(\partial \vec{E} / \partial t) ; \quad \nabla \cdot \vec{H}=0 ; \quad \nabla \cdot \vec{E}=0 \quad[\theta]
$$

inside the volume of the cavity. The following boundary conditions should be satisfied.

$$
\begin{equation*}
\vec{n} \cdot \vec{H}=0 ; \quad n \times E=0 . \tag{7}
\end{equation*}
$$

at the inside surface of the cavity. The symbols have their usual signficance.
Let is assume that an oscilating electromagnetic field whose \vec{E} and \vec{H} components are given by the following equations has been set up inside the eavity

$$
\begin{equation*}
\vec{E}=\frac{1}{\sqrt{\epsilon}} \vec{e} \sin \left(\frac{k}{\sqrt{\epsilon \mu}} t+\phi\right) ; \quad \vec{H}=\frac{1}{\sqrt{\mu}} \vec{h} \cos \left(-\frac{k}{\sqrt{\epsilon \mu}} t+\phi\right) \tag{8}
\end{equation*}
$$

where, the electric and the magnetic field configurations are given by the mode vectors \vec{e} and \vec{h} which are vector functions of position only. k and ϕ are constants.

The fleld satisties Maxwell's equations
if

$$
\begin{equation*}
\nabla \times \vec{h}=k \vec{e} ; \quad \nabla \times \vec{e}=k \vec{h} \tag{9}
\end{equation*}
$$

within the volume of the cavity and

$$
\begin{equation*}
\overrightarrow{n . \vec{h}} \approx n \times \vec{e}=0 \tag{10}
\end{equation*}
$$

at the boundary wall of the cavity.
These equations when solved show that any given cavity can sustain an infinite number of modes of oscillation having eigen frequencies $k_{1} \mid 2 \pi \sqrt{ } \epsilon_{\mu}$, $k_{2}\left|2 \pi \sqrt{ } \epsilon \mu \ldots, \ldots, k_{n}\right| 2 \pi \sqrt{ } \in \mu$ with eigeuvalues $k_{1}, k_{2}, k_{3} \ldots k_{n}$.

The resonant frequencies of a cavity depend on the manner in which the cavity is excited. Broadly, two general classifications are made, namely transverse electric (H), having the electric field transverse to the axis, and transverse magnetic (E) having the magnetic field transverse to the axis. The resonant frequencies of a cavity whether it is excited in the H or E mode is given by

$$
\begin{equation*}
f_{l / m, n}=\sqrt[V]{ }\left[(c n / 2 L)^{2}+\left(f_{0}\right)_{l n d}^{2}\right] \tag{11}
\end{equation*}
$$

where,

$L=$ Length of the cavity

$l=$ number of full period variation of E_{r} along the angular θ cordinate. $m=$ number of half period variations of E_{θ} along the radial r cordinate. $n=$ number of half perrod variations of E_{r} along the axial or z cordinate. $c=$ velocity of electromagnetic waves in free space.

The cut-off frequencies $\left(f_{o}\right)_{l, m}$ are given by

$$
\left(f_{0}\right)_{l, m}=\left(c k_{t, m}^{\prime} / 2 \pi a\right) \text { for } H_{t, m} \text { mode }
$$

and

$$
\begin{equation*}
\left(f_{0}\right)_{l, m}=\left(c k_{l, m} / 2 \pi a\right) \text { for } E_{l, m} \text { mode } \tag{12}
\end{equation*}
$$

Where, a represents the radius of the cavity. The quantities $k_{l_{l, m}}$ and $k_{l, m}$ are the roots of the following equations:

$$
\begin{equation*}
J_{t}^{\prime}\left(k_{l, m}^{\prime}\right)=0 ; \text { for } H_{l, m} \text { modes } ; \quad J_{l}\left(k_{l, m}\right)=0 ; \text { for } E_{l, m} \text { modes } \tag{13}
\end{equation*}
$$

There will be a distinct resonance for each combination of l, m, n, which is referred to as a resonant mode of the system. Theoretically, a triple infinity of modes for each class is possible, but only the several lowest modes are of practical interest.

2.3 Mode Degeneracy

In experimental work on cavity resonators, generally the H_{01} mode is used, whereas, for surface-wave work, the mode of primary interest is E_{0}, since all the other modes have very high attenuation. From eqn. [13], $k_{01}^{\prime}=k_{11}=3.832$ as $J_{0}^{\prime}(x)=-J_{1}(x)$. So, the resonant frequencies eqn. [11] $f_{01 n}$ and $f_{11 n}$ for the $H_{01 n}$ and $E_{11 n}$ modes respectively are identically the same. This is an important case of double degeneracy. When a cavity is excited in the desired mode H_{01}, the other mode E_{11} which is the companion mode invariably appears.

2.4. Field Components

The Field components for these two modes are given by the following expression.
H_{011} mode :

$$
\begin{align*}
& E_{\rho}=E_{y}=H_{\theta}=0 ; \quad E_{\theta}=J_{0}^{\prime}\left(k_{1} \rho\right) \sin k_{3} z ; \quad H_{\rho}=\left(k_{3} / k\right) J_{0}^{\prime}\left(k_{1} \rho\right) \cos k_{3} z ; \\
& H_{z}=\left(k_{1} / k\right) J_{0}\left(k_{1} \rho\right) \sin k_{3} z \tag{14}
\end{align*}
$$

E_{111} mode:

$$
\begin{align*}
& E_{\rho}=-\left(k_{3} / k\right) J_{1}^{\prime}\left(k_{1}^{\rho}\right) \cos \theta \sin k_{3} z \\
& \left.E_{\theta}=\left(k_{3} / k\right) / J_{1}\left(k_{1} \rho\right) / k_{1} \rho\right] \sin \theta \sin k_{3} z \\
& E_{z}=\left(k_{1} / k\right) J_{1}\left(k_{1} \rho\right) \cos \theta \cos k_{3} z \\
& H_{p}=-\left[J_{1}^{\prime}\left(k_{1} \rho\right) / k_{1} \rho\right] \sin \theta \cos k_{3} z \\
& H_{\theta}=-J_{1}^{\prime}\left(k_{1} \rho\right) \cos \theta \cos k_{3} z \\
& H_{z}=0 \tag{15}
\end{align*}
$$

$25 H_{01}$ mode

In spite of the double degeneracy, the H_{01} mode is invariably used for cavity excitation for the following reasons:
(i) The field distribution of the H_{01} mode shows that the wall currents flow in circles perpendicular to the axis of the cylinder and hence no current can cross the contact surface of an adjustable plunger used to resonate the cavity to the cxcitation frequency. So, a non-contact type of plunger can be used for turning a cavity, This avoids any fluctuating loss taking place at the surface of contact with the walls of the cavity.
(ii) When a cavity is excited in any desired mode, a number of crossing and interfering modes appear depending on the volume of the cavity and the wavelength of excitation. For a cavity of of volume V and wavelength λ of excitation, the number of modes N that can appear is given approximately by the following relation ${ }^{35}$

$$
\begin{equation*}
N \cong(8 \pi / 3)\left(v / \lambda^{3}\right) \tag{16}
\end{equation*}
$$

But the Q of the cavity is given by the following relation :

$$
\begin{equation*}
\mathrm{Q}=2 \pi f(\bar{W} / P) \tag{17}
\end{equation*}
$$

As the mean energy \bar{W} stored in the resonator is given by a volume integral, whereas, the rate of dissipation of energy P is given by a surface integral, it is evident from eqn. [17] that, in order to obtain high Q, the volume of the cavity must be large. This is undesirable as it will make a larger number of spurious modes appear in a cavity. It can also be shown that H_{01} is the mode which gives the highest possible Q with minimum volume of the cavity.

2.6 Interaction of H_{01} and E_{11} modes

In the absence of perturbation, it can be shown ${ }^{67}$, that there is very little interaction between the two modes $H_{0_{1}}$ and E_{11} so that the two modes
can co-exist without interacting with each other. It has been shown by Wien ${ }^{34}$ that the interaction between the free vibrations of two resonators depend on the coupling coefficient k^{\prime} and the ratio of the resonance frequencies of the two resonators. We shall calculate the coupling coefficient k^{\prime} of the two companion modes under normal conduion with the help of the field theory.

The coupling coefficient between the two modes is defined broadiy as follows:

$$
\begin{equation*}
k^{\prime}=\left(W_{1,2}\right) / \sqrt{ }\left(W_{1} W_{2}\right) \tag{18}
\end{equation*}
$$

Where, W_{i} and W_{2} represent the energies stored in the F_{01} and E_{11} modes respectively and $W_{1,2}=W_{2,1}$ represents the mutual energy, or the energy interchanged between the two modes. The total energy of the two modes in the resonator is given by the following relations ${ }^{66}$ in m.k.s. rationalised units.

$$
\begin{align*}
W & =\frac{1}{2 \mu} \int_{v}\left(\vec{B}_{1}+\vec{B}_{2}\right) \cdot\left(\vec{B}_{1}+\vec{B}_{2}\right) d v \\
& =\frac{\mu}{2}\left[\int_{v} H_{1}^{2} d v+2 \int_{v} \vec{H}_{1} \cdot \vec{H}_{2} d v+\int_{a} H_{2}^{2} d v\right] \tag{19}
\end{align*}
$$

The first and the last terms of the right hand side in eqn. [19] give the energy stored in the desired and the companion modes respectlvely. The second term gives the energy used in bringing the two modes into interaction, or, in other words, the mutual energy between the two coupled modes.

