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The Indian Ocean Experiment (INDOEX) was an international, multi-platform field 

campaign to measure long-range transport of air pollution from South and Southeast 

Asia towards the Indian Ocean during the dry monsoon season in January-March 1999. 

Surprisingly high pollution levels were observed over the entire northern Indian Ocean 

towards the Inter-Tropical Convergence Zone at about 6oS. We show that especially 

biofuel use and agricultural burning enhance carbon monoxide concentrations. Fossil 

fuel combustion and biomass burning cause a high aerosol loading. The growing 

pollution in this region gives rise to extensive air quality degradation with local, regional 

and global implications, including a reduction of the oxidizing power of the atmosphere. 
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Until recently, North America and Europe dominated the use of fossil fuels, resulting in 

strong carbon dioxide emissions and global warming (1). The fossil energy related CO2 

release per capita in Asia is nearly an order of magnitude smaller than in N-America and 

Europe (2). However, Asia is catching up. About half the world population lives in 

South and East Asia, and hence the potential for growing pollutant emissions is large. In 

China, many pollution sources reduce air quality (3-5). In rural residential areas, notably 

in India, the burning of biofuels, such as wood, dung and agricultural waste, is a major 

source of pollutants (6). In urban areas the increasing energy demand for industry and 

transport propels fossil fuel utilization (7). 

Here we evaluate measurements of the Indian Ocean Experiment (INDOEX) to 

characterize the atmospheric chemical composition of the outflow from South and 

Southeast Asia, from January to March 1999 during the dry winter monsoon (8). During 

this season the northeasterly winds are persistent and convection over the continental 

source regions is suppressed by large-scale subsidence, thus limiting upward dispersion 

of pollution (9). Our analysis is based on measurements from a C-130 and a Citation 

aircraft operated from the Maldives near 5o N, 73o E, the research vessels Ronald H. 

Brown and Sagar Kanya, and the Kaashidhoo Climate Observatory (KCO) on the 

Maldives (Fig. 1). During the campaign the location of the Inter-Tropical Convergence 

Zone (ITCZ) varied between the equator and 12o S. Hence transport of primary 

pollutants and reaction products towards the ITCZ could be studied over an extended 

ocean area where pollutant emissions are otherwise minor. By performing measurements 

across the ITCZ the polluted air masses could be contrasted against comparatively clean 

air over the southern Indian Ocean. Furthermore, we used the measurements to evaluate 

the numerical representation of these processes in a chemistry-general circulation model 

(10). The model was subsequently applied to calculate the large-scale atmospheric 

chemical effects of the measured pollution. 
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Aerosol chemical and optical measurements were performed from both aircraft, 

the R/V Brown and KCO. The latter is located on a small island about 500 km southwest 

of India and more than 1000 km from the main pollution centers. At KCO, we measured 

the size distribution and chemical composition of fine particles, collected on filters and 

cascade impactors (11). The filter analysis shows an average dry mass concentration of 

~17 µg/m3 (Fig. 2). The aerosol contained substantial amounts of both inorganic and 

organic pollutants, including black carbon (BC). Mass spectrometric particle analysis 

shows that the BC particles were always mixed with organics and sulfate, indicating 

substantial chemical processing. Very similar results were obtained from KCO, the 

boundary layer flights by the C-130 aircraft and from the R/V Brown, which shows that 

the aerosol composition was remarkably uniform over the northern Indian Ocean.  

The aerosol mass loading observed over the Indian Ocean is quite comparable to 

sub-urban air pollution in N-America and Europe (12). However, the BC content was 

relatively high (Table 1), which gives the aerosol a strong sunlight absorbing character, 

yielding a single scattering albedo at ambient relative humidity between 0.8 and 0.9. 

This aerosol, with a mean optical depth of 0.2-0.4 (at 0.63 µm wavelength), reduces 

solar heating of the northern Indian Ocean by about 15% (~25 W m-2) and enhances the 

heating of the boundary layer by about 0.4 K day-1 (~12 W m-2), which significantly 

perturbs the regional hydrological cycle and climate (13,14).  

