Proc. Indian Acad. Sci; A3:75-84 (1936) -~ -

The dlffractlon of llght by hlgh frequency sound waves:
“Part III ~ '

Doppler effect and coherence phenomena

Ccv RAMAN
“and
" N S NAGENDRA NATH
(Department of Physncs, Indian Institute of Scxenee, Bangalore)

Recexved 16 January 1936

1. Introduction

In part I! of this series of papers, a theory of the diffraction of light by high
frequency sound waves was developed starting from the simple basic idea that the
incident plane waves of light, after transmission through the medium traversed by
the sound waves assume a corrugated form, owing to the fluctuations in the
density and consequen;ly also in the refractive index of the medium. The Fourier
analysis of the emerging corrugated wave-front automatically gives the diffrac-
tion effects observed when the emergent waves are brought to focus by the lens of
the observing telescope. The results deduced from the theory gave a gratifyingly
satisfactory explanation of the observations of Bir® regarding the changes in the
diffraction pattern when the supersonic intensity, the wavelength of the mcndent
light and the length of the cell are varied.

In part I1%, we extended the theory to the case of the oblique incidence of the
light on the sound waves and were successful in explaining the variations of the
diffraction effects reported by Debye and Sears* as the angle of obliquity is varied.

In parts I and 11, we deliberately ignored the variation of the refractive index
with time in order to bring out the essential features of the theory without
unnecessary complications. In this the third part of the paper, we proceed to take
this factor also into consideration. It will be shown that light diffracted by
progressive sound waves exhibits Doppler shifts of a very simple type. In the case,
however, of the diffraction of light by standing sound waves in a medium, we get
the much more interesting result that in any even order, radiations with frequencies
v+ 2rv* would be present where v is the frequency of the incident light, v* is the
frequency of sound in the medium and r is any integer and that in an odd order,

radiations with frequencies v + 2r + 1 v* would be present. This 1mplxes that any
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pair of even orders or odd orders can partly cohere and that an even order and an
odd one are incoherent. This latter result has already been arrived at by Bir®
purely by his experimental investigations. The remarkable results of Bér in the
field of supersonic research thus find a natural explanation in terms of our theory.

It should be, however, noted that the theory developed in the following is
subject to the same limitations as those in the previous parts, viz., that the depth
of the cell is not too great to permit the form.of the emerging wave-front to be
deduced in the simple manner indicated in part I. A more general consideration of
the problem will be presented in a later communication,

2. Doppler effects due to a progressive sound wave

Let us suppose that the progressive sound wave travels in a direction paraliel to
the X-axis perpendicular to two faces of a rectangular vessel containing some
homogeneous and isotropic medium. We use the same notation and the axes of
‘reference as in our earlier paper. When the sound wave travelsin the medium, the
density of the medium and its refractive index undergo periodic fluctuations. If
the sound wave is a s1mple one, we could assume that the varlatxon of the
refractive index at a point in the medium is given by '

K (X,t)"'ﬂo=us]n2ﬂ(vgt_x/l*) s L )

where p(x, 1) is the refractive index of the medium at a height x from the origin at
time t, p, is the refractive index of the medium in its undisturbed state, p is the
maximum variation of the refractive index from u, and v* and A* refer to the
frequency and the wavelength of the sound wave in the medium.

Let the light wave be incident along the Z-axis perpendlcular to two faces of the
medium and the direction of the propagation of the sound wave. If the incident
light wave is given by

'exp'[2}tivt] ¢
it will be

‘exp [2miv{t — Lu(x,t)/c}]
when it arrives at the other face where L is the distance between the two faces.
"The amplitude of the corrugated wave at a point-on a distant screen parallel to

the face of the medium from which light is emerging, whose join with the origin
has its x-direction-cosine [ depends on the evaluation of the diffraction integral

sz exp [2‘1ti{lx — pLsin 2n(v*t — x/A*)}/A]dx )

J b2

wherep is the length of theleeém aiohg the X-axis. The real and the ‘iihag{‘inary
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parts of the dlffracuon mtegral (2) are