Hence

$$
\begin{equation*}
W_{1,2}=\mu \int_{v} H_{1} \cdot H_{2} d_{v} \tag{20}
\end{equation*}
$$

For a cylindrical cavity resonator having radius a and length L, the expression equation [20] for the mutual energy becomes

$$
W_{1,2}=\mu \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{L} \vec{H}_{1} \cdot \vec{H}_{2} \rho d \rho d \theta d \mathrm{z}
$$

The expressions for the components H_{1} and H_{2} for the two modes H_{01} and E_{11} are

$$
\begin{align*}
& \left|\vec{H}_{1}\right|=\left\{\left(k_{3}^{2} / k^{2}\right)\left[J_{0}^{\prime}\left(k_{1} \rho\right)\right]^{2} \cos ^{2} k_{3} z+\left(k_{1}^{2} / k^{2}\right) J_{0}^{2}\left(k_{1} \rho\right) \sin ^{2} k_{3} z\right\}^{1 / 2} \tag{21}\\
& \left|\vec{H}_{2}\right|=\left\{\left(J_{1}^{2}\left(k_{1} \rho\right) / k_{1}{ }^{2} \rho^{2}\right) \sin ^{2} \theta \cos ^{2} k_{3} z+\left[J_{1}^{\prime}\left(k_{1} \rho\right)\right]^{2} \cos ^{2} \theta \cos ^{2} k_{3} z\right\}^{1 / 2} \tag{22}
\end{align*}
$$

Substituting eqns. [21] and [22] in [20] and integrating and making some approximations, the following expression for the mutual energy $W_{1}, 2$ is obtained ${ }^{2 x}$

$$
\begin{align*}
W_{1,2} \simeq & -\frac{2 \pi \mu k_{1}^{3}}{4 k k_{3}}\left[\frac{L}{2}-\frac{\sin 2 k_{3} L}{4 k_{3}}\right] \times \frac{128 k_{4}}{9 \pi}\left[\frac{a^{4}}{8}-\frac{a^{3}}{4 k_{1}} \cos 2 k_{1} a\right. \\
& \left.+\frac{3}{8 k_{1}^{2}} a^{2} \sin 2 k_{1} a+\frac{3}{8 k_{2}^{3}} a \cos 2 k_{3} a-\frac{3}{16 k_{1}^{4}} \sin 2 k_{12} 2\right] \tag{23}
\end{align*}
$$

The maximum energies stored in the electric field of the resonator operating in the H_{01} and E_{31} modes respectively are given by the followng expressions ${ }^{21}$

$$
\begin{align*}
W_{1}= & \frac{\epsilon}{2} \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{L} \rho\left[J_{0}^{\prime}\left(k_{1} \rho\right)\right]^{2} \sin ^{2} k_{3} z d \rho d \theta d z \\
= & +\frac{\epsilon \pi a^{2} L}{4} J_{0}^{2}\left(k_{01}\right) \tag{24}\\
W_{2}= & \frac{\epsilon}{2}\left[\frac{k_{3}^{2}}{k^{2}} \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{L} \rho\left[l_{1}^{r}\left(k_{1} \rho\right)\right]^{2} \cos ^{2} \theta \sin ^{2} k_{3} z d \rho d \theta d z\right. \\
& +\frac{k_{3}^{2}}{k^{2}} \int_{3}^{a} \int_{0}^{2 \pi} \int_{0}^{z} \rho \frac{J_{1}^{2}\left(k_{3} \rho\right)}{k_{1}^{2} \mu^{2}} \sin ^{2} \theta \sin ^{2} k_{3} z d \rho d \theta d z \\
& \left.+\frac{k_{1}^{2}}{k^{2}} \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{2} \rho J_{1}^{2}\left(k_{1} \rho\right) \cos ^{2} \theta \cos ^{2} k_{3} z d \rho d \theta \cdot z\right] \\
= & \frac{\varepsilon L}{4}\left[\frac{\pi a^{9}}{2}-\frac{\pi k_{3}^{2}}{\left.k^{2} k_{1}^{2}+\frac{\pi k_{3}^{2}}{k^{2} k_{1}}\right] J_{0}^{2}\left(k_{11}\right)}\right. \tag{25}
\end{align*}
$$

The coupling coefficient k^{\prime} between the two modes is found from equations [18], [23-25] as follows:

$$
\begin{gather*}
k^{\prime}=-256 \mu k_{1}^{4}\left[\frac{L}{2}-\frac{\sin 2 k_{3} L}{4 k_{3}}\right] \\
\times\left\{\frac{\left[a^{4} / 8-\left(1 / 4 k_{1}\right) a^{3} \cos 2 k_{1} a+\left(3 / 8 k_{1}^{2}\right) a^{2} \sin 2 k_{1} a+\left(3 / 8 k_{1}^{3}\right) a \cos 2 k_{1} a-\left(3 / 16 k_{1}^{4}\right) \sin 2 k_{1} a\right]}{9 a \in L k k_{3} J_{0}\left(k_{01}\right) J_{0}\left(k_{11}\right) \sqrt{2}\left\{\pi\left(\pi a^{2} / 2-\pi k_{3}^{2} / k^{4} k_{1}^{2}+\pi k_{3}^{2} / k^{4} k_{1}\right)\right\}}\right. \tag{26}
\end{gather*}
$$

2.7. Coupled Frequencies:

When the two modes $H_{0 \pi_{n}}$ and $E_{11 n}$ coexist, the cavity will oscillate in two different resonant frequencies, one slightly above and the other slightly below the uncoupled resonant frequencies $f_{01 n}=f_{11 n}=f_{0}$ of the two individual modes. These coupled frequencies depend on the coupling coefficient k^{\prime} and are given by

$$
\begin{equation*}
f_{c 1}=f_{0} / \sqrt{ }\left(1+k^{\prime}\right) ; \quad f_{c 2}=f_{0} / \sqrt{ }\left(1-k^{\prime}\right) \tag{27}
\end{equation*}
$$

If the coupling is loose these two coupled resonance frequencies may be quite close together and the effect is that the the cavity will oscillate over a band of frequencies Δf given by the difference of the two frequencies $f_{c 2}-f_{c 1}$. This can be reduced to $\Delta f=k^{\prime} f_{0} / \sqrt{\prime}\left[1-\left(k^{\prime}\right)^{2}\right]$, provided k^{\prime} is small.

3. Sommerfeld Surface "Wayeguide

Sommerfeld surface waveguide (see Fig. 2) consists of an infinitely long straight metallic wire of circular cross-section having finite conductivity imbedded in a dielectric of infinite extent and excited by E_{0} wave. Treating this as a boundary value problem and matching the fields at the surface $(\rho=a)$, the following characterjstic equation for the E_{0} wave is obtained.

$$
\begin{equation*}
\frac{k_{1}^{2}}{\mu_{1} u} \frac{J_{1}(u)}{J_{0}(u)}=\frac{k_{2}^{2}}{\mu_{2} v} \frac{H_{1}^{(1)}(0)}{H_{0}{ }^{(1)}(v)} \tag{28}
\end{equation*}
$$

where

$$
\begin{gathered}
u=\gamma_{1} d ; \quad 0=\gamma_{2} d ; \quad \gamma_{1}^{2}=k_{1}^{2}-h^{2} ; \quad \gamma_{2}^{2}=k_{2}^{2}-h^{2} ; \\
k_{1}^{2}=\omega^{2} \mu_{1} \epsilon_{1}+i \omega \sigma_{1} \mu_{1} ; \quad k_{2}^{2}=\omega^{2} \mu_{2} \epsilon_{2} . \\
h=\text { axial propagation constant. }
\end{gathered}
$$

The following cases are of interest:
For $\sigma_{i}=\infty$ eqn. [28] reduces to

$$
\begin{equation*}
\frac{H_{0}^{(1)}(v)}{H_{\S}^{(1)}(D)}=0 \tag{29}
\end{equation*}
$$

Fig. 2
Sommer feld surface wave guide: Coordinats system

If v is small i.e. for a very thin conductor

$$
\begin{equation*}
H_{0}^{(1)}(0) \cong \frac{2 i}{\pi} \ln \frac{\gamma_{v}}{2 i} ; \quad H_{i}^{(1)}(0) \cong \frac{2 i}{\pi} \tag{30}
\end{equation*}
$$

The principal branch of $H_{z i}^{(1)}(v)$ vanishes at all infinite points of the positive imaginary half-plane. The roots of only the principal branch of the multivalued Hankel function are of interest, but the principal branches of $H_{0}^{(1)}(0)$ and $H_{3}^{(1)}(w)$ have no roots so,

$$
\begin{equation*}
\frac{H_{0}^{(1)}(v)}{H_{1}^{(1)}(v)}=-v \ln \frac{\gamma_{v}}{2 i}=0 \tag{31}
\end{equation*}
$$

where, $\gamma=1.781$
possesses the only solution $v=0$ i.e. $h=k_{2}$.
This means that when a cylindrical conductor of infinite conductivity imbedded in a dielectric medium is excited by the fundamental E wave, the field is propagated in the axial direction with a velocity which is solely determined by the characteristics of the external medium. If the conductor is imbedded in free space, the field is propagated along the cylinder without attenuation and with phase velocity equal to the free space velocity c.

If σ is large but not equal to infinity, $h \neq k_{2}$ but the difference $h \sim k_{2}$ for E_{0} wave is very small. So, v is small but $\left|k_{1}\right| \gg k_{2}$ since $k_{2} \cong|h|$ and $u \simeq k_{1} d \gg 1$. Therefore, representing $J_{0}(u)$ and $J_{1}(u)$ by asymptotic expansions and $H_{0}^{(1)}(v)$ and $H_{1}^{(1)}(v)$ by small argument approximations, the following equation is obtained from equation [28].

$$
\begin{align*}
& \qquad v^{2} \ln \frac{\gamma_{v}}{21}=i \frac{\mu_{1}}{\mu_{2}} \frac{k_{2}^{2} d}{k_{1}} \tag{32}\\
& \text { which reduces to } \xi \ln \xi=\eta \tag{33}
\end{align*}
$$

where,
and

$$
\begin{gathered}
\xi=\left(\frac{\gamma_{v}}{2 i}\right)^{2} \\
\eta=-\frac{i \gamma^{2}}{2} \frac{\mu_{1}}{\mu_{2}} \frac{k_{2}^{2}}{k_{1}} \frac{d}{2}
\end{gathered}
$$

Equation [33] is the basic Sommerfeld equation which when solved gives the characteristics, such as the propagation factor in the axial direction, attenuatlon constant, phase constant and phase velocity of the Sommerfeld surface wave

Sommerfeld's analysis leads to the following conclusions.
(i) A solid cylindrical conductor of circular cross-section can support an infinite number of propagating modes. The amplitudes of these modes are coefficients involved, in the field components. These coefficients are determined by the nature of the source,
(ii) of all the modes, only the Eo mode possesess relatively low attenuation. All the other symmetric E and symmetric H and all the asymmetric modes suffer rapid attenuation within a very short distance from the source, even at very low frequencies, and as such are of no practical interest.
(iii) In order that the Eo mode may be bound to the surface of the conductor. the conductivity of the conductor can be high but must be finite.
(iv) The electric lines of forces outside the conductor are almost perpendicular but not exactly to the surface of the conductor. The wave front in the external medium is slightly tilted forward in the direction of propagation. The Poynting vector being directed towards the conductor, the energy flow into the conductor accounts for the Joule heat losses.
(v) The phase velocity of the wave is slightly less than the free space velocity for conductors having high conductivity and radius of curvature greater than the skin depth.
(vi) The radial field decay in the region outside the conductor is governed by the Hankel function $H_{1}{ }^{(1)}\left(\gamma_{2} \rho\right)$. The field extension in the radial direction is large and can be reduced by decreasing the conductivity and radius of the conductor and by increasing the frequency of excitation.
(vii) Since the wave is guided along the conductor, its attenuation in the x-direction is produced solely due to definite conductivity of the wire. In the conceptual limit of infinite conductivity, the E wave passes to a T-wave and decreases in amplitude in the radial dircction as $1 / \beta$
(viii) An ohmic loss on the surface of the guide is essential for the Sommerfeld surface wave to be supported by the conductor.