The BC aerosol and fly ash are unquestionably human-produced since natural 

sources are negligible. Likewise, non-sea-salt sulfate can be largely attributed to 

anthropogenic sources. Filter samples collected on board the R/V Brown in the clean 

marine boundary layer south of the ITCZ reveal a fine aerosol sulfate concentration of 

about 0.5 µg/m3, probably from the oxidation of naturally emitted dimethyl sulfide. The 

sulfate concentration over the northern Indian Ocean was close to 7 µg/m3, and we thus 

infer an anthropogenic fraction of more than 90%. Similarly, the ammonium 

concentration south of the ITCZ, from natural ocean emissions, was 0.05 µg/m3, 
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indicating an anthropogenic contribution of more than 95% to the nearly 2 µg/m3 of 

ammonium observed north of the ITCZ.  

It is more difficult to attribute the organic aerosol fraction to a particular source 

category. Secondary organic particles from natural hydrocarbon sources are probably of 

minor importance since India is scarcely forested. Moreover, the BC/total carbon ratio of 

0.5, as derived from the filter samples, is typical for aerosols from fossil fuel combustion 

(15). In the aerosol south of the ITCZ organic compounds were negligible, whereas over 

the northern Indian Ocean it was almost 6 µg/m3. We thus infer that most of the 

particulate organics north of the ITCZ was of anthropogenic origin. INDOEX aerosol 

components of natural origin included a total mass fraction of 1% sea salt and 10% 

mineral dust. Nevertheless, some of the mineral aerosol likely originated from road dust 

and agricultural emissions. Taken together, the human-produced contribution to the 

aerosol was at least 85%. Since precipitation is scarce during the winter monsoon, the 

aerosol can spread over the entire northern Indian Ocean before entering the ITCZ where 

it is largely removed in deep convective clouds. 

To evaluate gaseous pollution sources with our model we have adopted the 

Emission Database for Global Atmospheric Research (EDGAR) (16). Table 2 indicates 

that the South and East Asian region is a significant source of global pollution. For 

example, the total carbon monoxide (CO) release is estimated to be 50% larger than the 

combined emissions from Europe and N-America. Table 2 also indicates that the nature 

of the pollution is different from that in Europe and N-America. Particularly in India, the 

use of biofuels and agricultural burning cause substantial CO emissions.  

Emissions from biomass burning are difficult to estimate because they usually 

occur scattered over large rural areas. Moreover, the burning process is not well defined 

because the fuel type and the combustion phase (flaming, smoldering) strongly affect the 

smoke composition (17). Many people in the Indian region still live in rural areas where 

domestic energy consumption largely depends on biofuels, whereas in urban areas soft 
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coke, kerosene and other liquid fuels are used in addition. In Asia, about one quarter of 

the energy use depends on biofuels, whereas in India this fraction is larger, close to 50% 

(18,19). It has been estimated that in India firewood contributes approximately two 

thirds to biofuel consumption, while the burning of dung and agricultural wastes 

contribute roughly equally to the remaining one third (20-22). 

A particularly useful indicator of biomass burning is the relative abundance of 

methyl cyanide (CH3CN) to that of CO (23). The biomass burning emission of both 

gases mostly takes place from smoldering. The ∆CH3CN/∆CO ratio measured on the   

C-130 aircraft and the R/V Brown was about 0.2% (Fig. 3) (24). This is close to the 

values obtained from controlled biomass fires in the laboratory (23). Without other 

significant sources of CH3CN, it follows that biomass burning was a major source of CO 

over the northern Indian Ocean. Measurements in air masses transported from 

southwestern Asia, mostly west of India (in blue), show a much lower ∆CH3CN/∆CO 

ratio (Fig. 3), illustrating the importance of fossil fuel combustion as a pollution source 

to these air masses in addition to biomass burning (25). From our model simulations, 

which are in good agreement with the measurements, we infer that 60-90% of the CO 

originated from biomass burning (Fig. 4).  

