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Abstract. Two new, easy-to-prepare dipyrrolyl derivatives endowed with electron-withdrawing qui-
none or dicyano functionalities in their architecture permit the detection of fluoride ions under visual 
(naked-eye) as well as optical (absorption and fluorescence) and electrochemical conditions in organic 
solvents. 
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1. Introduction 

The coordination chemistry of anions is a relatively 
new area of research as opposed to that of cations. 
Indeed, sensing anions can, often, be quite challeng-
ing.1–5 Among the many inorganic anions, fluoride 
is drawing a special attention due to its beneficial 
(e.g. prevention of dental caries and treatment of os-
teoporosis) as well as detrimental (e.g. fluorosis) 
roles.6–8 Recently, calix[4]pyrrole9,10 and dipyrro-
lylquinoxaline (DPQ) based receptors11–14 have been 
reported to be efficient sensors for F – and other in-
organic anions. Herein, we report two new dipyrro-
lyl receptors 1 and 2 (figure 1), both of which are 
avid binders of F –. Structurally, while receptor 1 
can be considered as a DPQ derivative having the 
quinone moiety as part of its extended π-framework, 
compound 2 is a newly introduced receptor motif, 
viz. dipyrrolylpyrazine (DPP), that is substituted 
with two cyano groups directly on its skeleton. 

2. Results and discussion 

Reaction of the easily synthesizable 1,2-di(1H-2-
pyrrolyl)-1,2-ethanedione11,16 with commercially 
available 1,2-diaminoanthraquinone or 1,2-diamino-
maleonitrile readily furnished receptors 1 and 2 re-
spectively, in ~ 80% yield in each case. These new 
compounds were sufficiently characterized for their 

purity and structural integrity by elemental analysis, 
FAB-MS, IR, UV/Vis and 1H (1D and 1H – 1H 
COSY) and 13C NMR methods.†  
 In the room temperature 1H NMR spectra, while 
the two β-pyrrole protons of 1 (2⋅56 ×10–2 M in 
(CD3)2SO) resonated as two distinct signals at 6⋅52 
and 6⋅65 ppm (see figure 2, trace A), the corre-
sponding protons of 2 (3⋅84 × 10–2 M in CDCl3) ap-
peared at 7⋅37 ppm. We reasoned that close proximity 
of the symmetrically disposed and highly electron 
withdrawing cyano groups was responsible for the 
observed deshielding of the peak due to the β-pyrrole 
protons of 2 compared to the corresponding peaks of 
receptor 1. On the other hand, an ‘unsymmetric’ 
juxtaposition of the quinone subunit with respect to 
the DPQ framework seems to rationalize the dis-
similar nature of the two pyrrole rings of 1. 
 During the NMR titration with F – (tetrabutyl-
ammonium salt, [TBAF] = 0–12 × 10–2 M) both the  
 
 

 

Figure 1. Molecular structures of receptors 1 and 2. 



Tamal Ghosh and Bhaskar G Maiya 

 

18 

β-pyrrole resonances of 1 initially merged and fi-
nally appeared as a broad band centred at ~ 6⋅9 ppm 
(see figure 2, trace B). The β-pyrrole resonance of 2 
was also shifted during the titration with TBAF and 
was found to locate within a broad band centred at 
7⋅10 ppm at the end of the titration. Similar broad-
ening of the peaks as well as shifts in the resonance 
positions for the β-pyrrole protons have been noti-
ced earlier in the 1H NMR spectra of various DPQ 
derivatives in the presence of fluoride ion and were 
interpreted in terms of binding of F – by the two pyr-
rolyl subunits.11–13 We believe that the same inter-
pretation holds good for 1 and 2. Unambiguous 
evidence that F – is involved in H-bonding interac-
tion with the two pyrrole –NH protons comes from 
the fact that the resonances attributed to the –NH 
protons on 1 (11⋅87 and 11⋅16 ppm, figure 2) and 2 
(9⋅61 ppm) were initially broadened and finally dis-
appeared from the spectrum upon successive addi-
tion of TBAF. Thus, the 1H NMR data of 1 and 2 in 
the presence of F – are consistent with a structural 
model which suggests that binding of F – is facili-
tated by the rotation of the pyrrole rings of these re-
ceptors in such a way that the –NH protons direct  
 