Sommerfeld surface waveguide is not of much use in practice, as the Eo wave supported by the structure is not tightly bound to the surface i.e. the extent of the field in the radial direction is inconveniently large. As such any discontinuity in the path of the wave such as a bend or kink in the wire produces considerable loss of power by radiation. The inherent short-coming of the Sommerfeld guide is that its ohmic loss is essential to its operation in contrast with the conventional waveguide for which the ohmic loss is only incidental. This difficulty has been obviated by Goubau ${ }^{56}$ by coating the
wire with a thin layer of dielectric. The dielectric coating loads the surface in such a way that the Eo wave is guided by the structure and the extent of the field spread in the radial direction is comparatively much smaller even in the case of the conductor having infinite conductivity. In a surface wave structure of this type, the ohmic loss is only incidental and the extent of the radial field spread is controlled solely by the thickness and dielectric constant of the dielectric film. The characteristics of the dielectuic coated structure was first studied by Harms ${ }^{69}$ and then more exhaustively by Goubau ${ }^{36}$.

4. Harms-Goubau Surface Waveguide

Harms ${ }^{69}$ made a theoretical study of the problem of wave propagation along a cylindrical wire of radius d coated with a dielectric of thickness $(b-d)$ and dielectric constant E_{1} (see Fig. 3). Goubau ${ }^{56-59}$ made a detailed theoretical and experimental study of the problem and evaluated its practical usefulness as a transmission line for microwaves. Treating this as a boundaryvalue problem and using the impedance matching technique at $\rho=b$ for E_{0} wave, the following characteristic equation isobtained.

$$
\begin{equation*}
\frac{1 \gamma_{1} J_{0}\left({ }_{1} b\right) Y_{0}}{\left.\epsilon_{1} J_{1}\left(\gamma_{1} b\right) Y_{0} d\right)-J_{0}\left(\gamma_{1} d\right)} \frac{J_{0}\left(\gamma_{1} b\right)}{\epsilon_{2}}=-\frac{\gamma_{2}}{\epsilon_{2}} \frac{H_{0}{ }^{(1)}\left(i \gamma_{2} b\right)}{H_{1}{ }^{(1)}\left(t \gamma_{2} b\right)} \tag{34}
\end{equation*}
$$

which yields the following equation ${ }^{56}$ after some simplication.

$$
\begin{equation*}
\left(\mu_{2} / \epsilon_{2}\right)^{1 / 2}\left(\gamma_{2}^{2} / k_{2}\right) b \ln 0,89 \gamma_{2} b=-\left(\mu_{1} / \epsilon_{1}\right)^{1 / 2}\left(\gamma_{1} / k_{1}\right) b \ln (b / a) \tag{35}
\end{equation*}
$$

where $k_{1}^{2}=\omega^{2} \mu_{1} \epsilon_{0}$ and $k_{2}^{2}=\omega^{2} \mu_{0} \epsilon_{2}$.
In order that the radial impedances at $\rho=b$ be continuous, it is necessary that the axial propagation constant in the two media be the same, i.e.

$$
\begin{equation*}
\sqrt{ }\left(k_{1}^{2}-\gamma_{1}^{2}\right)=\sqrt{ }\left(k_{2}^{2}+\gamma_{2}^{2}\right) \tag{36}
\end{equation*}
$$

Fig 3
Harms-Goubau surface wave guide

The radial constant γ_{2} and hence the phase velocity $v_{p}=\omega \sqrt{ }\left(k_{2}^{2}+\gamma_{1}{ }^{2}\right)$ of the wave can be determined from equations [35] and [36]. Since, γ_{2} is positive and real $v_{p}<\omega / k_{2}$ which is the free space velocity in the case of the medium 2 being air.

The division of power between the two media 1 and 2 is calculated from
the Goubau relation

$$
\begin{equation*}
\frac{P_{1}}{P_{2}}=-\frac{\epsilon_{2}}{\epsilon_{1}} \frac{\ln (b / d)}{\ln 0.89 \gamma_{2} b+0.5} \tag{37}
\end{equation*}
$$

where, P_{2} represents the power of the surface wave which is contained in the external medium. This equation is used to determine the thickness of the dielectric coating ($b-d$) required for a dieleciric material to constrain a certain percentage of power of the surface wave within a specified distance from the surface of the structure. The above results are derived on the basis of no loss. The effect of dissipation is determined by using the perturbation methodie. by assuming that the field distribution in an equiphase plane is the same as that in the case when there is no loss. The conclusions drawn from the foregoing analysis are:
(i) The field structure of Harms-Goubau guide is the same as that of Sommerfeld guide.
(ii) The extent of the field spread in the radial direction decreases with increasing dielectric constant and thickness of coating i.e. the radial extension of the field can be controlled by modifying the surface of Sommerfeld guide.
(iii) In the case of Sommerfeld guide, if the couductivity is increased indefinitely, the radial extension of the field would increase in such a way that the power carried by a wave of finite amplitude would become infinite which is physically inadmissible. But in the case of Harms-Goubau guide, the wave will still remain a guided wave with a limited radial extension of the field, even in the case when the conductivity of the wave is increased indefinitely, The field is only slightly affected,
(iv) Compared to the Sommerfeld guide the Harms-Goubau guide possesses higher loss. Losses of this type of guide consists of (a) the ohmic loss in the conductor which is also present in the Sommerfeld guide (b) the loss in the dielectric film which is not present in the Sommerfeld guide (c) the loss due to the finite size of the launching device. As the radial field spread is more in Sommerfeld guide, it requires a much longer dimension of the launching device than Goubau guide. For the same dimension of the launching device, Sommerfeld line will have more loss.
(v) The phase velocity of the wave guided by the dielectric coated structure is less than the free space velocity.
(vi) As $H_{0}{ }^{(1)}\left(i \gamma_{2} b\right)$ is negative imaginary and $H_{1}{ }^{(1)}\left(i \gamma_{2} b\right)$ is negative real for positive imaginary argument, it follows that the surface impedance is negative imaginary, i. e. the surface impedance of this guide is purely inductive. Or, in other words, coating the wire with a dielectric amounts to loading inductively the surface of the conductor.
(vii) The axial component of the Poynting vector integrated over a plane perpendicular to the axial direction yields a finite value which leads to the physical realisability of Goubau wave.

5. Attenuation Constants

5.1 Sommerfeld Line :

From the relations

$$
\begin{equation*}
h=\alpha+j \beta ; \quad \gamma_{2}=a_{2}-j b_{2} ; \quad k_{2}{ }^{2}=\omega_{2} \mu_{0} \epsilon_{0}=-\left(h_{2}+\gamma_{2}{ }^{2}\right) \tag{38}
\end{equation*}
$$

and assuming that at microwave frequencies

$$
\begin{equation*}
k_{2}^{2} \gg\left(a_{2}^{2}-b_{2}^{2}\right) ; \quad a_{2} \gg b_{2} \tag{39}
\end{equation*}
$$

the attenuation constant of the Sommerfeld line is ${ }^{39}$.

$$
\begin{equation*}
a(\text { sommerfeld })=(c / \omega)\left(a_{2} h_{2}\right) \tag{40}
\end{equation*}
$$

5.2 Harms-Goubau Line

Assuming that there is no loss due to radiation, the total loss in Harms-Goubau line is due to the ohmic loss in the wire $\left(\alpha_{c}\right)$ and dielectic loss in the coatiog $\left(\alpha_{d}\right)$. The attenuation constants α_{c} and α_{d} are ${ }^{56}$

$$
\begin{align*}
& \alpha_{c} \simeq \frac{1}{2 d} \sqrt{\frac{\epsilon_{0} \omega \mu_{w}}{2 \mu_{0} \sigma_{w}} \frac{1}{\ln \gamma_{2} b+0.38} \text { Nepers } / m} \tag{41}\\
& \alpha_{d} \approx \frac{\gamma_{2}^{2}}{2 k} \frac{\epsilon_{0}}{\epsilon_{d}-\epsilon_{0}}\left(1-\frac{0.5}{\ln \gamma_{2} b+0.38}\right) \tan \delta \text { Neper } / m \tag{42}
\end{align*}
$$

The radial propagation factor is obtained from

$$
\begin{equation*}
G\left(\gamma_{2} b\right)=-\left(\gamma_{2} b / 2 \pi\right)^{2} \ln \left(0.89 \gamma_{2} b\right) \tag{43}
\end{equation*}
$$

where,

$$
\theta\left(\gamma_{2} b\right)=\frac{\ln (b / d)}{\left(\epsilon_{d} \epsilon_{d}-\epsilon_{a}\right)(\lambda / b)^{2}}
$$

The attenuation constant α (Harms-Goubau line) $=\alpha_{a}+\alpha_{c}$ where,
$k=$ free space wave propagation
constant $=\omega\left(\mu_{0} \epsilon_{0}\right)^{1 / 2}$
$\epsilon_{d}=$ dielectric constant of the dielectric coating

6. Comparaitive Study of the Sommerfeld and Harms Goubad Lines

A comparative study of the characteristics such as radial decay factor (γ) as a function of the radius of the Sommerfeld line and as a function of the dielectric constant for different coating thickness in the case of the Harms ${ }^{2}$ Goubau line for different wavelength of excitation, ratio of the radii of the constant percentage power contour as a function of coating thickness $b-d=a$ for different wavelength of excitation and percentage reduction in phase velocity as a function of wire radius are presented in figures (4-7) respectively. Fig. 8 shows the percentage power flow for the Harms Goubau and Sommerfeld line as a iunction of the radial distance from the line. Fig. 9 shows a comparative study of the conduction and dielectric loss in the case of ihe Harms ${ }^{2}$ Goubau line as a function of dielectric coating thickness in the X and K band.

7. Theory of the Surface Wave Resonator

The resonator (see Fig. 1) consists of a metallic wire of radius d terminated at both ends by large circular metallic plates each of radius $a \gg d$. The length I of the wire is adjusted such that it is an integral multiple of half the guide wavelength λ_{g} corresponding to the mode of excitation. The resonator is open on all sides except at the two ends.