This model estimate is supported by a comparison of radiocarbon monoxide 

(14CO) in low latitude clean southern hemispheric air with that over the northern Indian 

Ocean, as measured from samples taken from the R/V Brown. The clean air samples 

south of the ITCZ contained on average 55 ppbv CO and 6.2 molecules 14CO cm-3 while 

north of the ITCZ this was 155 ppbv and 9.7 molecules cm-3 (26). The 14CO difference 

between these air masses must be of biogenic origin, i.e. mainly biomass burning, since 

fossil fuels are radiocarbon depleted. Previous analysis has shown that biomass burning 

adds 0.038 molecules 14CO cm-3 per ppbv CO (26). If we further assume that about a 

third of the 55 ppbv background CO is also related to biomass burning, as calculated 
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with our model (Fig. 4B), it follows that the average contribution of biomass burning to 

CO over the northern Indian Ocean was 70-75%. 

The highest pollution levels originated from the area around the Bay of Bengal 

(Table 3). The impact of these air masses over the Indian Ocean was largest in February. 

In March the region was more strongly influenced by air that originated north of the 

Arabian Sea (Fig.1). Although this air was generally cleaner, it also carried desert dust, 

which contributed to the aerosol load. The aircraft measurements also show substantially 

enhanced methyl cyanide and methyl chloride (CH3Cl) concentrations, in particular in 

air from the Bay of Bengal region. The latter points to the extensive use of chlorine rich 

fuels such as agricultural waste and dung (27). Note that levels of NO only rarely 

exceeded the instrument detection limit of 40 pptv (only in fresh pollution plumes and 

downwind of ITCZ lightning), hence these are not shown. 

We observed strongly enhanced CO levels over the northern Indian Ocean (28). 

Average CO mixing ratios at KCO in February were close to 200 ppbv. Such high CO 

concentrations are comparable to polluted air downwind of N-America and Europe. The 

KCO measurements show that aerosol absorption and scattering were highly correlated 

with CO, which indicates that the trace species of various origins were well mixed in the 

marine boundary layer (BL). Especially in February and early March, pollution levels at 

KCO varied strongly on a 3-7 day timescale. CO typically ranged from 120 to 250 ppbv. 

These changes were associated with tropical cyclones that transported cleaner air from 

the south (9). Later in March the pollution levels near the surface were lower, largely 

associated with the air mass trajectory change from the northeast to the northwest. The 

aerosol optical thickness, however, was higher than in February. This indicates that 

particularly in March substantial pollution transport took place above the BL. 

Pollution variations over the northern Indian Ocean are also influenced by 

tropical waves that alter the intensity of ITCZ convection, acting on a 1-2 month 

timescale (known as the the Madden Julian Oscillation, MJO). Strong convection 
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ventilates the BL and increases the monsoonal flow (9). Furthermore, variations on an 

inter-annual timescale are affected by the El Niño Southern Oscillation. During the 

recent El Niño in February 1998, for example, pollution transport from India was 

reduced, so that CO concentrations at KCO were only 110-140 ppbv. In February 1999, 

on the other hand, the monsoonal flow was strong and hence pollution transport was 

efficient. In March 1999 the ITCZ convection intensified during an active phase of the 

MJO, which ventilated BL pollution from the Indian Ocean.  

