STUDIES IN DOLICHOS LABLAB (ROXB.) AND (L.) THE INDIAN FIELD AND GARDEN BEAN—IV By G. N. RANGASWAMI AYYANGAR, F.N.I., I.A.S. (Millets Specialist and Geneticist, and Principal, Agricultural College, Coimbatore) AND K. KUNHI KRISHNAN NAMBIAR, B.Sc. Ag. (Assistant, Millets Breeding Station, Agricultural Research Institute, Coimbatore) Received April 4, 1941 #### Seed Coat Colour Patterns In Part II* of these studies it has been recorded that there are four seed coat colours in lablab namely black, chocolate, khaki and buff, and that in black, chocolate and khaki, the colour may be manifested over the whole of the seed coat or be localised, the buff colour always existing in wholeness. It was noted that a basic factor K is necessary for the production of the colours black, chocolate and khaki and by itself this factor K produces the Micropylar colour. A factor B_f produces the buff seed coat colour and is capable of converting the Micropylar colour into a Whole colour. These two factors K and B_f are absolutely linked. In Part III† it was stated that in the seed coat colours black, chocolate and khaki, several kinds of localisations could exist as distinct heritable types. The present paper deals with the description and inheritance of these seed coat colour patterns. There are five patterns representing different stages in the manifestation of pigment on the seed coat, from a mere spot on the micropyle to very nearly covering the entire seed coat. In these patterns the background colour is white and another colour which forms the pattern is distributed over this background colour symmetrically about the hilum (Fig. 1). In dealing with these patterns the factors inducing the patterns are alone discussed. The genes for a particular pattern being present they could manifest themselves in any of the three colours black, chocolate or khaki. Since it was found that all the five patterns could exist in each of the three seed coat colours black, chocolate or khaki, in the data presented, distinctions ^{*} Rangaswami Ayyangar, G. N., and K. Kunhi Krishnan Nambiar, Proc. Ind. Acad. Sci., 1935, 2, 74. ⁺ Pangaswami Awangar G. N. et al. Ibid 1936 A 411 between these three colours have been omitted. The five patterns are described below:— - 1. Micropylar colour.—In this pattern the colour starts as a spot on the micropyle, edges both sides of the raphe, joining again at the caruncle. From the caruncle there is a spur of colour ending in a fork. Below this fork there is an area of dotted colour which is broader towards the fork. - 2. Caruncular patch.—When the caruncular spot and the forked spur get accentuated in colour, it results in the next pattern designated "Caruncular patch". In this pattern there is a patch of colour concentrated round about the caruncle. Below this patch there is an area of dotted colour as in the Micropylar colour pattern. - 3. Dorsal patch.—In this pattern there is a patch of colour over the dorsal half of the seed which starts from the caruncle and proceeding towards the micropylar area stops short of it. There is a clear white area along the raphe. - 4. Marbled.—In this the whole seed coat is interspersed with white and coloured irregular patches. - 5. Eye.—Here the whole of the seed coat is coloured except an eye-shaped patch just around the micropyle. This white patch may sometimes extend upwards along the raphe. The interaction of the following five factors produces the different seed coat patterns described above. - (1) Factor K.