'pi2 ' ‘ e
f _ {cosulxcos (v sinbx —e e) —sin ulx sin (vsin bx —¢) }dx 3)
-pi2z
an_d
»/2 - [, , e
I {sin ulx cos (v sin bx — €) + cos ulx sin (v'sin bx — &) }dx
- '/2 o B
where

‘u=2n/, b=2m/i* v=2muL/A and e&=2nv*t
Putting bx —¢ a8 x we could write the integrals* (3) as -

bp/2 ~¢ .
.l 2(?) I cos ( ;- 8) cos 2rx’ dx’
p/2 [ 2 \

bpi2 = )
—-};sz(v)_[ ‘ sm(
bplz-a

+8)xsm2r+1x dx’

and
Zw bllz-! ) +8: .
- (v) I ‘ sm( )cbs 2rx' dx’
b§ > bp/2-¢ .
2@ boiz-e. (.x’+e) g—
+ - S ) cos| ul— Xsin2r+1x'dx’ -
pyplun@ | o cos{ul=p= )xsin2r+ L
or

I ‘ boi2 e ula .
5; er(v)f—bp/z 8{‘)05‘{( +2r _b )
ule , ‘
G
bp/2 ¢ ——-————
;ern(l’)f , {cos< +2,.+1 ' “;8)
-bp/2 [ :

~—cos ‘4;}-21'+1x +“;“)}qxf N

*The dash over the summamm li;n mdicates that the eoeﬂ' cient of thc ﬁrst term has to be
mulllpliod by hatf. -
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and

1z briz=es (  ful . ule ul , . ule ,
B;’er(v) e {sm(b +2rx +— 5 )+sm<7’——2rx +—b—)}dx |

looJ bp/2~¢ { (l—z——l +ul)

- " © <sin +2r+1x

b; 2 +1(v) ‘.—bplzv—; ‘ b b E .
—-sin('-‘l;’-—zr}lxﬁ#‘éf)}dxc = o @b

Integrating and combining the real and the i 1magmary parts (4a) and (4b) we
find that the amplitude depends on

o sin {(ul + 2rb)p/2} _,s,. . sin{(ul — 2rb)p/2} m}
PZ; J 2""){ Wl+2rb)p/2 © * (ul —2rbyp/2

o sin {(ul + 2r + 1 b)p/2} o-irHie
ORE “(v){ (ul+2r + 1 b)p)2

_sin{(ul — 2r+1 blp/2} grHie
(ul —2r + 1 b)p/2

where ¢ = 2nv*t. We should remember that the amplitude function has the other
time factor €™ which has been taken out as a constant from the integrand of
the diffraction integral. One can see that the magnitude of each individual term of
(5) attains its highest maximum when its denominator vamshes Also, it can be
seen that when any one of the terms is maximum, all the others have neghgnble
values as the numerator of éach cannot exceed unity and the denominator is some
integral non-vamshmg mulnple of b whlch is suff’ cnently large When

)

u1+nb =0 v
‘sm0=«_-—%i: - . : 6)

where n is a positive or a negative mteger and 0 is the angle between the dlrectnon
whose x-direction-cosine is [ and the Z-axis.

‘The wave travelling in the direction whose inclination with.the incident light
beam is sm‘ '(— ni/A¥) is determined by

e )

having the frequency v — nv*, n being a positive or negative integer; when n is
negative the direction of propagation of that order has positive dlrectlon-cosmes
with respect to the directions of the propagation of the sound and light waves.
Consequently the radiations in the different orders wnll be mcoherent with each

other. (See figure 1) , ‘
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Incident
light

Figure 1

,

The relative intensity of the mth order to the nth order is ngen by the

expression
21:;4L 2rnul
2 2
) 228)

 identical with the one given in part L.