Considering that the pollution occurs at low latitudes, one expects strong 

photochemical activity, possibly giving rise to ozone (O3) buildup. Because of its 

important role in atmospheric chemistry, O3 was measured from all platforms and 

ground stations, as well as through balloon soundings from KCO and the R/V Brown 

(29). In several O3 profiles over KCO (Fig. 5A) sharp peaks can be discerned, with a 

particularly pronounced O3 maximum above the BL. Note that the O3 minimum within 

the BL, which extended to an altitude of 0.5-1 km, and the maximum directly above are 

not well reproduced by the model. This is related to a sea breeze circulation at the Indian 

coast that is not resolved. During daytime the convective BL over land extends to about 

2-3 km, whereas further downwind the marine BL only reaches about 1 km altitude or 

less (30,31). The sea breeze causes upward transport over land that adds pollution to a 

stable layer that develops over the Indian Ocean between about 1-3 km in the monsoonal 

outflow from India. Because cumulus convection is weak in the Indian outflow, the layer 

can remain intact, which constitutes a "residual" pollution layer. 

Typical altitude profiles of pollutants downwind of India, measured from the    

C-130 aircraft, also clearly show the residual layer (Fig. 5B). In general, this layer was 

more pronounced in March than in February, related to the growing convection over 

land as surface heating increases toward the end of winter. Some of the profiles also 

show a secondary maximum between 3 and 4 km altitude. Meteorological analysis 

indicates that these air masses were transported from the east, carrying pollution from 
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SE Asia. On several occasions it was observed that the vertical layering, shown in Fig. 5, 

can be maintained as far south as the Maldives, whereas further towards the ITCZ trade 

wind cumulus convection causes breakup, vertical mixing and partial dispersion into the 

free troposphere.  

Although O3 concentrations near the Indian coast were about 50 ppbv and peak 

values in the residual layer even reached 80-100 ppbv, photochemical destruction of O3 

prevents its accumulation over the Indian Ocean. Typically, O3 decreased from ~50 

ppbv at 15oN to ~10 ppbv near the ITCZ, which implies an O3 loss rate in the BL of 1.5-

2 ppbv per degree latitude, or about 10%/day. Much pollution originates from biomass 

burning. In particular smoldering fires produce relatively little NOx, a necessary 

ingredient for photochemical O3 formation (NOx = NO + NO2). Nevertheless, several 

hundred pptv equivalent nitrate was measured in the coarse aerosols which indicates that 

NOx emissions are not negligible. However, NOx is converted into nitrate by nighttime 

heterogeneous reactions on aerosols, and daytime reaction with hydroxyl (OH) radicals, 

followed by uptake of HNO3 by sea salt and dust particles. As a result, the NOx lifetime 

is half a day or less, and its mixing ratio was generally quite low in the marine BL (NO < 

10 pptv) (32) , favoring chemical O3 destruction rather than O3 formation (33-36).  

The combined anthropogenic NOx source (SN) from South and Southeast Asia is 

proportionally much smaller than the total CO and hydrocarbon source (SC) as compared 

to Europe and N-America. Thus the ratio SN/SC (mol/mol) is comparatively low in Asia. 

The N-American and European emissions, largely associated with high temperature 

fossil fuel combustion, contain much more NOx. This not only implies that O3 

photochemistry in the S-SE Asian plume is strongly NOx limited, but also that OH 

regeneration by NO is inefficient (37,38). On a global scale, OH regeneration by NOx is 

about equally important as the primary OH production by O3 photodissociation (38). 

From our chemistry-GCM, using the EDGAR emission database, we infer that the SN/SC 

ratio is more than four times lower in South and East Asia than in N-America and 
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Europe. Our model calculations indeed indicate that human-produced emissions from 

South and East Asia reduce OH concentrations, whereas European and N-American 

pollution has the opposite effect. Since OH is the foremost oxidant that removes natural 

and human-produced gases, the Asian pollution reduces the oxidizing power of the 

atmosphere. For example, it increases the lifetime of methane (CH4), an important 

greenhouse gas. 

