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7. Introduction.

A theory of the diffraction of light by high-frequency sound waves was
developed by Sir C. V. Raman and Mr. N. S. Nagendra Nath jointly, and
later also by the latter independently, and was published in a series of papers
in these Proceedings. (These will be referred to below for brevity as R.-N.
I, II, III, IV, V and N. I). In a paper published in the Physica, July
1937 (referred to below as V. C.), Van Cittert has treated the case of normal
incidence ; starting from the usual expression for a pencil of light and con-
sidering the light fluctuations at successive points in the medium and thus
also the diffraction effects, he obtains a system of differential equations, a.nd
solves them in a series of Bessel-functions of which the first term agrees'wfch
the simplified theory contained in R.-N. I. In the present paper it will be
shown that the results of the more general theory of Raman and Nath (R.—.N.
IV and N. I) for the case of normal incidence are completely identical with
those of Van Cittert. The latter’s method is then extended to the case of
oblique incidence and the results thus obtained are proved to be also in agree-
ment with those of Raman and Nath for this case contained in their papers
(R.-N. V and N. I). The solution is developed 7% exfenso, as a series of Bessel-
functions. The method of parts as developed in Mr. Nagendra Nath’s recent

paper for two systems of sound-waves is extended, and the resulting general-
ised difference-differential equation solved.

NOTATION.

o = Refractive index of the medium in the undisturbed state.
= Maximum variation of the refractive index from u,’.
A = Wave-length of incident light.

A* = Wave-length of sound wave.
v' = Frequency of the sound wave.
n=p(y,{) = po — psin2x (V*t - %)

= refractive index of the medium.
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2. Normal and Oblique Incidence.

Considering the case of normal incidence, the results of R.-N, IV, and
those of V. C. are proved to be the same as follows :—

() The restrictions under which the results are valid.

(b) The angles of inclination of the various orders of spectra to a fixed
line.

(c) The expressions for the intensities, must be the same in both the
theories.

The incident light will be diffracted at angles given by sin § =
i%/} for the nth order (R.-N. IV), where 0is the angle with the x axis. Van-

Cittert’s theory also gives the same expression (siniz, = ZZ—/{\* where 1, is

the angle of the nth order with the axis of x).

The difference-differential equation as in V. C. is:

ds i (1 — p20)
B S S - S, (1)

’

2m 2 Vs
where p, = )’\uo COS 75, Vp = —%ﬁ“ cos 74, and & = ﬂ’;x.

3\

— (M) =M (I — cos 7,), and from the relation sin 7, = 2 R
o e nA

Xy, X2
= %- 2, 00 == %— 2
2 p ‘Lng A*g P4 p IL“OIA*Z

(neglecting powers of u higher than the first)

A

= ‘} P2ﬁ where B =m'

The equation takes the form

s p°
—{Eﬁ:-%—BSp + 5551 — S 1k (2)

The solution of this equation is given as below (V. C.)
So =TJ “‘21.}8.]'3 +2/82J4 + - }
Sy =J1 +1Ble = BJs + - -+ | h _ 2muzx
Sy =Jo + BifT, 2T, .. | 7 (*%)
Ss=13+14iﬁJ4+"' j
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Expressing these in powers of £, we have

- o o1 e B (1 By

4 24 64 3
ife BN E _
& 518§ 1 Z/i 1) £2
S: =g {1 + 7% ( + ) }
£ TeBE ...
S = Eé{l g T }
Intensity =} S,|? for the pth order.
0 &2 ip&3 1 ‘ P_2 .
Xt i +na(t+5)e -
] 1 2 1’P 2 i ‘I_
R | ge=f 1 Peo g e ® e Gy (T 10 E
and N. 1. { . i 2c)
g? 51 177 o 1 L (
\¢2=§{14"—{-§—1 iP +3)§2+ }
£ , {1p ‘
Y =738 {] : ¢ }
Intensity of the pth order = | 5|2

p = »r~~»—%::—‘f_~, = B and ¢ signifies the same in both. Hence the expres-—
g AT

<ions for the intensities are the same.

The difference-differential equation
is the same in both the cases.

ie, |dpl2 =180 (3)
@ is small and of the order of 10-5. B must be less than 1.
ll’ A =0((10—5%)
A \ A¥ =0 (10— %)
B =" =0(10-Y) < 1. 1. !
i p’f‘z’ﬁ‘}\‘ ( ) P = \iy, .._.—-:_0(10“5)
L #o” =0 (1).

Thus p also satisfies the condition.

The results for the case of normal incidence from the general theoxy
‘R-NUIV and XU I) and of V. C. are thus the same.