7.1 Field Components of Resonant Waves

The components of resonant waves, when the resonator oscillates in pure E or H modes are respectively ${ }^{42}$.

E mode :

$$
\begin{align*}
& E_{z r}(\rho)=2 \chi \cos \theta \cos \left(m_{z} \pi / l\right) z J_{1}\left(\gamma_{e} \rho\right) \\
& E_{\rho r}(\rho)=2 j\left(h \gamma_{\partial} / \omega^{2} \mu_{0} E_{0}\right) \chi \cos \theta \sin \left(m_{2} \pi / l\right) z J_{1}^{\prime}\left(\gamma_{e} \rho\right) \\
& E_{\theta r}(\rho)=-2 j \chi\left(h / \omega^{2} \mu_{0} \epsilon_{0}\right) 1 / \rho \sin \theta \sin \left(m_{z} \pi / l\right) z J_{1}\left(\gamma_{e} \rho\right) \\
& H_{\rho r}(\rho)=-2 j \chi\left(1 / \omega \mu_{0}\right)(1 / \rho) \sin \theta \cos \left(m_{z} \pi / l\right) z J_{1}\left(\gamma_{e} \rho\right) \\
& H_{\theta r}(\rho)=-2 j \chi\left(\gamma_{\psi} / \omega / \mu_{0}\right) \cos \theta \cos \left[\left(m_{s} \pi\right) / l\right] z J_{1}^{\prime}\left(\gamma_{e} \rho\right) \tag{44}
\end{align*}
$$

Fig. 4
Badial decay factor as a function of dielectric constant of the coating for different wavelengths Wreradius, $a=010 \mathrm{~cm}$.

Fig. 5
Radial decay factor as a function of wire radius for different wavelengths.

Frg. 6
Ratio of radii of the censtant percentages power contour as a function of the delectric coaung thickness for different wayelengthsw $a=0.10 \mathrm{~cm}, \epsilon=\mathbf{2 . 4}$.

Fig. 7
Percentage reduction in phase velocity as a function of wire radius for different wavelengths. $\quad e=24$.

Fig. 8
Power distribufion curves for a wire of radius $a=0.08 \mathrm{~cm}$, coating thickness $a^{\prime \prime}=0.005 \mathrm{~cm} . \quad \lambda_{0}=3.57 \mathrm{~cm}$.

Fig. 9
Atenuation constant as a function of dielectric coating thekness for different dielectric constants and wavelengths. Wire radius $a+0.10 \mathrm{~cm}$.

H mode:

$$
\begin{aligned}
& H_{z r}(\rho)=-2 j \psi \sin \theta \sin \left(m_{z} \pi / l\right)=l_{1}\left(\gamma_{n} \rho\right) \\
& H_{\rho r}(\rho)=2 \psi\left(h \gamma_{h} / \omega^{2} \mu_{0} \epsilon_{0}\right) \sin \theta \cos \left(m_{z} \pi / l\right) z J_{1}^{\prime}\left(\gamma_{h}^{0}\right) \\
& H_{\theta r}(\rho)=2 \psi\left(h / \omega^{2} \mu_{0} \epsilon_{0}\right)(1 / \rho) \cos \theta \cos \left(m_{z} \pi / l\right) z J_{1}\left(\gamma_{h} \rho\right) \\
& E_{\rho r}(\rho)=-2 \psi\left(l / \omega \epsilon_{0}\right)(1 / \rho) \cos \theta \sin \left(m_{z} \pi / l\right) z J_{1}\left(\gamma_{h} \rho\right) \\
& E_{\theta \mu}(\rho)=2 \psi\left(\gamma_{h} / \omega \epsilon_{0}\right) \sin \theta \sin \left(m_{z} \pi / l\right) z J_{1}^{\prime}\left(\gamma_{h}{ }^{\rho}\right) \\
& E_{z r}(\rho)=0
\end{aligned}
$$

The above field components are derived on the assumption that the electromagnetic energy is contained wholl! within the volume $\pi a^{2} l$ of the resonator and that there is no loss of energy by radiation.

7.2 Conditions of Resonance

The conditions of no radiation leads to

$$
H_{3}^{(2)}\left(\gamma_{e} d\right)=-H_{1}^{(1)}\left(\gamma_{e} d\right)
$$

which yields

$$
\begin{equation*}
J_{1}\left(\gamma_{e} d\right)=0 \tag{46}
\end{equation*}
$$

as the condition of resonance when the resonator is oscillating in a pure E-mode. The condition of resonance when the resonator is oscillating in a pure H-mode and the energy is completely enclosed within the volume of the resonator is

$$
H_{1}^{(2) \prime}\left(\gamma_{h} d\right)=-H_{1}^{(1)^{\prime}}\left(\gamma_{h} d\right)
$$

which yields

$$
\begin{equation*}
\mathrm{J}_{1}^{\prime}\left(\gamma_{h} d\right)=0 \tag{47}
\end{equation*}
$$

The eigen values $\gamma_{h} d$ which satisfy the above equation is obtained when $\mathrm{J}_{1}\left(\gamma_{h} d\right)$ is maximum i.e. $\gamma_{h} d=1.84,8.54,14.86$, etc.

7.3 Coupled E and H modes

In the case of a conventional type of cavity resonator enclosed on all sides by highly conducting metallic walls, no loss of energy occurs by radiation and E or H modes can exist independently, whereas. in the case of an open type resonator, due to the discontinuity which is invariably present at the edge ($\rho=a$) of the end plates, some energy will be los: by radiation. As the radiated wave in fiee space is a T-wave, $E_{\rho}^{e}, H_{\rho}^{e}$ and $E_{p}^{h} . H_{\rho}^{h}$ of the E and H modes respectively, must vanish inside the resonator or approach zero value at $\rho=a$. But the radial componens of E and H modes of the non-radiating standing wave part of the total field withon the reson.tor cannot independently become zero. So, it may be said that
or

$$
\begin{align*}
& E_{\rho}^{c}+E_{\rho}^{h}=0 \tag{48}\\
& H_{\rho}^{c}+H_{\rho}^{h}=0 \tag{49}
\end{align*}
$$

at $\mathrm{P}=a$, which signifies that the E and H modes are coupled.
The characteristic equation for the coupled mode obtained by imposing proper bourdary conditions on appropriate field components and utilising the po-radiation condition is.

$$
\begin{equation*}
-\frac{j \omega \mu_{0}}{h \gamma a} \frac{y \mathrm{H}_{1}^{(1)}(\gamma a)-\mathrm{H}_{1}^{(2)}(\gamma a)}{x \mathrm{H}_{1}^{(1)}(\gamma a)-\mathrm{H}_{1}^{(1)}(\gamma a)}=-j \frac{\gamma d \omega, \mu_{0}}{h} \frac{y^{\left(H_{1}^{(1)}-(\gamma d)-\mathrm{H}_{1}^{(2)}(\gamma d)\right.}}{x \mathrm{H}_{1}^{(1)}(\gamma d)-H_{1}^{(2)}(\gamma d)} \tag{50}
\end{equation*}
$$

where,

$$
\begin{equation*}
x=\frac{H_{1}^{(2)}\left(\gamma_{e} d\right)}{H_{i}^{(1)}\left(\gamma_{e}\right.} \frac{d)}{d} \tag{51}
\end{equation*}
$$

and

$$
y=\frac{\mathrm{H}_{1}^{(2) \prime}}{\mathrm{H}_{1}^{(1)^{\prime}}} \frac{\left(\gamma_{h}^{\prime} d\right)}{\left(\gamma_{h} d\right)}
$$

$$
\gamma-\gamma_{e k}
$$

and
It can be shown that for the resonance conditions $f_{1}\left(\gamma_{e} d\right)=0, x=1$ and similarly $y=-1$ from the definition of x and y, By using appropriate recurrence relations and $x=1, y=-1$ eqn. [50] reduces to

$$
\begin{equation*}
\frac{\mathrm{J}_{1}(\gamma a)}{\gamma a \mathrm{~J}_{0}(\gamma d)-\mathrm{J}_{1}} \frac{(\gamma a)}{\left(\gamma d \mathrm{~J}_{0}(\gamma d)-\mathrm{J}_{1}(\gamma d)\right.} \underset{\mathrm{J}_{1}(\gamma d)}{\gamma} \tag{52}
\end{equation*}
$$

which yields on differentiation with respect to γa.

$$
\begin{equation*}
\gamma a \mathrm{~J}_{0}^{2}(\gamma a)-2 \mathrm{~J}_{1}\left(\gamma_{a}\right) \mathrm{J}_{0}(\gamma a)+\gamma_{a} \mathrm{~J}_{1}^{2}(\gamma a)=0 \tag{53}
\end{equation*}
$$

since

$$
\frac{\mathbf{J}_{1}}{\gamma a J_{0}(\gamma a)} \frac{\left(J_{1}(\gamma a)\right.}{\gamma}=\text { constants. }
$$

Let the roots of eqn. [53] be $\delta_{n}(n=1,2,3, \ldots)$. For m.h mode, the eigen values $\gamma_{e h}=\gamma$ is given by $\gamma_{e h}=\delta_{m} / a$ and the condition of resonance for the coupled mode is

$$
\begin{equation*}
\left[\frac{m_{z} \pi}{l}=\frac{4 \pi^{2}}{\lambda_{0}^{2}}-\frac{\delta_{m}^{2}}{a^{2}}\right]^{1 / 2} \tag{54}
\end{equation*}
$$

since, $m_{2} \pi / l$ is positive and real $\left(\delta_{m} / a\right)<\left(2 \pi / \lambda_{0}\right)$ and $\left(\delta_{m}^{2} / a^{2}\right) \ll\left(4 \pi^{2} / \lambda_{0}^{2}\right.$. Hence,

$$
\begin{equation*}
l=m_{2} \lambda_{0} / 2 \quad \therefore \therefore \tag{55}
\end{equation*}
$$

which states that the resonance condition is established, when the distance between the two terminating end plates is an integral multiple of half wavelength.

In practice $d \ll a$ and if $\gamma d \ll 1$, then by making small argument approximation of $J_{0}(\gamma d) \cong 1$ and $J_{1}(\gamma d) \cong \gamma d / 2$, eqn. [52] reduces to

$$
\begin{equation*}
J_{0}\left(\gamma_{e h} a\right)=0 \tag{36}
\end{equation*}
$$

which gives the successive eigen values when resonator is oscillating under the condition that the modes are coupled.