—This is the basic factor for the production of the colours black, chocolate and khaki on any part of the seed coat. By itself, this factor produces colour at the micropylar and caruncular zones. - (2) Factor C_p .—With the factor K, this produces a patch of colour over the caruncle resulting in the pattern Caruncular patch. - (3) Factor D_p .—With the factors K and C_p , this factor produces the Dorsal patch pattern. D_p has visible effect only in the presence of C_p . - (4) Factor M.—With the factors K and C_p , this factor produces the Marbled pattern. M also has visible effect only in the presence of C_p . - When all these three factors C_p , D_p and M are present along with the basic colour factor K, we get the next pattern, the Eye. (5) Factor B_f .—Factor for Whole colour. By itself this factor produces a buff seed coat. In conjunction with the factors for any of the patterns B_f produces a Whole colour. The interrelationships of these five seed coat colour patterns were studied by making suitable crosses. These are summarised and presented in the following pages, to illustrate their genetic behaviour. In a cross between a Micropylar colour type and the Caruncular patch, the F_1 was the Caruncular patch. In the F_2 this segregated into Caruncular patch and Micropylar colour in the ratio of 3:1. A factor C_p in the presence of the factor K (Micropylar colour factor) gives rise to the pattern Caruncular patch (vide Table I). Table I $Pure\ for\ K$ $Micropylar\ colour\ (c_{p}c_{p})\times Caruncular\ patch\ (C_{p}C_{p})$ $F_{1}--Caruncular\ patch\ (C_{p}c_{p})$ | F ₂ Family No. | | Caruncular
patch | Micropylar
colour | |---------------------------|-----|---------------------|----------------------| | D.L. 1570 | | 47 | 15 | | ,, 1572 | •• | 7 | 4 | | ,, 1573 | | 24 | 9 | | ,, 1575 | | 27 | 11 | | Total | | 105 | 39 | | Expected, 3:1 ratio | • • | . 108 | 36 | P > 0.5 In a cross of another Micropylar colour type with the Caruncular patch, the F_1 obtained was the pattern Dorsal patch. In the F_2 this segregated into Dorsal patch, Caruncular patch and Micropylar colour in the ratio of 9:3:4. A factor D_p acting with C_p and K gives the pattern Dorsal patch. This factor is operative only in the presence of C_p . It has no visible effect with c_p (vide Table II). Table II $\textit{Pure for } K \\ \textit{Micropylar colour} (c_{p} c_{p} \ d_{p} \ d_{p}) \times \textit{Dorsal patch} (C_{p} C_{p} \ D_{p} D_{p}) \\ F_{1} \text{--Dorsal patch} (C_{p} c_{p} \ D_{p} d_{p})$ | | F ₂ Fam | ily No. | | Dorsal
patch | Caruncular
patch | Micropylar
colour | |------|--------------------|-----------|-------|-----------------|---------------------|----------------------| | D.L. | 1524 | • • | | 47 | 17 | 22 | | ,, | 1525 | •• | | 46 | 16 | 18 | | ,, | 1526 | •• | | 37 | 10 | 14 | | ,, | 1527 | •• | • • | 24 | 8 | 11 | | ,, | 1529 | •• | • • | 49 | 19 | 26 | | ,, | 1530 | •• | | 18 | 8 | 12 | | ,, | 1532 | • • | | 27 | 9 | 11 | | | | Total | ٠. | 248 | 87 | 114 | | Expe | ected, 9: | 3:4 ratio | . • • | 252 · 54 | 84.18 | 112.24 | P > 0.5 Simple segregations for *Dorsal patch*: Caruncular patch and Dorsal patch: Micropylar colour are given in Tables III and IV. Table III Pure for K and C_p Caruncular patch $(d_p d_p) \times Dorasl\ patch\ (D_p D_p)$ F_1 —Dorsal patch $(D_p d_p)$ | .] | F ₂ Fam | ily No. | | Dorsal
patch | Caruncular