For the case of oblique incidence, we first have the same equation (1)-

ds if

Ty

.EE — Y ar - F—o) <

v Sp T Ji' {Sp-—l —_ SP+1}- (342:)
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The angles of emergence for the various orders are given by

sinryiy —sinr, =& o (V.C)

A

sin ?’? — S1n 7’15 - = ';L.X*

A

Sinys.; — Sinv,., = L

A

sin 7, — sinz, = %

A

.sln7r, — sin ¥y = H+ —x-
# 0 b nA*

Let the angle of incidence be ¢ (7, = ¢). We have the relation 2}2—:3 = 7
b

(refractive index of the medium).

. . X
. sin f,=sin¢ +p7\;‘ ' (30)

This equation is the same as in R.-N. II (oblique incidence).

. (&? — p.o) _ {cos 7o — COS 7'1,}
Vg - 2 cos 7’0

sin
cos 7, :\/1 —

—
nz‘ls = 1 (negleciinz powers of ¢ highar than the

fitst).

o 1 (p2x o, SI _ﬁ} PR . .
=1 — 5 {;{éj\‘*-z + 2p PG (neglzcting higher terms).
o= Bo\ _ B (g X, Asing
B (- ) T { # wixe 2 N }

2 A sin cﬁ}
= %‘ 2 - AT 2 T Y%
- {p ppig 2 T P iy A

2 .
!—‘”—‘"”L)\,/\*g and a = 2A sin ¢ = af the ejuation becomes
0

Setting B = iy X
0

2%’:@3 (9 + ap) + (Sp-1 — Spe 1) | (1)
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[In deriving these equations, powers of ¢ higher than the first have been
neglected : u? is neglected. ¢ in this paper corresponds to = 4 ¢ in R.-N. V
and N.I]. It can be easily seen that the diffraction pattern is asymmetric
(R.-N. V). |

3. The Difference-Differential Equation.

as
2 *;i—; = CpSp + {Sp-1 — Sp+1}, (5)

where C, = 18 (($* + ap).
Substituting S, = J, +2’° Bp,2 + » Ju+p in equation (5), we get the following

recurrence relations.

ao.l == 0
aO.z - 0
Ao, n+1 — Ao, -1 = — {al, 2 — G-y, n}-

app+1 — -1, =Cp
Apn+p+1 — Ap—1,p+n T Ap+1.p+n2 — Ap ptn-1 = Cp Ap, p+n

Ap—1,n+p — Op—2,ppn-1 T Appt+n-1—Ap-1.p+n-2 = Cpo1 Ap—1, ptn-1

Arn+s —Ao,ny1 T A2 nv1 — Ay = G a1, n+1

On adding, we have

D
Appen+1 = Ao, n+ 1 — Ap+1,p+n T 1,2 +2cp Ap, p+ 7 (6)
1

which can also be written as

4
Ap, p+n+1 =00, n-1=8p+ 1,p+2 T A-1,, T2 Cp p p4 (6a)
1

App+1 — Ap—1,5 = Cp

ap p+1 =§Cp- (7)

p
p,p+2 =217Cz> Ap, p+1

=§CP(C1+C2++C?)=% Z”: ‘;é" C, Cs.
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- ey +ter)

Gy pis =} {(z cr)2 +§5Cﬁ} ‘ (a)

Appts = Qo 3 — {Cz +Cy + - +Cz>+1)[ +21|C;0 Ap, p+ 2

App+3 = — {C—l + ,,21 C,.} -{—53 C, C,C, — (all like terms being
1 1

counted once only) (75)

Cp = 1B (p* + op).
ap’Ml:i]g{P(P‘?Ll)(??-f'l) n ﬁ(ﬁ:{:_})}

6 T
? 1) (2p + 1) (10p® 4 33p% 4 23p — 6
%¢H=*%gW+>w+»%£+-ﬁ p — 6)

(

ap.p+3= _ZB{(P’}"I)(?EQ)(?/)‘!‘:S)+1+%‘P(p+3)} +‘?Cp“p.p+z

\

Expressions for the amplitudes Sy, Sy, - + - - are as below:

So=1Jo = 20Ty + 28 (1 +0?) J, + 2B {5 + B (1 + 2’} Js
— 282 {(27 + 9% + B* (1 + 6a* + o)} Je
— 2B {18 + B2 (113 + 119a?) + B4 (1 + 10a? + Bat)} T,
+ 2B {(246 + 220%) + B2 (459 4 92202 + 55a4) + Bt (1 + 1542
+ 15at +af) Jg+ - - -
Si=Ji +iB(L+a)J;— (L +apTs—18{(6 +2a) +8 1+
+ B2{(28 4+ 30a + 10a?) - B2 (L + o)% J; + 18 {(25 + 3q)
+ B% (114 + 1960 + 12202 + 2403) + B* (1 + a)%} J;
— {273 + 1900 + 31a?) -+ B* (460 + 104da + 928a2 + 3640
+56af) + B4 (L + ) Ty + - - -
Sy =1Jo +iB (5 +3a) Ty — B2 (21 + 24a +Ta2) T, — B {(15 + Ba)
+ B2 (85 + 14la + T9a? + 1503} J;
+ B2{(214 + 176a -+ 38a?) + B2 (341 + 738a + 604a? + 2223
+ 31a4)} J, + B {(39 + 16a) + % (2291 + 2849a + 12050
+ 17508) + P(1364 + 3634a + 389242 + 2096a® + 568a* +
62a%)} J, + ¢

PR Y 5 5o+ (b +2 B 1.

r




130 K. Nagabhushana Rao

Sy =Js +iB (14 + 6a) T, — B (147 + 120a + 25a?) J5 — 3B {(31 + 9a)
4+ B2 (1408 + 1662a + 664a® + 90a%)} J,
4 B{(973 + 618a + 132a%) -+ B (13013 + 19910a -+ 1156602
+ 3024a® + 27004} T, + - - -
Ty 4+ iB (30 + 10a) J5 — B (627 -+ 400a -+ 65a2) J,
— iB{(56 + 14a) + B (11440 + 10570a -+ 330402 + 350a%)} J,
4 B{(3872 + 2114a + 329a%) -+ B (653653 + 771990a
+ 34457002 + 68880a® + 3770a%)} Jg + - « -
S, = Js -+ B (55 + 15a) J; — B2 (2002 + 1050a + 14002 J,
— iB{(92 + 20a) + B (61490 + 368300 + 12054a® + 1050a%)} J,
+ . s e
S, = Jo +iB (91 + 21a) J, — B2 (5378 + 24020 + 266a2) Jg
— 4B {(141 + 21a) + B? (255098 -+ 155570a -+ 3604242
1264603} + - - - ,
S, = J, +iB{(140 + 28a)} Ty — B (12138 + 47040 + 46202) Jy + - - -

>
N

S, = Jp + 4P {ib (2 +1)6(2P + 1) —{—ggﬁ(}b "l—l)} Js+1
_ B D FNUHEESPEIL =0 L S+ 12 +2)

£S5 1) b+ B+ D) Tpwn+ o+ @pprnToan + o
where .Tﬂ =J” (C:)‘fﬁ)‘l{ic)

4. Systems of Parallel Sound Waves.
Let us consider the case of three systems of sound waves with different
frequencies, amplitudes and wave-lengths. The refractive index of the

3
medium is given by w (y, §) =pe + 2 w, sin 27 (v,* L— %—*) It can_
s

easily be proved that combinational orders are present and that they occur

at angles given by (sin § =7 —AA—*— +s X}L + t—x—-)\*) for the (7, s, {)th order.
1 2 3

Extending the method of parts as in Mr. Nath’s recent paper, it can easily

be seen that the equation giving the amplitudes of successive orders is
a
2 a}ﬁbns,t (x) =01 {957'-— 1,52 7 ¢r+ 1, 5 t} + Tg {(]S/‘, s—1Z7 T 9[)7’, s+ 1, t}

2 8
+ o3 {‘;[’r,:,t—-l _9[)7‘,.r,t+ 1} where ¢, = 7;“" ( )
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The boundary counditions are ¢, ,,(0) =0, and ¢y, (0) = 1.
This can easily be generalised to the case of N systems of sound waves.

To solve the equation

gz byt (2) =0y {(/Br—l,x,t — bre1s, “} s {ﬁbr,;—m‘ ~¢"’3+1’l}
405 [brsier = b i )

H

with the conditions {(75’ o1 (0)
$0,0,0 (0) = L.

pe . :
Let ¢, (2) =4 a3 fi SR This is a solution of the above equa-

3
tion if 2p = 2 o, (5, — g—«)- The most general solution is obtained by
r=1 [4

summing up similar solutions.

1.€.,

bros (2) = J_)a bty ¢ §)§{’§lm(§”5)} 0, -dt, -dt,

’os - 9t 1 52 53 §Ir+1§23+1§:3t+1'
| (9a)

where ¢ is any function of £, &, &; To obtain the solution satisfying the
given boundary conditions, we can regard the quantities (£,) as complex
variables and take each integral round a closed contour which encircles the
orgin once.