7.4. Q of the Resomator

The Q of the resonator is defined as

$$
\begin{equation*}
\mathrm{Q}=\omega \frac{W_{\mathrm{E}}}{P} \text { or } \omega \frac{W_{M}}{P} \tag{37}
\end{equation*}
$$

where, ω is the angular frequency at resonance, W_{E} and W_{M} represent the maximum energy stored in the electric and magnetic fields respectively inside the resonator and P is the total power loss inside the resonator.

The total power lost is equal to the sum of the power lost in the end plates $\left(P_{p}\right)$ and power lost in the wire $\left(P_{w}\right)$ and the power lost by radiation: Assuming that there is no loss of power by radiation and that the resonator is oscillating in pure E or H modes and calculating

$$
\begin{align*}
& W_{E}=\frac{\epsilon_{\theta}}{2} \int_{\theta=0}^{2 \pi} \int_{\rho=d}^{a} \int_{z=0}^{t}|E|^{2} \rho d \rho d \theta d x \\
& W_{M}=\frac{\mu_{0}}{2} \int_{\theta}^{2 \pi} \int_{\rho=0}^{F} \int_{x=0}^{\eta}|H|^{2} \rho d \rho d \theta d z \\
& P_{d}=2 \times 1 / 2 \sqrt{\frac{\pi f}{\sigma_{e}}} \int_{\theta=0}^{2 \pi} \int_{p=d}^{a}\left|H_{t \in a}\right|^{2} \rho d \theta d \rho \tag{58}
\end{align*}
$$

for both the end plates and

$$
P_{n}=\sqrt{\pi f \mu_{0}} \int_{\theta=0}^{2 \pi} \int_{z=0}^{l}\left|\mathrm{H}_{\tan }\right|^{2} d d \theta d z
$$

the Q factor for the $E\left(Q^{E}\right)$ and $H\left(Q^{H}\right)$ modes are

$$
\begin{align*}
\mathrm{Q}^{E}= & \left\langle\left[\left\{2-\gamma_{e}^{2} a^{2}\right\} \mathrm{J}_{1}^{2}\left(\gamma_{e} a\right)-\left\{\gamma_{e}^{2} a^{2}-2 \gamma_{e}-2\right\} \mathrm{J}_{0}^{2}\left(\gamma_{e} a\right)\right.\right. \\
& \left.+\left\{\gamma_{e}^{2} d^{2}+2 \gamma_{e}-2\right\} \mathrm{J}_{0}^{2}\left(\gamma_{e} d\right)\right] f^{-3 / 2} h^{2} l \times 81.64 \times 10^{29} \\
& \left.+\left[a^{2} \mathrm{~J}_{1}^{2}\left(\gamma_{e} a\right)-a^{2} \mathrm{~J}_{0}\left(\gamma_{e} a\right) \mathrm{J}_{2}\left(\gamma_{e} a\right)-d^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{e} d\right)\right] f^{5 / 2} \times 1.57\right\rangle \\
\times & \left\{-120.31 \times 10^{-39}\left[-\frac{1}{2} \gamma_{e}^{2} d^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{e} d\right)-\frac{1}{2} \gamma_{e}^{2} a^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{e} a\right)\right.\right. \\
& \left.\left.-\left(1-\frac{1}{2} \gamma_{e}^{2} a^{2}\right) \mathrm{J}_{1}^{2}\left(\gamma_{e} a\right)\right]-52.2 \times 10^{-39} \gamma_{e}^{2} d l \mathrm{~J}_{0}^{2}\left(\gamma_{e} d\right)\right\} \tag{59}\\
\mathrm{Q}_{H}= & 179 \times 10^{8} f^{-1} l\left[\frac{1}{2} \gamma_{h}^{2} a^{2}-1\right) \mathrm{J}_{1}^{2}\left(\gamma_{h} a\right)+\frac{1}{2} \gamma_{h}^{2} a^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{h} a\right) \\
& \left.-\left(\frac{1}{2} \gamma_{h}^{2} d^{2}-1\right) \mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)-\frac{1}{2} \gamma_{h}^{2} d^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{h} d\right)\right] \\
& -\left\{694.22 \times 10^{22} h^{2} f^{-7 / 2}\left[\left(\frac{1}{2} \gamma_{h}^{2} a^{2}-1\right) \mathrm{J}_{1}^{2}\left(\gamma_{h} a\right)+\frac{1}{2} \gamma_{h}^{2} a^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{h} a\right)\right.\right. \\
& \left.-\left(\frac{1}{2} \gamma_{h}^{2} d^{2}-1\right) \mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)-\frac{1}{2} \gamma_{h}^{2} d^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{h} d\right)\right] \\
& \left.+261 \times 10^{-7} d l f^{1 / 2}\left[52 \times 10^{29}\left(h^{2} d\right) f^{-4}-1\right] \mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)\right\} \tag{60}
\end{align*}
$$

The Q factor for the coupled EH and HE modes are respectively

$$
\begin{align*}
\mathrm{Q}_{E H}= & 81.64 \times 10^{29} f^{-3 / 2} h^{2} l\left[\left\{2-\gamma^{2} a^{2}\right\} \mathrm{J}_{1}^{2}(\gamma a)-\left\{2-\gamma^{2} d^{2}\right\} \mathrm{J}_{1}^{2}(\gamma d)\right. \\
& +\left\{\gamma^{2} d^{2}+2 \gamma-2\right\} \mathrm{J}_{0}^{2}(\gamma d)+1.57 f^{5 / 2} l\left[a^{2} \mathrm{~J}_{1}^{2}(\gamma a)\right. \\
& \left.-d^{2} \mathrm{~J}_{1}^{2}(\gamma d)+d^{2} \mathrm{~J}_{0}(\gamma d) \mathrm{J}_{2}(\gamma d)\right] \div\left\{-120.31 \times 10^{-39} \times\right. \\
& {\left[-\frac{1}{2} \gamma^{2} d^{2} J_{0}^{2}(\gamma d)+\left(1-\left\langle\gamma^{2} d^{2} / 2\right\rangle\right) \mathrm{J}_{1}^{2}(\gamma d)-\left(\mathrm{I}-\frac{1}{2} \gamma^{2} a^{2}\right) \mathrm{J}_{1}^{2}(\gamma a)\right] } \\
& -52.2 \gamma^{2} d l \times 10^{-39}\left[\mathrm{~J}_{0}^{2}(\gamma d)+\left\langle\mathrm{J}_{1}^{2}(\gamma d) / \gamma^{2} d^{2}\right\rangle\right. \\
& \left.\left.-\left\langle 2 \mathrm{~J}_{0}(\gamma d) \mathrm{J}_{1}(\gamma d) / \gamma d\right\rangle\right]\right\} \tag{61}
\end{align*}
$$

where, $\gamma=\gamma_{e h .}$

$$
\begin{align*}
Q^{H E=} & 179 \times 10^{8} l f^{-1}\left[\left(\frac{1}{2} \gamma^{2} a^{2}-1\right) \mathrm{J}_{1}^{2}(\gamma a)\right. \\
& \left.-\left(\frac{1}{2} \gamma^{2} d^{2}-1\right) \mathrm{J}_{1}^{2}(\gamma d)-\frac{1}{2} \gamma^{2} d^{2} \mathrm{~J}_{0}^{2}(\gamma d)\right] \\
& -694.22 \times 10^{22} f^{-7 / 2} h^{2}\left[\left(\frac{1}{2} \gamma^{2} a^{2}-1\right) \mathrm{J}_{1}^{2}(\gamma a)\right. \\
& \left.-\left(\frac{1}{2} \gamma^{2} d^{2}-1\right) \mathrm{J}_{1}^{2}(\gamma d)-\frac{1}{2} \gamma^{2} d^{2} \mathrm{~J}_{0}^{2}(\gamma d)\right] \\
& \left.+2.61 \times 10^{-7} l d f^{1 / 2}\left[52 \times 10^{29} f^{-4} h^{2} d^{-1}-1\right] \mathrm{J}_{1}^{2}(\gamma d)\right\} \tag{62}
\end{align*}
$$

where, $\gamma=\gamma_{h e}$

7.5 Guide Wavelength

The values of the axial propagation constant h in the case of the resonator oseillating in pure E or H mode are obtained from the condition $W_{E}=W_{M}$ at resonance from the following equations.

E mode:

$$
\begin{align*}
26 & \times 10^{29} f^{-4} h^{2}\left\{-\gamma_{e}^{2} a^{2}\left\{J_{1}^{2}\left(\gamma_{e} a\right)+J_{0}^{2}\left(\gamma_{e} a\right)\right\}\right. \\
& +\gamma_{e}^{2} d^{2} \mathrm{~J}_{0}^{2}\left(\gamma_{e} d\right)+2 J_{\mathbb{1}}^{2}\left(\gamma_{e} a\right)+2 \gamma_{e}\left\{\mathrm{~J}_{a}^{2}\left(\gamma_{e} a\right\}\right. \\
& \left.\left.+\mathrm{J}_{0}^{2}\left(\gamma_{e} d\right)\right\}+2\left\{J_{0}^{2}\left(\gamma_{e} a\right)-J_{0}^{2}\left(\gamma_{e} d\right)\right\}\right] \\
& =22 \times 10^{44} f^{-2}\left[J_{1}^{2}\left(\gamma_{e} a\right)+\frac{1}{2} \gamma_{e}^{2} d^{2} J_{0}^{2}\left(\gamma_{e} d\right)-\left[\left(\gamma_{e}^{2} a^{2}\right) / 2\right]\right. \\
& \left.\times\left\{J_{0}^{2}\left(\gamma_{e} a\right)+J_{1}^{2}\left(\gamma_{e} a\right)\right\}\right] \\
& -\frac{1}{2} a^{2}\left\{J_{1}^{2}\left(\gamma_{e} a\right)-J_{0}\left(\gamma_{e} a\right) J_{2}\left(\gamma_{e} a\right)\right\}-\frac{1}{2} d^{2} J_{0}^{2}\left(\gamma_{e} d\right) \tag{63}
\end{align*}
$$

