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Summary
In this paper we have defined the Curvature tensor and elaborated its
various physical and geometric properties.
1. Introduction

In an #-dimensional space V., the tensors

R
n(n—1)

11) CX,Y,Z T)=RX,Y,Z T)— [e(X, Tg(Y, 2)—&(Y, T)g(X, Z)] ,

120 LX,Y,Z, T)=R(X,Y,2Z, T)—-n—_l_-g [g(Y, Z)Ric (X, T)—g(X, Z)
' Ric (Y, T)+g(X, T)Ric (Y, Z)—g(Y, T) Ric (X, Z)]

and

13) VX, Y,z T)=RX,Y,Z, T)—-ni—2 2(X, T)Ric(Y, Z)—g(¥, T)

Ric (X, Z)+&(Y, Z) Ric (X, T)—g(X, Z) Ric (Y, T)]+—%2———
(n—1) (n—2)
[e(X, Tg(Y,Z2)—g(Y, T)g(X, 2)],
are called concircular curvature tensor, conharmonic curvature tensor and con-
formal curvature tensor respectively. These satisfy the symmetric and skew sym-
metric as well as the cyclic property possessed by curvature tensor R(X,Y,Z, T).
The projective curvature tensor is given by:

149 WX, Y.Z T)=RX,Y,ZT) +an1 [g(X, Z) Ric (Y, T)
—gX, T)Ric(Y, 2Z)] .

We shall now define a tensor and obtain its properties.
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2. Definition (2.1): We define a tensor

@1 WiX,Y.Z T)=RX,Y,Z T)+ni—1 [g(X, Z) Ric (Y, T)
—2(Y, Z)Ric (X, T)] .

From equations (1.1) to (2.1), it is clear that for an empty gravitational field
characterized by Ric (X, Y)=0, these five fourth rank tensors are identical.
In the space V., from (1.1), (1.2) and (1.3), we have

22 VX,Y,Z TN=LXY,Z, T)+;%2—[R(X, Y,Z, T)-CX,Y,2Z 1),

which in Vi reduces to
(2.3) VIX,Y,Z, T)=LX,Y,Z, T)+2RX,Y,Z, T)-2CX,Y,Z,T) .

Now we notice that tensor Wa(X, Y,Z, T) is skew symmetric in X and Y
and it also satisfies

24 WX Y,Z T)+Wu«Y,Z, X, T)+WaZ,X,Y,T)=0.
Breaking Wa(X, Y, Z, T) ito two parts viz:

EX,Y,Z T=12[W«X, Y, Z, T)— WX, Y, T, Z)]
and

FX,Y,Z,T)=12[WAX, Y, Z, T)+ WX, Y, T, Z)],

which are respectively skew-symmetric and symmetric in Z, 7. From (2.1) it
follows that

@5 EX,Y,Z )=RX,Y,Z T)+5=2=(g(X, Z)Ric(Y, T)

—2(Y, Z) Ric (X, T)—g(X, T) Ric (Y, Z)+&(¥, T) Ric (X, 2)]
and
@6 FXY,Z T)=5-1= 18X, D) Ric (¥, T)~£(¥, 2) Ric (X, T)

+g(X, T)Ric (Y, Z2)—g(Y, T)Ric(X, Z)] .

From (2.5) we see that E(X,Y,Z, T) also possesses all the symmetric and
skew symmetric properties of R(X, Y, Z, T) as well as the cyclic property:

@7 EXY,Z T)+EY,Z X, T)+EZ X,Y,T)=0.

From equations (1.3) and (2.5), we get
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1
2(n—1)

- £ (eX, T)g(X, 2)-g(¥, DaX, 2.

(2-8) E(X’ Y’ Z’ T)= [ﬂR(X, Y, Z’ T)+(n_2)V(X’ Y9 Z) T)

Which for electromagnetic field (or more generally in the case of space with
vanishing scalar curvature) in V. becomes

29 3EX,Y,Z TN=2RX,Y,Z T)+-V(X,Y,Z,T),
also from equation (1.2) and (2.5), for Vi, we have
(2.10) 3EX,Y,Z, TN=2RX,Y,Z TN+LX,Y,Z,T).

Thus equation (2.9) is the consequence of for a space of vanishing
scalar curvature. '

We notice that E(X, Y, Z, T) is identically equal to the skew symmetric
part P(X,Y,Z, T) [2] of the projective curvature tensor where as its symmetric
part X, Y, Z, T) is different from F(X, Y, Z,T).

On contracting Woaijk, we get

(2.11) er,':'-—--n—— Rij—— gi:‘) )
n—1
which vanishes in an Einstein space.
The scalar invariant
(2.12) We=g*" Wsij=0 ,
identically. Now considering the scalar invariant of second degree in Wa:j, viz:
2 2
2.13) (W Wz.-,-W;'f=(——”—) (Rz—i) ,
n—1 n

where R:=R:i;R".
From [(2.11), we have

2.14) Wzinij=—n—( R,-B—z) .
n—1 n
Hence
2.15) Wais Wi =(—-’-’-—) Wi RY .
n—1

From (2.5) we notice that contracted E:; vanishes identically for Einstein
space. This enables us to extend the Pirani formalism of gravitational waves
to the Einstein space with the help of Eiij:.

For an Einstein space Eaijx, Wanriik, Whrisr and Vi are identically equal.

We can show that the vanishing of the symmetric part Fiijx is the necessary




108 G. P. POKHARIYAL and R. S. MISHRA

and sufficient condition for a space to be an Einstein space.

The vector

__ & RERy1.m

(2.16) Q= ~—g RaRe
is called the complexion vector of a non null electromagnetic field with no matter
by Misner and Wheeler 3] and its vanishing implies that field is purely electrical.
A semi-colon stands for covariant differentiation. ;

It is seen that we can’t get a purely electrical field with the help of Waaijk.

Rainich has shown that the necessary and sufficient conditions for the
existence of the non-null electrovariance are

2.17) R=0,

(2.18) RiRi=(1/4)0} RuR** ,
(2.19) Qi:i=@Qj:s .

In an electromagnetic field

(2.20) Waii=(4/3)R;j .

We can substitute Wai; in place of Rij in and such that the
Rainich conditions so obtained are similar to those obtained with the help of Whijk.

From the above discussion we conclude that except the vanishing of com-
plexion vector and property of being identical in two spaces which are in geodesic
correspondence, the tensor Woakijr possesses the properties almost similar to Whaijx.
Thus we can very well use Waije in various physical and geometrical spheres
in place of the projective curvature tensor.
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