3. depler effects due to a standing s'o'und wave
In the case of a standmg wave produced. by the mterference of two s1mple waves
travelling in opposite directions parallel to the X-axis, we could assume that the
variations of the refractive index at a pomt in the medium is given by
ux, ) — o= —H sin 2nv*¢ sin (2nx/A¥) (8)

with the same notation as in the prevnous section. Under the same restnctlons as
in Part I we ﬁnd that the emergmg wave-front is grven by -

*exp [2mv{t—Lp(x, t)/c}] L - S 9)
The' dlffractlon mtegral isthen* = ¢ o o
p/2 '
j exp [2m{lx + uLsmesm (2nx/).*)}/l] dx (10)
-p/2 ‘

where & = 2mv*t. ' o
The real and the 1magmary parts of the’ 'mtegral (10) are

. [pi2
' I “{cos ulx cos (v sin bx) — sin ulx sin (v sin bx)} dx
-pi2 -
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and.
plz . ' * . . )
{sin ulx cos (v’ sin bx) + cos ulx sin (v’ sin bx)} dx
-pl2
where
u=2n/i, b=2n/i* v =vsine=2nuLsineg)/i.

Following the same procedure as in our earlier paper, we find that the real part
of the diffraction integral (10) is

sin [(ul + 2rb)p/2]  sin[(ul — 2rb)p/2] }
. (ul + 2rb)p/2  (ul—2rb)p/2

0
pY. J, (vsin2mv*y) {
0

sin [(ul + 2r + 1 bp/2]
(ul + 2r + 1 b)p/2

+ p;JZH. 1 (vsin 21rv*t){

sin [(ul — 2r + 1 b)p/2] }

@—-2r+1bp2 J

‘_The integral cbrresponding to the imaginary part of the diffraction integral is

- Zero, .

Following similar arguments as in part I or in the previous section we can show
that the wave travelling in the direction given by

“ul+nb=0
or :
. ni
sinf = — T
is ,
+ J,(vsin 2av*g) e : 11

multiplied by a constant usually taken out from the diffraction integral. The wave
given by (11) is not a simple one but is a superposition of a number of waves given
by the Fourier analysis of J,(vsin 2zv*t) and multiplied by 2.

Fourier analysis of J, (vsine): The well-known Neumann’s addition theorem

Jo(@)=2 2’ JlZ)J {2) cos me

where '
@=/(Z* + 2%~ 2Zzcos ¢)
has been generalised by Graf® as

fZ—ze Y 4w .
Jn(w) {ZTZB_"F} = Jn +m(Z)Jm(z)eim¢
. - ®
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provided [ze + i¢| < Z. Ifnis an integer, the inequality need not be in force.
" Putting

Z=z=y/2
and ¢ =2¢

we get , ‘
J(vsin a)e“ ne(— 1)¥2 = 2: Jus m(v/Z)J m(v/i)e”"".
From this, chaﬂging n to 2n we deduce that
Ja(vsine) = (- iZ: I+ 2n(U/2)J (v/2)e ™ O+ 20k,
' Putting m= —n+rand after a little/ simr;liﬁcation, we get
Jo(vsing)=(— 1)"J _(v/2)J ,(v/2) + 22 I +,(1)/2)J,,+,(v/2) cos 2re |
=(— 1)”22 J_,,+,(v/2)J,,+,(v/2) cos 2re

= 22’(—, 1Y J, - (0/2)J . (v/2) cOS 2re.

0
Similarly we can deduce that
T+ 1(0Sine) =23 (= 1YJ,_(0/2)J 1,41 (0/2)5in 27 + 1¢
. 0
Jon(vcose)=23"J,_(v/2)], ., (v/2) cos 2re
0

Jans (0 C0SE) = 2 ST 110/2) cos 2r + 1.

Returning now to the Fourier analysis of the diffraction components, the
diffracted waves can be resolved into a number of simple waves, for

Ja(vsin 21:v“‘t)e2’"“' .

= p2nivt 22: (= 1yJ,_(v/2)J, +‘r(1’/2). cos (2r:2nv*t)
= :

- gl ( . l)rJn _ r(v/z)Jn +r(v/2) {elm'(.\'-k 2y + e2ni(\-— 2r\-‘)r}
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and
Jan+ 1(vsin 2mv*e)e?