patch | |------|--------------------|-----------|-----|-----------------|---------------------| | D.L. | 1281 | • • | • • | 54 | 18 | | ** | 1282 | * * | • • | 109 | 33 | | ,, | 1283 | | | 227 | 63 | | ,, | 1284 | • • | • • | 104 | 38 | | | | Total | | 494 | 152 | | Expe | cted, 3 | : 1 ratio | • • | 484.50 | 161 · 50 | TABLE IV Pure for K and D, Micropylar colour $(c_p c_p) \times Dorsal \ patch \ (C_p C_p)$ F_1 —Dorsal patch $(C_p c_p)$ | | F ₂ Family No. | | | Dorsal patch | Micropylar
colour | |------|---------------------------|-----------|--|--------------|----------------------| | D.L. | 1085 | • • | | 156 | 47 | | ,, | 1086 | • • | | 141 | 48 | | ,, | 1111 | | | 262 | 78 | | ,, | 1112 | • • | | 156 | 61 | | | | Total | | 715 | 234 | | Expe | cted, 3 | : 1 ratio | | 711.75 | 237 · 25 | P > 0.8 A factor M with the co-operation of the factors K and C_p produces the Marbled pattern (vide Table V). TABLE V Pure for K, Cp and dp Caruncular patch (mm) × Marbled (MM) F₁—Marbled (Mm) | | F ₂ Family No. | | | Marbled | Caruncular
patch | |------|---------------------------|-----------|-----|----------|---------------------| | D.L. | 1280 | • • | | 91 | 28 | | ,, | 1305 | • • | • • | 134 | 53 | | ,, | 1306 | • • | • • | 222 | 61 | | ,, | 1307 | • • | | 205 | 63 | | | | Total | | 652 | 205 | | Ехре | cted, 3 | : 1 ratio | •• | 642 · 75 | 214 · 25 | P > 0.3 The factor M has no visible effect except in the presence of C_p . With c_p only the *Micropylar colour* pattern is produced (vide Table VI). Table VI Pure for K, d_p and M Micropylar colour $(c_p c_p) \times Marbled (C_p C_p)$ F_1 —Marbled $(C_p c_p)$ | F ₂ Family No. | | Marbled | Micropylar
colour | |---------------------------|-----|---------|----------------------| | D.L. 1295 | • • | 55 | 20 | | ,, 1296 | | 98 | 29 | | ,, 1297 | | 85 | 20 | | ,, 1298 | | 73 | 24 | | Total | | 311 | 93 | | Expected, 3:1 ratio | ٠. | 303 | 101 | P > 0.3 A recessive Micropylar colour pattern of the constitution KK $c_{p}c_{p}$, $d_{p}d_{p}$ MM from one of the above families (D.L. 1298) was crossed with a Caruncular patch and produced the Marbled pattern in the F_{1} . When a Dorsal patch was crossed with a Marbled, the Eye pattern was obtained in the F_1 . In the F_2 this segregated into Eye, Dorsal patch Marbled and Caruncular patch in the ratio of 9:3:3:1. Thus, factors D_p and M in the presence of K and C_p give the Eye pattern (vide Table VII). TABLE VII Pure for K and C_p Dorsal patch $(D_pD_p \text{ mm}) \times Marbled (d_pd_p \text{ MM})$ F_1 —Eye $(D_pd_p \text{ Mm})$ | F ₂ Family No. | Eye | Marbled | Dorsal patch | Caruncular patch | | |---------------------------|---------|---------|--------------|------------------|--| | D.L. 1083 | 477 | 155 | 134 | 49 | | | ,, 1277 | 43 | 12 | 14 | 4 | | | Total | 520 | 167 | 148 | 53 | | | Expected, 9:3:3:1 ratio | 499 · 5 | 166.5 | 166.5 | 55.5 | | Simple segregations of Eye: Marbled and Eye: Dorsal patch are given in Tables VIII and IX. TABLE VIII Pure for K, C_p and M Marbled $(d_p d_p) \times Eye (D_p D_p)$ F_1 —Eye $(D_p d_p)$ | | F ₂ Fan | nily No. | | .Eye | Marbled | |------|--------------------|-----------|-----|--------|----------| | D.L. | 868 | • • | • • | 15 | 4 | | ,, | 896 | ••• | • • | 10 | 4 | | ,, | 897 | •• | • • | 21 | 5 | | ,, | 1272 | • • | | 86 | 26 | | ,, | 1273 | | • • | 19 | 4 | | ,, | 1276 | • • | • | 107 | 35 | | ,, | 1278 | • • | | 139 | 45 | | ,, | 1293 | • • | ٠. | 98 | 35 | | | | Total | | 495 | 158 | | Expe | cted, 3 | : 1 ratio | • • | 489·75 | 163 • 25 | P > 0.5 TABLE IX Pure for K, C_p and D_p Dorsal patch (mm) × Eye (MM) F_1 —Eye (Mm) | F ₂ Family No. | | Eye | Dorsal