Our results show that during the winter monsoon South and Southeast Asian 

emissions cause considerable air quality degradation over an area in excess of 10 million 

km2. The nature of the pollution deviates from that in Europe and N-America, a 

consequence of widespread biofuel use and agricultural burning, in support of the 

emission estimates in Table 2. In the next decades emission trends in the region will 

likely reflect the additional use of fossil fuels, more strongly associated with NOx 

emissions, boosting photochemical O3 formation and the production of BC and sulfate, 

comparable to Europe and N-America during the 1970s (39). However, considering the 

population size, the situation in Asia may become more serious. In southern Asia the 

pollution buildup will be strongest in the winter monsoon under large-scale subsidence 

and cloud free conditions.  Unless international control measures are taken, air pollution 

in the northern hemisphere will continue to grow into a global plume across the 

developed and the developing world. 
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mix used (coal, oil, biofuels) and the efficiency of industrial and traffic emissions. 
Two-stroke engines, for example, which are widely used in India, burn at relatively 
low temperatures so that NOx emissions are limited and CO, NMHC emissions are 
large. The Intergovernmental Panel on Climate Change, Emission Scenarios 2000 
(Cambridge University Press, UK, 2000) estimates that CO2, CO, NOx, SO2 and 
NMHC emissions in OECD countries will change from 2000 to 2020 by 2-24%,        
–14-27%, –13-30%, –60- –49% and –8-5%, respectively (hence partly reductions), 
while in Asia these emissions will grow by 41-104%, 7-34%, 50-81%, 15-114% and 
9-89%, respectively. 
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Table 1. Mean fine and coarse mass fractions of aerosols collected 
on filters onboard the C-130 aircraft in the boundary layer (34 samples)  
and at KCO (24 samples). D is diameter. 
 
 
Compound D < 1 µµµµm 

(%) 
D > 1 µµµµm 

(%) 
Sulfate 32 25 
Organics 26 19 
Black carbon 14 10 
Mineral dust 10 11 
Ammonium 8 11 
Fly ash 5 6 
Potassium 2 1 
Nitrate <1 4 
Sea salt, MSA <1 12 
Rest 2 1 

Total mass (µg m-3) 22 17 
 
MSA is methane sulfonic acid. Rest includes magnesium,  
calcium, oxalate, formate and unidentified material.
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Table 2. Global anthropogenic CO, NOx, SO2 and NMHC emissions (India region 
includes Bangladesh, Maldives, Sri Lanka, Myanmar, Nepal, Pakistan; China region 
includes Cambodia, Vietnam, Laos, Mongolia, N-Korea; E-Asia includes Japan, S-
Korea, Indonesia, Malaysia, Philippines, Thailand) (16).  
 
 
Carbon dioxide (Unit: Pg CO2/yr) 
 
Source category Global N-America Europe India+ China+ E-Asia 
Total 29.8 6.2 (21%) 4.9 (16%) 2.2 (7%) 4.0 (13%) 2.5 (8%) 
Fossil fuel use 21.9 5.6 4.5 0.7 2.6 1.7 
Industrial processes 0.6 0.1 0.2 - 0.1 0.1 
Biofuel use 5.5 0.5 0.2 1.4 1.2 0.5 
Agriculture 1.8 - - 0.1 0.1 0.2 
 

Carbon monoxide (Unit: Tg CO/yr) 
 
Source category Global N-America Europe India+ China+ E-Asia 
Total 975 107 (11%) 85 (9%) 110 (11%) 111(11%) 69 (7%) 
Fossil fuel use 263 74 53 4 34 16 
Industrial processes 35 2 8 1 5 6 
Biofuel use 181 9 2 47 40 19 
Agriculture 496 22 22 58 32 28 
 

Nitrogen oxides (Unit: Tg NO2/yr) 
 
Source category Global N-America Europe India+ China+ E-Asia 
Total 102 26 (25%) 16 (16%) 6 (6%) 11 (10%) 6 (6%) 
Fossil fuel use 72 24.3 13.6 2.6 7.2 4.3 
Industrial processes 5 0.4 1.1 0.2 0.9 0.7 
Biofuel use 5 0.5 0.2 1.1 1.5 0.4 
Agriculture 20 0.8 0.7 2.0 1.1 1.0 
 