 

 

Figure 2. 1H NMR spectra ((CD3)2SO) of (a) receptor 1 
(2⋅56 × 10–2 M) and (b) a solution containing equimolar 
concentrations of 1 and TBAF (2⋅56 × 10–2 M each). 

towards the lone pairs of the anion.11 Such a rotation 
is expected to aid the pyrrole rings to assume a ‘bite  
angle’ suitable for the size of F – and to position 
them atop the quinoxaline/pyrazine chromophores in 
such a way that orbital overlap between the pyrrole 
and quinoxaline/pyrazine subunits are perturbed and 
the optical and electrochemical properties of these 
chromophores are altered. As will be discussed be-
low, this is indeed the case. 
 In the naked-eye colorimetric experiments, recep-
tors 1 and 2 (1 × 10–4 M in CH2Cl2 or DMSO) 
showed dramatic colour changes from red to green and 
from yellow to orange-red, respectively, in the pres-
ence of TBAF (3 × 10–3 M), figure 3. Both the re-
ceptors were found to be insensitive to the addition 
of Cl–, Br–, I– or ClO4

– (up to ~ 1000 mole equi-
valents excess; see figure 3). Interestingly, the addi-
tion of F – (3 × 10–3 M) to those solutions of 1/2 
(1 × 10–4 M) containing excess of these latter anions 
also generated the expected green/orange-red colour 
suggesting that these receptors are selective binders 
of F –. 
 During the titrations with F – in CH2Cl2, the 
UV/Vis bands seen at 508 nm for 1 (figure 4) and  
 
 

 

Figure 3. Colour changes observed for 1 and 2 in 
CH2Cl2 upon the addition of anions as tetrabutylammo-
nium salts. Similar colour changes were also noticed when 
DMSO was used as the solvent. Concentrations emplo-
yed: [1]/[2] = 1 × 10–4 M; [F –] = 3 × 10–3 M and [Cl–] = 
9 × 10–2 M. 
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Figure 4. Top panel: UV/Vis spectral changes seen for 
1⋅0 × 10–5 M 1 upon the addition of successive amounts 
of TBAF (0–3 × 10–4 M) in CH2Cl2. Bottom panel: Fluo-
rescence spectral changes seen for 2 (λexc = 430 nm; 
OD = 0⋅18) upon the addition of TBAF (0–3 × 10–4 M) in 
CH2Cl2. The inset in each case shows fit of the experi-
mental data to a 1 : 1 binding profile.17 
 
 
427 nm for 2 disappeared with a concomitant ap-
pearance of new bands at 652 and 469 nm, respecti-
vely. Upon the addition a drop of water, the original 
band and the solution colour reappeared in each 
case. Thus, the complexation between F – and 1/2 is 
reversible in nature. The binding constants (Ka) ob-
tained by UV/Vis titration experiments are 1⋅62 × 
104 and 1⋅65 × 105 M–1 (± 10%) for 1 and 2 res-
pectively.17 The fact that Ka for 2 is an order of mag-
nitude higher probably indicates the greater electron 
deficiency and enhanced hydrogen bond-donating 
character of this receptor. It should be noted here 
that addition of Cl–, Br–, I– or ClO4

– to solutions con-
taining 1 or 2 produced only marginal spectral 
changes; the Ka values, being too low, could not be 
estimated by this method in these cases. 
 Both the new receptors were found to show fluo-
rescence (CH2Cl2, λem, nm (ϕf): 1, 693 (0⋅015); 2, 541 