patch | |---------------------------|-----|--------|-----------------| | D.L. 1087 | | 196 | 56 | | ,, 1088 | | 174 | 58 | | ,, 1113 | • • | 194 | 60 | | ,, 1114 | • • | 163 | 58 | | Total | | 727 | 232 | | Expected, 3:1 ratio | •• | 719·25 | 239 · 75 | P > 0.5 The factors D_p and M are both inoperative without C_p (vide Table X). Thus C_p is essential for the production of the patterns Eye, Marbled, Dorsal patch and Caruncular patch. TABLE X Pure for K, D_p and M Micropylar colour $(c_p c_p) \times Eye (C_p C_p)$ F_1 —Eye $(C_p c_p)$ | F ₂ Family N | o. | Eye | Micropylar
colour | |-------------------------|------|-------|----------------------| | D.L. 1109 | | 343 | 111 | | ,, 1285 | | 81 | 25 | | ,, 1289 | • • | 58 | 20 | | To | otal | 482 | 156 | | Expected, 3:1 ra | tio | 478.5 | 159 · 5 | P > 0.7 It was shown that when a *Micropylar colour* pattern is crossed with a *Buff*, a *Whole colour* is produced in the F_1 , and this segregates in the F_2 into *Whole: Micropylar colour: Buff* in a 2:1:1 ratio (due to the absolute linkage between the factors Kb_f and kB_f). It will be seen from Tables XI-XIV that the B_f factor is capable of extending each one of the other patterns into a *Whole colour*. When any of these is crossed with the *Buff* a *Whole colour* is produced in the F_1 , which segregates in the F_2 into *Whole colour*, pattern and Buff in a 2:1:1 ratio. TABLE XI Pure for C_p , D_p and mDorsal patch (KK $b_f b_f$) × Buff (kk $B_f B_f$) F_1 —Whole colour (Kk $B_f b_f$) | | F ₂ Far | nily No. | | Whole
colour | Dorsal
patch | Buff | |------|--------------------|-----------|-----|-----------------|-----------------|------| | D.L. | 1299 | • • | ••• | 38 | 18 | 11 | | ,, | 1302 | • • | | 111 | 57 | 58 | | ,, | 1346 | • • | | 16 | 6 | 11 | | ,, | 1347 | • • | | 45 | 23 | 20 | | ,, | 1349 | • • | | 20 | 7 | 6 | | ,, | 1350 | •• | | 41 | 20 | 20 | | | | Total | | 271 | 131 | 126 | | Expe | cted, 2 | 1:1 ratio | • • | 264 | 132 | 132 | Table XII Pure for C_p , d_p and MMarbled (KK $b_f b_f$) × Buff (kk $B_f B_f$) F_1 —Whole colour (Kk $B_f b_f$) | F ₂ Family No. | Whole
colour | Marbled | Buff | | |---------------------------|-----------------|---------|--------|--| | D.L. 890 | 6 | 3 | 4 | | | Expected, 2:1:1 ratio | 6.50 | 3.25 | 3 · 25 | | P > 0.3 TABLE XIII Pure for C_p , D_p and MEye (KK $b_f b_f$) × Buff (kk $B_f B_f$) F_1 —Whole colour (Kk $B_f b_f$) | F_2 | Family No. | | Whole
colour | Eye | Buff | |-----------|-------------|-----|-----------------|-----|------| | D.L. 895 | 5 | | 25 | 12 | 12 | | ,, 1317 | 7 | | 27 | 16 | 15 | | ,, 1319 | | | 106 | 52 | 49 | | ,, 1377 | 7 | | 19 | 10 | 7 | | ,, 1378 | 3 | | 15 | 8 | 7 | | | Total | | 192 | 98 | 90 | | Expected, | 2:1:1 ratio | • • | 190 | 95 | 95 | P > 0.8 # TABLE XIV Pure for C_p , d_p and mCaruncular patch (KK $b_f b_f$) × Buff (kk $B_f B_f$) F_1 —Whole colour (Kk $B_f b_f$) Note.