H mode:

$$
\begin{align*}
26 & \times 10^{29} f^{-4} h^{2}\left[-\gamma_{h}^{2} d^{2} \mathrm{~J}_{1}^{2}\left(\gamma_{h} d\right)+2\left\{\mathrm{~J}_{1}^{2}\left(\gamma_{h} d\right)\right.\right. \\
& \left.+\mathrm{J}_{0}^{2}\left(\gamma_{h} d\right)_{\}}^{3}+\gamma_{h}^{2} a^{2}\left\{\mathrm{~J}_{1}^{2}\left(\gamma_{h} a\right)+\mathrm{J}_{0}^{2}\left(\gamma_{h} a\right)\right\}-2\left\{\mathrm{~J}_{1}^{2}\left(\gamma_{h} a\right)+\mathrm{J}_{0}^{2}\left(\gamma_{h} a\right)\right\}\right] \\
& =22 \times 10^{4} f^{-2}\left[\gamma_{h}^{2} a^{2} / 2\right)\left\{\mathrm{J}_{1}^{2}\left(\gamma_{h} a\right)+\mathrm{J}_{0}^{2}\left(\gamma_{h} a\right)\right\} \\
& \left.-\left(\gamma_{h}^{2} d^{2} / 2\right)\left\{\mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)+\mathrm{J}_{0}^{2} \gamma_{h} d\right)\right\}-\left\{\mathrm{J}_{1}^{2}\left(\gamma_{h} a\right)\right. \\
& \left.\left.-\mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)\right\}\right]-\frac{1}{2} d^{2}\left\{\mathrm{~J}_{1}^{2}\left(\gamma_{h} d\right)-\mathrm{J}_{0}^{2}\left(\gamma_{h} d\right)\right. \\
& \left.-\mathrm{J}_{0}\left(\gamma_{h} d\right) \mathrm{J}_{2}\left(\gamma_{h} d\right)\right\}+\frac{1}{2} a^{2}\left\{\mathrm{~J}_{1}^{2}\left(\gamma_{h} a\right)-\mathrm{J}_{0}\left(\gamma_{h} a\right)\right. \\
& \left.\mathrm{J}_{2}\left(\gamma_{h} a\right)\right\}-\left(\gamma_{h}^{2} / 2\right)\left\{\mathrm{J}_{1}^{2}\left(\gamma_{h} d\right)-\mathrm{J}_{1}^{2}\left(\gamma_{h} a\right)-\mathrm{J}_{0}^{2}\left(\gamma_{h} a\right)\right. \\
& \left.+\mathrm{J}_{0}^{2}\left(\gamma_{h} d\right)\right\}-\left(\mathrm{I} / \gamma_{h}^{2}\left\{\mathrm{~J}_{0}^{2}\left(\gamma_{h} a\right)-\mathrm{J}_{0}^{2}\left(\gamma_{h} d\right)\right\}\right. \tag{64}
\end{align*}
$$

The total propagation constants h for the coupled EH and HE modes is obtained from eqn. [55] and [56] respectively by replacing γ_{e} by $\gamma_{e h}$ and γ_{h} by $\gamma_{h r}$ in equations [53] and [54] respectively and using the resonance condition $\mathrm{J}_{0}\left(\gamma_{\text {en }} a\right)=0$ 。

EH Mode :

$$
\begin{align*}
& 26 \times 10^{19} f^{-4} h^{2}\left\{-\gamma^{2} a^{2} \mathrm{~J}_{1}^{2}(\gamma a)+\gamma^{2} d^{2}\left\{\mathrm{~J}_{1}^{2}(\gamma d)+\mathrm{J}_{0}^{2}(\gamma d)\right\}\right. \\
&\left.+2\left\{\mathrm{~J}_{1}^{2}(\gamma a)-\mathrm{J}_{1}^{2}(\gamma d)\right\}+2 \gamma \mathrm{~J}_{0}^{2}(\gamma d)-2 \mathrm{~J}_{0}^{2}(\gamma d)\right] \\
&=-22 \times 10^{11} f^{-2}\left[\left\{\mathrm{~J}_{1}^{2}(\gamma d)-\mathrm{J}_{1}^{2}(\gamma a)\right\}-\gamma^{2} d^{2}\left\{\mathrm{~J}_{1}^{2}(\gamma d)+\frac{1}{2} \mathrm{~J}_{0}^{2}(\gamma d)\right\}\right. \\
&\left.+\left(\gamma^{2} a^{2} / 2\right) \mathrm{J}_{1}^{2}(\gamma a)\right]-\frac{1}{2} a^{2} \mathrm{~J}_{1}^{2}(\gamma a)+\frac{1}{2} d^{2}\left\{\mathrm{~J}_{1}^{2}(\gamma d)\right. \\
&\left.-\mathrm{J}_{0}(\gamma d) \mathrm{J}_{2}(\gamma d)\right\} \tag{65}
\end{align*}
$$

where, $\gamma=\gamma_{e n}$

HE Mode:

$$
\begin{align*}
26 \times & 10^{29} f^{-4} h^{2}\left[-\gamma^{2} d^{2} J_{1}^{2}(\gamma d)+2\left\{J_{2}^{2}(\gamma d)+J_{0}^{2}\{\gamma d)\right\}+\gamma^{2} a^{2} \mathrm{~J}_{1}^{2}(\gamma a)\right. \\
& \left.-2 J_{1}^{2}(\gamma a)\right] \\
= & 22 \times 10^{14} f^{-2}\left[\left(\gamma^{2} a^{2} / 2\right) \mathrm{J}_{1}^{2}(\gamma a)-\left(\gamma^{2} d^{2} / 2\right)\left\{J_{1}^{2}(\gamma d)+\mathrm{J}_{0}^{2}(\gamma d)\right\}\right. \\
& \left.-\left\{J_{1}^{2}(\gamma a)-\mathrm{J}_{1}^{2}(\gamma d)\right\}\right]-\frac{1}{2} d^{2}\left\{\mathrm{~J}_{3}^{2}(\gamma d)-\mathrm{J}_{0}^{2}(\gamma d)-\mathrm{J}_{0}(\gamma d) \mathrm{J}_{2}(\gamma d)\right\} \\
& +\frac{1}{2} a^{2} \mathrm{~J}_{1}^{2}(\gamma a)-\left(\gamma^{2} / 2\right)\left\{\mathrm{J}_{1}^{2}(\gamma d)-\mathrm{J}_{1}^{2}(\gamma a)+\mathrm{J}_{0}^{2}(\gamma d)\right\} \\
& +\left(1 / \gamma^{2}\right) \mathrm{J}_{0}^{2}(\gamma d) \tag{66}
\end{align*}
$$

where, $\gamma=\gamma_{h e}$
It is evident that the guide wave length λ_{g} determined from h in each case is a function of d, a, and f_{0}.

When γ and the argument of the Bessel functions are large equations [59] to [66] reduce respectively to

$$
\begin{align*}
Q^{E}=\{ & -(2 \gamma a / \pi)\left\langle\cos ^{2}(\gamma a-3 \pi / 4)+\cos ^{2}(\gamma a-\pi / 4)\right\rangle \\
& \left.+2 \gamma \mathrm{~J}_{0}^{2}(\gamma d)\right] f^{-3 / 2} h^{2} l \times 81.64 \times 10^{29} \\
& +\left[(2 a / \pi \gamma)\left\langle\cos ^{2}(\gamma a-3 \pi / 4)+\cos ^{2}(\gamma a-\gamma / 4)\right\rangle\right. \\
& -\left(4 / \pi \gamma^{2}\right) \cos (\gamma a-3 \pi / 4) \cos (\gamma a-\pi / 4) \\
& \left.\left.-d^{2} \mathrm{~J}_{0}^{2}(\gamma d)\right] f^{5 / 2} l \times 1.57\right\} \\
\div & \left\{120.31 \times 10^{-39}\left[\frac{1}{2} \gamma^{2} d^{9} \mathrm{~J}_{0}^{2}(\gamma d)+(\gamma a / \pi) \cos 2 \gamma a\right]\right. \\
& \left.-52.2 \times 10^{-39} \gamma^{2} d l \mathrm{~J}_{0}^{2}(\gamma d)\right\} \tag{67}
\end{align*}
$$

where, $\gamma=\gamma_{c}$

$$
\begin{align*}
& \mathrm{Q}^{H}=179 \times 10^{8} f^{-1} /\left[(\gamma a / \pi) \left\{\cos ^{2}\langle\gamma a-(3 \pi / 4)\rangle\right.\right. \\
& \left.\left.+\cos ^{2}\langle\gamma a-(\pi / 4)\rangle\right\}-\left(\frac{1}{2} \gamma^{2} d^{2}-1\right) \mathrm{J}_{1}^{2}(\gamma d)-\frac{1}{2} \gamma^{2} d^{2} J_{0}^{2}(\gamma d)\right] \\
& \div\left\{694.22 \times 10^{22} h^{2} f^{-7 / 2}\left[(\gamma a / \pi)\left\langle\cos ^{2}(\gamma a-3 \pi / 4)+\cos ^{2}(\gamma a-\pi / 4)\right\rangle\right.\right. \\
& \left.-\left(\frac{1}{2} \gamma^{2} d^{2}-1\right) J_{1}^{2}(\gamma d)-\frac{1}{2} \gamma^{2} d^{2} \mathrm{~J}_{0}^{2}(\gamma d)\right] \\
& \left.+2.61 \times 10^{-7} 1 d \sqrt{ }(f)\left[52 \times 10^{19}\left(h^{2} / d\right) f^{-4}-1\right] \times \mathrm{J}_{1}^{2}(\gamma d)\right\} \tag{68}
\end{align*}
$$

where $\gamma=\gamma_{h}$

$$
\begin{align*}
Q^{E H}= & 81.64 \times 10^{29} f^{-3 / 2} h^{2} /\left[\left\{2-\gamma^{2} a^{2}\right\}(2 / \pi \gamma a) \cos ^{2}(\gamma a-3 \pi / 4)-2 \mathrm{~J}_{1}^{2}(\gamma d)\right. \\
& \left.+(2 \gamma-2) \mathrm{J}_{0}^{2}(\gamma d)\right]+1.57 f^{5 / 2} l\left\langle(2 a / \pi \gamma) \cos ^{2}(\gamma a-3 \pi / 4)\right. \\
& \left.-d^{2}\left\{\mathrm{~J}_{1}^{2}(\gamma d)-\left[2 \mathrm{~J}_{1}(\gamma d) \mathrm{J}_{0}(\gamma d) /(\gamma d)\right]+\mathrm{J}_{0}^{2}(\gamma d)\right\}\right\rangle \\
\div & \left\{120.31 \times 10^{-39}\left[\mathrm{~J}_{1}^{2}(\gamma d)-(2 / \pi \gamma a)\left(1-\frac{1}{2} \gamma^{2} a^{2}\right) \times \cos ^{2}(\gamma a-3 \pi / 4)\right]\right. \\
& -52.2 \gamma^{2} d l \times 10^{-39}\left\langle\mathrm{~J}_{0}^{2}(\gamma d)+\mathrm{J}_{1}^{2}(\gamma d) /\left(\gamma^{2} d^{2}\right)\right. \\
& \left.\left.-2 \mathrm{~J}_{0}(\gamma d) \mathrm{J}_{1}(\gamma d) /(\gamma d)\right\rangle\right\} \tag{69}
\end{align*}
$$

where, $\gamma=\gamma_{e h}$

$$
\begin{align*}
\mathrm{Q}^{H E}= & 179 \\
\therefore & \left\{1 0 ^ { 8 } I f ^ { - 1 } \left[(\frac { 1 } { 2 } \gamma ^ { 2 } a ^ { 2 } - 1) (2 / \pi \gamma a) \operatorname { c o s } ^ { 2 } \left\{\gamma a-(3 \pi / 4)+\mathrm{J}_{1}^{2}(\gamma d]\right.\right.\right. \\
\div & \left\{694.22 \times 10^{22} h^{2} f^{-7 / 2}\left[\left(\frac{1}{2} \gamma^{2} a^{2}-1\right)(2 / \pi \gamma a) \times \cos ^{2}(\gamma a-3 \pi / 4)\right.\right. \\
& \left.+J_{1}^{2}(\gamma d)\right]+2.61 \times 10^{-7} l d f^{1 / 2} \tag{70}\\
& \left.\times\left[52 \times 10^{29} h^{2} f^{-4} d^{-1}-1\right] J_{1}^{2}(\gamma d)\right\}
\end{align*}
$$

where, $y=\gamma_{h e}$
The variation of λ_{2} and Q^{E} with respect to the frequency of excitation and the variation of $\mathrm{Q}^{\hat{E}}$ with respect to the length of the resonator are shown in figures 10 and 11 respectively. The following values for the constants have been used in computing the results