1a., - - — —
— _l_g(__ 1)'Jn—r(v/2)'~]n+r+ 1(v/2){e2m(v+2r+ 1vdpe eZni(v—2r+ lv“‘)t}.

Thus in all even orders radiation frequencies
' vt2rv*, ra posmve 1nteger

are present The relative intensity of the v + 2rv* sub component in the 2nth order
is given by ~.

Jz. r(v/Z)J +r(v/2)
In all odd orders radiation frequenc1es

vi2r+1v* ra po,siti\}e integer,

are present (see figure 2). The relative intensity of the v+ 2r+ 1 v* sub-
.component in 2n + 1th order is given by /

202024 (02,

We can conclude from the above analysis that.an even order and an odd one are
incoherent while any two even or any two-odd orders can partly cohere. Any two
orders symmetrically situated to the Oth-order are completely coherent. We have
calculated the relative intensities of the various Doppler sub- components of the
- various orders as v ranges from 0 to 5in steps of unity and represented them in
figure 3.

We may also note that the intensity of each of the sub-components of each
order depends on the amplitude of the supersonic vibration, the length of the cell
and the wavelength of the incident llght
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Figure 3. Relative intensities of the various sub-components of observable orders; the sub-

components of an odd order standing on a base correpond to~——, v — 2r + 1v¥,——— v — v¥, v + v*,—~
-, v + 2r + 1 v¥,~—— and those of an even order standing on a base correspond to———, v — 2rv*, —_—,
—, v+ 2rv*, -, In the figure v = 5, some lower orders-are missing as their relative intensities are
negligibly small. negligibly small.

If we ignore the spectral character of each order, then the relative intensity of
the mth order to the nth order is

2z .
z .
J . Ji(vsin8)do 2muL

where v = 7

2
f J2(vsin 6)d6
0

which follows from Parseval’s theorm.

4. Interpretation of Bir’s experimental results

Bar® has recently investigated by an interference method the coherence of the
diffraction components of light produced by a standing supersonic wave. He has
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found that the various orders could be classed into two groups, one comprising
the even orders and the other comprising the odd orders and that any two orders
of a group cohere partly while two orders from different groups are completely
. incoherent. These results are readily understood when we notice that an even
order contains radiations with frequencies v + 2rv* while an odd order contains

radiations with frequencies v + 2r + 1v*. The experimental results of Bar are thus
fully explicable in terms of the theory we have developed in the previous section.
Bar has himself remarked that the observed coherence indicates the presence of a
series of frequency components in each of the diffraction spectra. It will be noticed
that, according to our theory, even the zero-order spectrum includes such a series
of frequency components.

5. Summary

The theory developed in part I of this series of papers has been developed in this
paper to find the Doppler effects in the diffraction components of light produced
by the passage of light through a medium containing (1) a progressive supersonic
wave and (2) a standing supersonic wave.

(1) In the case of the former the theory shows that the nth order which is
inclined at an angle sin~! (— ni/4*) to the direction of the propagation of the
incident light has the frequency v — nv* where v is the frequency of light, v* is the
frequency of sound and n is a positive or negatnve integer and that the nth order
has the relative intensity J2(2zuL/4) where u is the maximum variation of the
refractive index, L is the distance between the faces of the cell of incidence and
emergence and A is the wavelength of hght

(2). In the case of a standing supersonic wave, the diffraction orders could be
classed into two groups, one containing the even orders and the other odd orders;
any even order, say 2n, contains radiations with frequencies v + 2rv* where ris an
integer including zero, the relative intensity of the v + 2rv* sub-component being
Ji. AmuL/2) J 2, mpL/A); and odd order, say 2n + 1, contains radiations with

frcquencnes v & 2r + 1y*, the relative intensity of the v + 2r + 2r + v sub-component
being J2 ,(nyL/A) J 2., +1(muL/A). These results satisfactorily interpret the recent
results of Bar that any two odd orders or even ones partly cohere while an odd
' one and an even one are incoherent. '
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