—The F₂ of the above cross was unfortunately not grown. In the preceding segregations the Whole colour had the genetic constitution Kk B_fb_f and hence was always heterozygous. When the Whole colour has the constitution KK B_fB_f it breeds true for wholeness of colour. In the various patterns the factor B_f is absent. When the factor B_f is introduced, these patterns get converted into a Whole colour. In the F_2 these segregate for the B_f factor alone thereby giving rise to 3:1 segregation of Whole colour: pattern. Such segregations are given in Tables XV-XVIII. TABLE XV Pure for K, C_p , d_p and m Caruncular patch $(b_f b_f) \times Whole colour (B_f b_f)$ F_1 —Whole colour $(B_f b_f)$ | F ₂ Family No. | | Whole | Caruncular patch | |---------------------------|-----|-------|------------------| | D.L. 1363 | | 140 | 46 | | ,, 1370 | •• | 43 | 1 5 | | ,, 1460 | • • | - 37 | 10 | | ,, 1461 | | 32 | 13 | | Total | | 252 | 84 | | Expected, 3:1 ratio | • • | 252 | 84 | TABLE XVI Pure for K, C_p , D_p and m Dorsal patch $(b_f b_f) \times Whole \ colour \ (B_f B_f)$ F_1 —Whole $colour \ (B_f b_f)$ | F ₂ Family N | o. | Whole
colour | Dorsal patch | |-------------------------|-----|-----------------|--------------| | D.L. 1116 | • • | 191 | 66 | | " 1117 | • • | 143 | 39 | | " 1118 | | 88 | 30 | | ,, 1120 | | 182 | 58 | | ,, 1457 | | 36 | 12 | | ,, 1459 | •• | 32 | 11 | | Tot | al | 672 | 216 | | Expected, 3:1 rati | 0 | 666 | 222 | TABLE XVII Pure for K, C_p , d_p and M Marbled $(b_fb_f) \times Whole\ colour\ (B_fB_f)$ F_1 —Whole colour $(B_f b_f)$ | F ₂ Family No. | Whole
colour | Marbled | | |---------------------------|-----------------|---------|----------| | D.L. 1482 | | 82 | 23 | | ,, 1485 | | 103 | 41 | | ,, 1488 | | 75 | 34 | | ,, 1493 | | 55 | 13 | | Total | | 315 | 111 | | Expected, 3:1 ratio | • • | 319.50 | 106 · 50 | P > 0.5 TABLE XVIII Pure for K, C_p , D_p and M Eye $(b_f b_f) \times Whole \ colour \ (B_f B_f)$ F_1 —Whole colour $(B_f b_f)$ | | F ₂ Fam | aily No. | | Whole
colour | Eye | |----------|---------------------|----------|-----|-----------------|-----| | D.L. | 693 | • • | | 51 | 24 | | ,, | 1455 | • • | | 105 | 38 | | ,, | 1486 | •• | | 70 | 17 | | ,, | 1491 | | | 50 | 17 | | " | 1513 | •• | | 106 | 34 | | ,, | 1515 | •• | | 87 | 31 | | ,, | 1516 | • • | | 174 | 56 | | | | Total | • • | 643 | 217 | | Expe | Expected, 3:1 ratio | | | 645 | 215 | The following families segregate for the factors D_p and B_f , the factors K, C, and M being pure. In this case segregations of Whole colour: Eye: Marbled in the ratio of 12:3:1 are obtained (vide Table XIX). TABLE XIX Pure for K, Cp and M $Marbled(d_p d_p b_f b_f) \times Whole\ colour(D_p D_p B_f B_f)$ F_1 —Whole colour $(D_f d_p B_f b_f)$ | | F ₂ Fan | nily No. | | Whole colour | Eye | Marbled | |------|--------------------|----------|-----|--------------|----------|---------| | D.L. | 1436 | • • | • • | .407 | 102 | 37 | | ,, | 1483 | •• | | 64 | 15 | 4 | | ,, | 1486 | •• | | 51 | 17 | 7 | | ,, | 1487 | •• | • • | 44 | 13 | 3 | | | | Total | ı | 566 | 147 | 51 | | Expe | cted, 12: | 3:1 rati | o | 573 · 00 | 143 · 25 | 47.75 | P > 0.8 In the following families segregations for the factors D_p and B_f occur, the factors K, C_p and m being pure. Here also a ratio of 12:3:1 is obtained between Whole colour, Dorsal patch and Caruncular patch (vide Table XX). TABLE XX Pure for K, Cp and m Caruncular patch $(d_p d_p b_f b_f) \times Whole \ colour (D_p D_p B_f B_f)$ F_1 — Whole colour $(D_p d_p B_f b_f)$ | | F ₂ Family No. | | | Whole
colour | Dorsal
patch | Caruncular