Fig. 10
Variation of guide wayelength and Q factor of E mode with frequency of excination of the resonator

Fig. 11
Variation of Q (E -mode) with respect to the length of the resonator at different frequencies of excitation.

$$
\begin{aligned}
& a=1 \text { metre ; } \quad \quad d=10^{-3} \text { metre ; } \quad \sigma_{e}(A l)=3.54 \times 10^{7} v / m \\
& \quad \sigma_{w}(C u)=5.8 \times 10^{7} v / m ; \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} ; \quad \epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

Q of Sommerfecd Surface Wave Resonator

8.1. Field Components:

The mode of practical intest in cylindrical surface wave transmission is rhe E_{0} mode, since all other modes have very high attenuation. For Sommerfeld surface wave line having radius d and immersed in air the field components for the resonant waves E_{0} are ${ }^{40}$

$$
\begin{align*}
& E_{z r}=2 B \mathrm{H}_{0}^{(1)}\left(j \gamma_{2} \rho\right) \cos (n \pi z / l) \\
& E_{p r}=-j 2 B\left(n \pi / \gamma_{2} /\right) \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} \rho\right) \sin (n \pi z / l) \\
& \mathrm{H}_{\theta r}=2 B\left(\omega \epsilon_{0} / \gamma_{2}\right) \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} \rho\right) \cos (n \pi z / l)
\end{align*}
$$

where

$$
\gamma_{2}=a_{2}-j b_{2}
$$

82. Maximum Energy Stored;

- The maximum energy W_{M} stored inside the resonator is

$$
\begin{gather*}
W_{M}=-\frac{2 \pi \mu_{0} B^{2} \omega^{2} \epsilon_{0}^{2} l}{\gamma_{2} \gamma_{2}^{*}\left(\gamma_{2}^{*}-\gamma_{2}^{2}\right)}\left[-j \gamma_{2}^{*} d \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right. \\
\left.-j \gamma_{2} d \mathrm{H}_{0}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right] \tag{72}
\end{gather*}
$$

8.3. Pon'er Lost:

$$
\begin{align*}
& P_{e}=-\sqrt{\binom{\omega \mu_{0}}{2 \sigma_{e}} \frac{8 \pi B^{2} \omega^{2} \epsilon_{0}^{2}}{\gamma_{2} \gamma_{2}^{*}\left(\gamma_{2}^{*}-\gamma_{2}^{2}\right)}\left[-j \gamma_{2}^{*} d \mathrm{H}_{1}^{(\mathrm{D})}\left(j \gamma_{2} d\right) \mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right.} \\
& \left.-j \gamma_{2} d \mathrm{H}_{0}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right] \tag{73}\\
& P_{w}=\sqrt{\left(\frac{\omega \mu_{0}}{2 \sigma_{w}}\right) \frac{2 \pi B^{2} \omega^{2} \epsilon_{0}^{2} l d}{\gamma_{2} \gamma_{2}^{*}} \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)} \tag{74}
\end{align*}
$$

8.4. Q Factor:

The Q factor for the Sommerfeld surface wave resonator is

$$
\begin{align*}
\mathrm{Q}\left(E_{0}\right)= & \omega\left(W_{M}{ }^{\prime}\left[P_{E}+P_{W}\right]\right) \\
= & \sqrt{ } \omega \mu_{0}\left[-j \gamma_{2}^{*} d \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{0}^{2}\left(-j \gamma_{2}^{*} d\right)\right. \\
& \left.-j \gamma_{2} d \mathbf{H}_{0}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right] \\
& -\left[4 / / \sqrt{ }\left(2 \sigma_{R}\right)\right]\left[-j \gamma_{2}^{*} d \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right. \\
& \left.-j \gamma_{2} d \mathrm{H}_{0}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right] \\
& -\left[d\left(\gamma_{2}^{* 2}-\gamma_{2}^{2}\right) / \sqrt{ }\left(2 \sigma_{w}\right)\left[\mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right]\right. \tag{75}
\end{align*}
$$

The magnitude of the arguments of the Hankel functions in most of the practical cases is less than 0.05 . Therefore, using the following small argument approximations

$$
\begin{align*}
\mathrm{H}_{1}^{(1)}\left(j \gamma_{2} d\right) & =-\left(2 / \pi \gamma_{2} d\right) \\
\mathbf{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right) & =-\left(2 / \pi \gamma_{2}^{*} a\right) \\
\mathbf{H}_{0}^{(1)}\left(j \gamma_{2} d\right) & =j(2 / \pi)(m+j n) \\
\mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} d\right) & =-j(2 / \pi)(m+j n) \tag{76}
\end{align*}
$$

where,

$$
\begin{aligned}
m & =\frac{1}{2} \ln \left[(089 d)^{2}\left(a_{2}^{2}+b_{2}^{2}\right)\right] \\
n & =\arctan \left(b_{3} / a_{2}\right)
\end{aligned}
$$

the expression for $\mathrm{Q}\left(E_{0}\right)$ reduces to

$$
\begin{equation*}
\mathrm{Q}\left(E_{0}\right) \simeq \frac{\sqrt{ }\left(\omega \mu_{0} \sigma_{w} \sigma_{e}\right)}{\left\{2 \sqrt{2} \sigma_{w} / l\right\}\left\{t _ { 2 } h _ { 2 } \sqrt { } \left(22 \sigma_{e} / d\left[n\left(a_{2}^{2}-b_{2}^{2}\right)\right.\right.\right.} \overline{\left.+2 a_{2} b_{2} m\right]^{\}}} \tag{77}
\end{equation*}
$$

where, the values of $a_{2} b_{2}$ are determined from the solution of the following characteristic equation given by Barlow and Brown ${ }^{53}$

$$
\begin{equation*}
\frac{\gamma_{2} \mathrm{H}_{0}{ }^{(1)}\left(j \gamma_{2} d\right)}{\omega \epsilon_{0} H_{1}{ }^{(1)}\left(j \gamma_{2}()\right.}=-\frac{j}{\sigma_{w}+j \omega \epsilon_{1}} \frac{J_{0}(j}{J_{1}(j} \frac{\left.\gamma_{1} d\right)}{\left.\gamma_{1} d\right)} \tag{78}
\end{equation*}
$$

where, γ_{I} is the radial propagation constant for the region inside the conductor and ϵ_{1} represents the dielectric constant of the conducting medium. By using large argument approximation $\left|j \gamma_{1} d\right| \gg 1$ for the Bessel functions and small argument approximation $\left|j \gamma_{2} d\right| \ll 1$ for the Hankel functions, eqn. [78] is solved to yield

$$
\begin{equation*}
a_{2}=\left[\left(1.123|\xi|^{1 / 2}\right) / d\right] \cos \delta / 2, \quad b_{2}=\left[\left(1.123|\xi|^{1 / 2}\right) / d\right] \sin \delta / 2 \tag{79}
\end{equation*}
$$

where,

$$
\begin{align*}
& \delta=-\frac{\pi}{4}\left(1-\frac{1}{\ln |\xi|+1}\right) \\
& -|\eta|=|\xi| \ln |\xi| \tag{80}
\end{align*}
$$

and $|\eta|=\frac{246 \times 10^{-14}}{\sqrt{\sigma_{w}}} f^{3 / 2} d$
The $\mathrm{Q}\left(E_{0}\right)$ of the Sommerfeld resonator at $f=9500 \mathrm{MHz}$ and with

$$
\sigma_{e}=3.54 \times 10^{7} \mathrm{v} / \mathrm{m}, \quad \sigma_{w}=5.8 \times 10^{7} \mathrm{v} / \mathrm{m}
$$

is

$$
\begin{equation*}
\mathrm{Q}\left(E_{0}\right)=10^{-6}\left[\frac{1.74}{l}-\frac{0678 a_{2} h_{2}}{\left.d\left[n a_{2}^{2}-b_{2}^{2}\right)+2 a_{2} b_{2} m\right]}\right] \tag{81}
\end{equation*}
$$

which for $l=0.75 \mathrm{~m}$ and $d=1.1 \times 10^{-3} \mathrm{~m}$ yields
$Q\left(E_{0}\right)=18.830$ and for $l=0 \mathrm{I} \mathrm{m} \mathrm{Q}\left(E_{0}\right)=14660$.

9. Power Flow

In deriving the expression for $\mathrm{Q}\left(E_{0}\right)$, it has been assumed that the only losses in the resonator occurs due to ohmic dissipation in the end plates and the wire surface and the loss due to the radiation has been ignored. An idea of the radiation loss can be gained from the power flowing outside a radius P_{e} corresponding to the radius of the terminating end plates.