(0⋅41)), the intensity of which decreased upon bind-
ing with F – in each case. Fluorescence titration ex-
periments followed by standard curve fitting17 and 
Job-plot analyses not only provided the Ka values 
(1: 1⋅32 × 104 M–1 and 2: 1.38 × 105 M–1), which 
were comparable to those obtained in the UV/Vis 
experiments, but also suggested that the binding 
stoichiometery in each case is 1 : 1 (see figure 4). 
Quenching of fluorescence was also observed for 1 
and 2 in the presence of Cl–, Br–, I– or ClO4

–, albeit, 
only upon the addition of large excess (> 10–3 M–1) 
of these ions. Rough estimation of the binding con-
stants gave values that vary between ca. 40–500 M–1 
for these anions. 
 Cyclic- and differential pulse (DPV) voltammet-
ric studies revealed that 1 (5 × 10–4 M) and 2 (1 × 
10–3 M) undergo quasi-reversible reductions at  
–0⋅63 and –1⋅12 V respectively, in CH2Cl2, 0⋅1 M 
TBAP. Anodic shifts of the DPV peaks were noticed 
upon successive addition of TBAF to these solu-
tions, with the shifts in the presence of equimolar 
concentration of [F –] being 190 and 220 mV for 1 
and 2 respectively. The larger anodic shift observed 
for receptor 2 in the presence of F – is consistent 
with the higher Ka value obtained by the UV/Vis 
and fluorescence titration methods described above. 

3. Conclusion 

In conclusion, the new dipyrrolyl derivatives 1 and 
2 are easy-to-prepare fluoride ion receptors and  
allow the detection of F – under visual as well as op-
tical and electrochemical conditions in organic sol-
vents. Currently, we are engaged in the design and 
anion-sensing studies of more such dipyrrolyl deri-
vatives endowed with electron-withdrawing substi-
tuents. 
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†Selected data for 1 and 2 
1: Analysis: Calcd. For C24H14N4O2: C, 73⋅84; H, 3⋅61; 
N, 14⋅35%. Found: C, 73⋅83; H, 3⋅71; N, 14⋅13. 
FAB-MS (m/z): 392 (M + 2H)+; m.p.: > 250°C. 



Tamal Ghosh and Bhaskar G Maiya 

 

20 

UV/Vis (CH2Cl2) λmax/nm (log ε): 290 (4⋅43), 508 
(4⋅09); IR (KBr, cm–1): 3376, 1663, 1657. 1H NMR 
(200 MHz, (CD3)2SO) δ = 6⋅22 (2H, m), 6⋅52 (1H, 
m), 6⋅65 (1H, m), 7⋅13 (2H, m), 7⋅94 (2H, m), 8⋅20 
(2H, m), 8⋅25 (1H, d, 3JH–H = 10 Hz), 8⋅40 (1H, d, 
3JH–H = 10 Hz), 11⋅16 (1H, br s), 11⋅87 (1H, br s); 
13C NMR (50 MHz, DMSO d6) δ 114⋅7, 114⋅9, 
118⋅4, 119⋅1, 128⋅3, 128⋅8, 130⋅5, 131⋅4, 131⋅7, 
133⋅3, 133⋅9, 137⋅1, 138⋅7, 138⋅9, 147⋅3. 
 

2: Analysis: Calcd. For C14H8N6: C, 64⋅61; H, 3⋅10; 
N, 32⋅30. Found: C, 65⋅11; H, 2⋅99; N, 33⋅12. FAB-
MS (m/z), 260; m.p.: 185 ± 1°C. UV/Vis (CH2Cl2) 
λmax/nm (log ε): 338 (4⋅27), 427 (4⋅28); IR (KBr, 
cm–1): 3314, 2243. 1H NMR (200 MHz, CDCl3) 
δ = 6⋅33 (2H, m), 7⋅12 (2H, m), 7⋅37 (2H, m), 9⋅61 
(2H, br s); 13C NMR (50 MHz, CDCl3/CD3OD, 4 : 1, 
v /v ): 112⋅0, 115⋅4, 116⋅9, 126⋅6, 126⋅9, 127⋅9, 
145⋅4. 
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