patch | |------|---------------------------|-------|-----|-----------------|-----------------|---------------------| | D.L. | . 1304 | • • | • • | 156 | 33 | 8 | | ,, | 1314 | •• | • • | 356 | 86 | 36 | | 37 | 1315 | •• | • • | 45 | 12 | 2 | | ,, | 1508 | •• | | 124 | 32 | 8 | | ,, | 1509 | • • | | 37 | 8 | 5 | | | | Total | | 718 | 171 | 59 | | Expe | Expected, 12:3:1 ratio | | | 711.00 | 177 · 75 | 59·25 | The following families segregate for the factors C_p and D_p , the factors K, M and b_f being pure. A 9:3:4 ratio of Eye: Marbled: Micropylar colour is obtained (vide Table XXI). TABLE XXI Pure for K, M and b_f Micropylar colour $(c_p c_p D_p D_p) \times Marbled (C_p C_p d_p d_p)$ F_1 —Eye $(C_p c_p D_p d_p)$ | | F ₂ Family No. | | | Eye | Marbled | Micropylar
colour | |------|---------------------------|-----------|-----|----------|----------|----------------------| | D.L | . 1290 | • • | | 98 | 42 | 47 | | ,, | 1291 | • • | • • | 135 | 30 | 50 | | ,, | 1292 | • • | | 121 | 39 | 47 | | ,, | 1294 | • • | | 66 | 25 | 33 | | | | Total | | 420 | 136 | 177 | | Expe | cted, 9: | 3:4 ratio | ٠. | 412 · 29 | 137 · 43 | 183 · 24 | P > 0.7 From the data presented it will be seen that in the seed coat colour patterns the following genotypes are possible. KK $c_p c_p d_p d_p mm b_f b_f$ Micropylar colour ... $KK c_p c_p D_p D_p mm b_f b_f$ KK $c_p c_p d_p d_p MM b_f b_f$ $KK c_{\phi}c_{\phi} D_{\phi}D_{\phi} MM b_{f}b_{f}$.. KK $C_{\rho}C_{\rho} d_{\rho}d_{\rho}$ mm $b_{f}b_{f}$ Caruncular patch .. KK $C_{\rho}C_{\rho}$ $D_{\rho}D_{\rho}$ mm $b_{f}b_{f}$ Dorsal patch .. KK $C_{\rho}C_{\rho}$ $d_{\rho}d_{\rho}$ MM $b_{f}b_{f}$ Marbled .. KK C_pC_p D_pD_p MM b_fb_f Eye .. KK $c_{\rho}c_{\rho} d_{\rho}d_{\rho} mm B_fB_f$ Whole colour KK $C_{\rho}C_{\rho} d_{\rho}d_{\rho} mm B_{f}B_{f}$ $KK c_{\rho}c_{\rho} D_{\rho}D_{\rho} mm B_{f}B_{f}$ KK $c_{\rho}c_{\rho} d_{\rho}d_{\rho} MM B_{f}B_{f}$ $KK C_{\rho}C_{\rho} D_{\rho}D_{\rho} mm B_{f}B_{f}$ KK $C_{\phi}C_{\phi}$ $d_{\phi}d_{\phi}$ MM $B_{f}B_{f}$ KK $c_{p}c_{p}$ $D_{p}D_{p}$ MM $B_{f}B_{f}$ $KK C_{\rho}C_{\rho} D_{\rho}D_{\rho} MM B_{f}B_{f}$ # Speckling The patterns so far considered consist of localisations of a single colour over different regions of the seed coat. There is another kind of pattern in which the colour is broken up into a number of specks over a background colour of khaki (Fig. 2). This phenomenon has been termed Speckling. Speckling can exist both in the Whole colour and in all the five patterns mentioned before. In these patterns the Speckling is confined to the area normally pigmented in them, the rest of the area remaining white. Black and chocolate Speckling have been met with, the background colour in both being khaki. Khaki Speckling is not met with probably because when it occurs it is indistinguishable from the background colour which is also khaki. From the experiences presented below it may be assumed that a factor S_p produces the solid colour. Its allelomorph s_p is responsible for *Speckling*. S_p has visible effect only in the presence of the factors for the chocolate and black seed coat colours. In the following families segregations between Whole colour and Speckled whole colour occur. These represent the segregations for the factor S_p , the factors K and B_f being pure (vide Table XXII). TABLE XXII Pure for K and B_f Speckled whole colour $(s_p s_p) \times Whole\ colour\ (s_p s_p)$ F_1 —Whole colour $(S_p s_p)$ | ${\sf F_2}$ Family | No. | Whole colour | Speckled
whole
colour | | |--------------------|------|--------------|-----------------------------|---------------| | D.L. 1321 | • • | 111 | 43 | In black seed | | ,, 1322 | | 150 | 42 | coat