The totai power fiow P_{s} outside the Sommerfele line is

$$
\begin{align*}
P_{t}= & \frac{1}{2} R e \int_{\theta=0}^{2 \pi} \int_{\theta=d}^{\infty} E_{p 2} H_{\theta 2}^{*} \rho d \rho d \theta \\
= & R e\left[\frac { \pi \epsilon _ { 0 } \omega h B ^ { 2 } } { j \gamma _ { 2 } \gamma _ { 2 } ^ { \times } (\gamma _ { 2 } ^ { \times 2 } - \gamma _ { 2 } ^ { 2 }) } \left\{j \gamma_{2}^{\times} d H_{3}^{(1)}\left(j \gamma_{2} d\right)\right.\right. \\
& \left.\left.\mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} d\right)+j \gamma_{2} d H_{0}^{(i)}\left(j \gamma_{2} d\right) \mathrm{H}_{1}^{(2)}\left(-j \gamma_{2}^{*} d\right)\right]\right] \\
\cong & \left.\frac{2 \epsilon_{0} \omega B^{2} \beta}{\pi a_{2} b_{2}\left(a_{2}^{2}+b_{2}^{2}\right)^{2}}\left[\left(b_{2}^{2}-a_{2}^{2}\right) n-2 a_{2} b_{2} m\right)\right] \tag{82}
\end{align*}
$$

where, $h=\alpha+j \beta \simeq j \beta$ and small argument approximations for the Hankcl functions have been used.

The energy flow outside a radius β_{ε} is

$$
\begin{align*}
P_{\rho e} & =\frac{1}{2} R e \int_{\rho=\rho_{e}}^{\infty} \int_{\partial=0}^{2 \pi} E_{\rho g} H_{\theta 2}^{*} \rho d \rho d \theta \\
& =R e\left[\frac { \pi } { j \gamma _ { 2 } \gamma _ { 2 } ^ { * } (\gamma _ { 2 } ^ { * } B ^ { 2 } - \gamma _ { 2 } ^ { 2 }) } \left\{j \gamma_{2}^{*} \rho_{e} \mathrm{H}_{1}^{(1)}\left(j \gamma_{2} \rho_{e}\right)\right.\right. \\
& \mathrm{H}_{0}^{(2)}\left(-j \gamma_{2}^{*} \rho_{e}\right)+j \gamma_{2} \rho_{e} \mathrm{H}_{d}{ }^{(1)}\left(j \gamma_{2} \rho_{e}\right) \\
& \mathrm{H}_{1}{ }^{(2)}\left(-j \gamma_{2}^{*} \rho_{d}\right) \tag{83}
\end{align*}
$$

Therefore, the percentage of power flow outside a radus

$$
\begin{align*}
& P_{a} \text { is } \\
& \left(P_{p_{s} /} / P_{g}\right) \times 100 \\
& =100\left(\pi^{2}\left(a_{2}^{2}+b_{2}^{2}\right) \rho_{e} / 8 \beta\right) \\
& \operatorname{Re}\left[h \left\{j \gamma_{2}^{*} \mathrm{H}_{1}{ }^{(1)}\left(j \dot{\gamma}_{2} \rho_{e}\right) \mathrm{H}_{0}{ }^{(2)}\left(-j \gamma_{2}^{*} \rho_{e}\right)\right.\right. \\
& \frac{\left.+j \gamma_{2} H_{0}^{(1)}\left(j \gamma_{2} \rho_{e}\right) H_{1}^{(2)}\left(-j \gamma_{2}^{*} \rho_{e}\right)\right\} 1}{\left[n\left(a_{2}^{2}-\hbar_{2}^{2}\right)+2 a_{2} b_{2} m\right]} \tag{84}
\end{align*}
$$

The variation of the percentage of power flow outside a radins $\rho_{e}-1 m$ and $P_{\varepsilon}=0.45 \mathrm{~m}$ as function of the radius of the Sommerfield line having σ_{w} and $\boldsymbol{\sigma}_{e}$ values same as stated previously is shown in fig. 12. It is found that for $25 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire and end plate radius of 1 metre enly about $.03 \%$ power flows sutside the resonator, whereas, for end plate of radius 0.45 meire, the percentage of power flow outside the resonator, is about 1%.

Fig. 12
Power flow outside a radius $p_{e}=1 \mathrm{~m}$ and $p_{\epsilon}=0.45 \mathrm{~m}$ as a function of the radius of Sommer feld line.

10. Further Scope of Work

The following work in connection with the surface wave resonator which has been developed (see fig. 13) is under progress.
(i) The effect of the cilt of one of the terminating end plates on the Q of the resonator.
(ii) The problem of excitation of a metallic corrigated surface wave structure.
(iii) Experimental study of the field decay guide wavelengh, attenuation of surface wave lines with metal disc loading.
(iv) Extension of the surface wave resonator technique to the study of corrugated dielectric rod characteristic.

11. Acknowledgement

The investigator-in-charge is grateful to Dr. S. Dhawan, Director of the Indian Institute of Science for permission to accept the scheme and giving all facilities to conduct the work. He expresses his deep gratitude to Dr. J. R. Wait, Monitor, Senior Scientist ESSA for his unstinted support and encouragemeut and technical advice towards this project. He expresses his grateful thanks to U. S. Department of Commerce for providing the necessary PL-480 funds for this project. His thanks are also due to U. G. C. New Delhi for permission to eonduct the project.

References

Fig. 13
Pbotograph of the experimental setup of Sommerfeld surface wave resonator
14. Chatterjee, S. K. J. Indian Inst. Sci., 1952, 34, 99.
15. ——— J. Brit. I. R. E. 1953, 13, 475.
16. --. J. Indian Inst. Sci., 1953, 35, 59.
17. ——— libid. 1952, 34, 43.
18. - ibid, 1952, 34, 77.
19. ——". JI. T. E. 1965, 11, 407.

20 —— J.I.T E. 1965, 11, 528.
21. - Proc. J. E. R. E. 1966, 4, 53.
22. Szulkin, P.
23. Borgnis, F. and Papas, C. H.

Butl Acad. Pol. Sci. Ser. Sci. Tech., 1960, 8, 639.
Randwert, Probleme der. Microwellen Physik, 1955 S . springer verlag.
24. Mayer, E.
J. Appl. 1946, 17, 1046.
25. Klein, W.
Z. Angew, Phys., 1951, 3, 253.
26. Casimir, H. B. C. .

Phillips. Res. Rep., 1951, 6, 162.
27. Waldron, R. A.
28. Cunltffe, A. and Gould R. N. Proc. I. E. E., 1960, 107, 272. and Hall, K. D.
l. E. E. Monograph, 1954, 91.
29. Cunliffe, A. and Mathias, L. E. S. . Proc. I. E. E. Pt. III, 1950, 97, 367.
30. Bethe, H. A and Schwinger, J.
N.D.R.C. Report D 1-117, March, 1942.
31. Kahan, T.
C. R. Acad. Sci., Paris, 1945, 221, 536, 694.
32. Bernier, J. Onde Elect., 1946, 26, 305.
33. Muller, J. Hochfrequenz, tech. u. Elektroakust, 1939, 54, 157.
34. Wien, M. Ann. der. Physik u. Chemie, 1897, 61, 151.
35. Kinzer, J.P. and Wilson, I. C. .. Bell Sys. Tech. J., 1947, 26, 410.
36. Chandler, C. J. J. Appl. Phys, 1949, $20,1188$.
37. Scheible, E. H. and Kıng, B. G. .. Jbid, 1954, 25, 790. and Van Zeeland, D. L.
38. King. B. G. and Scheibe, E. H., Tatasuguchi, I.
39. King, B. G. and Tatsuguchi, i. .. Spring meeting USRI, Washington, D.C. 1955. Scherbe, E, H. and Goubau, G
40. Zacharia, K. P. and Chatterjee, S. K. Radio and Electronic Engineer, 1968, 36, 111.
41. Chattorjee, S. K. and Chatterjee, R. J. Indian Inst. Sci., 1968, 50, 345.
42. Sommerfeld, A.

Ann. Physik. Chemic, Lpzg., 1899, 67, 233.
43. Zenneck, J.

Ann. Phy. Lpzg. 1907, 81, 1135.
44. Wait, J. R. . . . J. Res. Nat. Bur. Stds. 1957, 59, 365.
45. - . . . Trans. I. R. E., 1960, AP-8, 445.
46. - Ad́vances in Radio Research, Academic Press, London, 1964, 4, 157.
47. Bowwkamp, C. I. Phy. Rev. 1950, B0, 294.
48. Barlow, H. M. Proc. I.R.E., 1958, 46, 1413.
49. \qquad Proc. I.E.E., 1959, 106B, 179.
50. \qquad Trans. I.R.E., 1959, AP7, S147.
51. -, and Cullen, A. L. Proc. I.E.E. Pt. III, 1953, 100, 329.
52. ——, and Karbowiak, A. E. .. ibid, 1953, 100, 321.
53. - and Biown, J.

Radio Sur face Waves 13, 1962. Clarenton Piess, Oxford.
54. Cullen, A. L. . . Proc. L.E.E., Pt. IV, 1954, 101, 225,
55. Attwood, S•S. J. Appl. Phys. 1951, 22, 504.
56. Goubau, O. Ihid, 1950, 21, 111.
57. - Proc. I. R. E., 1951, 39, 619.
58. - Trans. I. R. E, 1956, MTT-4, 197.
59. —— . . . Ibid, 1959, AP-7, S-140.
60. Chatterjee, S. K. and Madhavan P. J. Ind. Inst. Sci, 1955, 37, 2 C0.
61. —— and S. N. Contractor .. Ibid. 1957, 39, 107.
62. ——, and Chatterjee, R. .. \quad litd, 1956, 38, 156.
63.
64.
65.
. I Ibid, 1957, 39, 71.
65.
66. Wells, D. A. ..
67. Albersheim, W. J.
J. Inst. Engrs. (India), 1958, 38, 875.
68. Smythe, W. R. . . . Static and Dynamic Electricity, 1950, 311, . J. I. T. E., 1958, 4, 90.
66. Wells, D. A. . . . J. Appl. Phys., 1938, 9 i 312. McGraw Hill Book Co.
69. Harms, F. Ann. d. Physik, 1907, 23, 44.

[^0]: * Paper presented at the 22nd Annual General Meeting of the Aeronautical Society of India held at Hyderabad on the 20th and 2lst March 1970.

[^1]: *These values are all from $(M+N)$ ODD case; $(M+N)$ EYEN case gives higher values.

[^2]: (a) Ref. 18 (Levy's Method)
 (c) Ref. 2 (Tak:n from the graph)

 The eigenvalues corresponding to this case are taken from Ret. 16 (note that for $a / b=0.5, \mathrm{M}=\mathrm{N}=4$ and for $a(b=1, \mathrm{M}=\mathrm{N}=6$.)

[^3]: * Eigenvalues for this case are taken from Ref. 16 ; a) Rei.. 23, b) Ref. 3.

[^4]: This Project is supported by PL-480 Contract No. E-262-69(N), dated August $\mathbf{3 0}, 1969$.