The boundary conditions are

{(1) bro: (00 =0 7rs=51%0
(2),‘/’o 0, 0(0) =1

(1) gives ( ) (¢4 (4 6 € 1,552::{% fZ g:t‘l‘i = 0.

This implics that ¢ (£, &, &;) 1s a constant = o = 1 by (2).

Joy e, -1
e =(L) (g6 ST

-]

We know that ; @ ” Fre d¢ = J, (0z). This can be proved as

{Q
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follows :
2 1
1 ?(f“g) dé _ Residue at the origi
@ Qmi ¢ IZE esidue a e origin.
2 ¢ 2
2 2 oo
e + € ¢ = 2 (E
(1]

b
Ua Y
N’
S
N
l
S
32

Coefficient of & is given by

2\ 1 742 7 +4 1
(é rf»“() (>) 2

=
|1 In +1
“‘(2 {l”ﬁ N (?a) +}
I CES:
~C) e @) pa)
2 g_..l)
_2%7_1 62( ¢ Zéa: T, ().
(s Y1 1
-) 2 (8- )
br,s,t ( 277@ @ € §d§:12’},—i @ e gd:f-ilx
z(gs §3
X o ‘é—;;ﬂ:—ii

br, 5t (2) =T, (01 2) J; (02 2) J: (o3 z).

The generalised form of the above equation can be written as

- Sbnl k1, g, 00 n’,}

+ 0'2 {(.b721, 732""1, ...ﬂli' - ¢721,”2+1, "'7!5} + et
+ Ox {¢7Z]_,?¢2. "'7ZN__1 - qbﬂ]_, Mg, """ 7ZN+1}.

ny are integers and {o,} are constants. (O'r _ 277;:,,).

(10)

d
2 a‘% (jbnl,n._,. see (z) =0 {951;1- 1,725 22

(11)

where 74, #5, -+
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Procecding as before, we have the general solution given by

D I P}
gbﬂl’”z' T (Z):( : )N [_L(_/J ¢ (&1, & -0 &) '62 {rfl (é 47) }

271

df1'd52 et [ZfN

EF T LA, +17 éeNnN-!rT"

X (11(1)

To obtain the solution satisfying the boundary conditions

¢nl. 22, 000 2y (O) = 0}
¢0,o'...0 (O) —_ 1

we regard the quantities (¢,) as complex variables and integrate them round
contours enclosing the origin once. We therefore get, -

1 N % {%O‘r(gr“ g‘l;)} df .df df
§bnl, Mo, te nN(z) = (2‘7‘7"1) (f/d) . @d}; e . a”lv‘*‘i.—:g’“z—”f"" 1?;:;1;, 1
- Ops 1 \
N 1 _2-' (gr - 5) (Z .
=4 {5’7?% $ “e/‘rg“*“} -

= .Lzl (0'1 Z) 'an (0'2 3) Te JnN (UN 2)'

r=1

| ¢121. 1, R (Z) = ﬁ Jnr (O‘,Z). (12>

Intensity = |, ,,, en, ()P =1 J,? (o) z). (13)

r=1
This same expression has been obtained by E. Fues by applying the simplified
theory of Raman-Nath (R.-N. I). In conclusion it is my greatest pleasure
to record my respectful thanks to Professor Sir C. V. Raman, for suggesting
the present investigation and for much valuable guidance and criticism in
the course of the work.

5. Summary.

The results of Raman and Nath in their general theory of the diffraction
light by ultrasonic waves at normal and oblique incidences are shown to be
in complete agreement with those of Van Cittert for the case of normal inci-
dence and also with those obtained by extending Van Cittert’s method to
the case of oblique incidence. The amplitude function for the latter case is
developed in extenso in a series of Bessel functions. The expression for the
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intensity with normal incidence in the case of N systems of sound waves is
| Ty (012) Ty (022) -+ T (0w 2) [*, Where #y, my, -+ - my are the orders excited.

This result is the same as that which has been obtained by E. Fues by
applying the simplified Raman-Nath method to the case considered.

REFERENCES.

I,1935, 2, 406.
11,1935, 2, 413.
{111, 1936, 3, 75.
IV, 1936, 3, 119.
LV, 1936, 3, 459.

N. S. Nagendra Nath I, Proc. Ind. Acad. Sci., 1936, 4, 222.
Van Cittert, Physica, 1937, 4, 590,
L. Bergmann and E. Fues, Z. S. f. Phys., 1938, 109, 1.

C.V. Raman and N. S. Nagendra Nath,
Proc. Ind. Acad. Sci.,