Sulfur dioxide (Unit: Tg SO2/yr) 
 
Source category Global N-America Europe India+ China+ E-Asia 
Total 148 24.5 (17%) 33.3 (23%) 5 (3%) 28 (19%) 7 (5%) 
Fossil fuel use 120 22.8 26.4 4.0 25.0 5.0 
Industrial processes 23 1.2 6.4 0.3 2.8 1.7 
Biofuel use 2 0.4 0.4 0.2 0.3 0.1 
Agriculture 4 0.1 0.1 0.4 0.2 0.2 
 

Nonmethane hydrocarbons (Unit: Tg NMHC/yr) 
 
Source category Global N-America Europe India+ China+ E-Asia 
Total 178 22 (12%) 21 (12%) 19 (11%) 17 (10%) 16 (9%) 
Fossil fuel use 69 12 12 1.5 3 6 
Industrial processes 34 7 7 3 4 4 
Biofuel use 31 1 0.2 8.5 6 3 
Agriculture 44 2 2 6 4 3 
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Table 3. Mean results from boundary layer Citation aircraft measurements  
(25 flights) between the Maldives and the ITCZ during February-March 1999.  
The two main source regions of the measured air pollution have been determined  
by backtrajectory calculations (25) (standard deviations in parentheses). 
  

 Source region 
Bay of Bengal              Arabian Sea 

CO (ppbv) 208 (42) 135 (16) 
O3 (ppbv) 15 (5) 13 (4) 
CH3C(O)CH3 (ppbv) 2.2 (0.4) 1.6 (0.2) 
CH3CN (pptv) 288 (72) 266 (39) 
C2H6 (pptv) 817 (251) 465 (134) 
C2H2 (pptv) 291 (179) 81 (34) 
C3H8 (pptv) 50 (36) 36 (41) 
C6H6 (pptv) 99 (42) 40 (18) 
CH3Cl (pptv) 757 (64) 650 (30) 
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Figure captions 
 
Figure 1. Schematic overview of the INDOEX measurement domain, traversed by two 
ships (red hatched) and two aircraft (43 flights; yellow hatched), the mean location of 
the ITCZ and 1-2 week boundary layer air mass trajectories during January-March 1999. 
KCO is the Kaashidhoo Climate Observatory at 5oN, 73.5oE. 
Figure 2. Average mass (M) composition of fine aerosol on KCO (Maldives) as a 
function of the logarithm of the particle diameter (D) in February 1999. The residual 
includes mineral dust, fly ash and unknown compounds (11). 
Figure 3. (A) Methyl cyanide (CH3CN) versus carbon monoxide (CO) mixing ratios 
measured from the R/V Brown, and calculated with a chemistry-GCM. Average values 
are shown by the straight lines. The measurements (black) were performed between 
12oS, 73oE and 17oN, 69oE. The measurements in blue represent air masses transported 
from the northwest, as determined by backtrajectory calculations (25). Since our 
chemistry-GCM is unable to distinguish the air mass history, while it mixes the air 
masses at 1.8o resolution, the slope of the red line is less steep than of the black line. 
Figure 4. (A) Mean CO (ppbv) near the surface over the Indian Ocean during February 
1999, as calculated with our chemistry-GCM (10). Average winds are shown by 
streamlines. Marked tracers indicate the percentage CO from (B) biomass burning -
mostly biofuel use and agricultural waste burning- and (C) fossil fuel combustion. The 
remainder largely originates from hydrocarbon oxidation.  
Figure 5. (A) Ozone profiles over KCO as measured from balloon sondes, and 

calculated with a chemistry-GCM (dashed lines). The soundings show instances where 

the pronounced layering of the lower troposphere has remained intact as far south as 

5oN. (B) Pollutant profiles downwind of India (7.5oN, 72oE), including aerosol 

absorption and scattering, observed from the C-130 aircraft on 13 March 1999. 
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