do. | | ,, 1323 | | 88 | 27 | do. | | ,, 1324 | | 68 | 24 | do. | | ,, 1325 | | 103 | 32 | do. | | Т | otal | 520 | 168 | - | | Expected, 3:1 ra | tio | 516.00 | 172.00 | - | The following families segregate for the factor S_p , factors K, C_p , D_p and M being pure. Simple segregations of *Dorsal patch* to *Speckled Dorsal patch* occur in this case (vide Table XXIII). # TABLE XXIII Pure for K, C_{ρ} , D_{ρ} and m Speckled Dorsal patch $(s_{\rho}s_{\rho}) \times Dorsal \ patch \ (S_{\rho}S_{\rho})$ F_1 —Dorsal patch $(S_{\rho}s_{\rho})$ | F_2 Family No. | Dorsal
patch | Speckled
Dorsal
patch | | | |---------------------|-----------------|-----------------------------|----|--------------------| | D.L. 1354 | | 51 | 21 | In black seed coat | | " 1355 | | 18 | 10 | do. | | Total | • • | 69 | 31 | | | Expected, 3:1 ratio | • • | 75 | 25 | | P > 0.1 The following families segregate for the factors S_p and B_f , the factors K, C_p , D_p and M being pure (vide Table XXIV). #### TABLE XXIV Pure for K, C_p , D_p and m Dorsal patch $(S_pS_p b_fb_f) \times Speckled Whole colour <math>(s_ps_p B_fB_f)$ F_1 —Whole colour $(S_ps_p B_fb_f)$ | F ₂ Family No. | Whole colour | Speckled
Whole
colour | Dorsal
patch | Speckled
Dorsal
patch | | |---------------------------|--------------|-----------------------------|-----------------|-----------------------------|---------------| | D.L. 1308 | 81 | 20 | 29 | 9 | In black seed | | ,, 1309 | 97 | 21 | 30 | 19 | coat
do. | | ,, 1310 | 155 | 50 | 52 | 18 | do. | | Total | 333 | 91 | 111 | 46 | - | | Expected, 9:3:3:1 ratio | 326 · 79 | 108.93 | 108.93 | 36.31 | - | P > 0.1 The following families segregate for the factors S_p , D_p and B_f , the factors K, C_p and M being pure (vide Table XXV). TABLE XXV Pure for K, C_p and m Caruncular patch $(S_{\rho}S_{\rho} d_{\rho}d_{\rho} b_{f}b_{f}) \times Speckled Whole colour (s_{\rho}s_{\rho} D_{\rho}D_{\rho} B_{f}B_{f})$ F_{1} —Whole colour $(S_{\rho}s_{\rho} D_{\rho}d_{\rho} B_{f}b_{f})$ | F ₂ Family No. | F ₂ Family No. Whole colour | | Dorsal
patch | Speckled
Dorsal
patch | Carun-
cular
patch | Speckled
Carun-
cular
patch | | |-------------------------------|--|----------|-----------------|-----------------------------|--------------------------|--------------------------------------|--------------------| | D.L. 1448 | 187 | 41 | 37 | 10 | 12 | 2 | In black seed coat | | ,, 1449 | 107 | 33 | 16 | 6 | 6 | 1 | do. | | ,, 1450 | 90 | 33 | 13 | 6 | 12 | 1 | do. | | ,, 1451 | 133 | 64 | 33 | 14 | 16 | 5 | do. | | Total | 517 | 171 | 99 | 36 | 46 | 9 | • | | Expected, 36:12:9:3 3:1 ratio | 400 00 | 164 · 64 | 123 · 48 | 41 · 16 | 41·16 | 13.72 | | P > 0.1 In the following families segregations for the factors S_p and B_f occur in the seed coat colours black (KK PP C_hC_h) and chocolate (KK pp C_hC_h) resulting in a 27:9:9:3:3:3:1 ratio as shown below (vide Table XXVI). TABLE XXVI Pure for C_h , K, C_p , D_p and MBlack Eye (PP S_pS_p b_fb_f) × Chocolate Speckled Whole colour (pp s_ps_p B_fB_f) F_1 —Black Whole colour (Pp S_ps_p B_fb_f) | F ₂ Family No. | | | Whole colour | | Eye | | SPECKLED WHOLE COLOUR | | SPECKLED EYE | | | |---------------------------|------------------|------------------|--------------|----------------|---------|----------------|-----------------------|----------------|--------------|----------------|------| | | | | Black | Choco-
late | Black | Choco-
late | Black | Choco-
late | Black | Choco-
late | | | D.L. | 1517 | • • | • • | 23 | 7 | 5 | 2 | 4 | 1 | • • | 1 | | ,, | 1518 | • • | ٠. | 32 | 4 | 10 | 2 | 15 | 1 | 5 | 1 | | ,, | 1519 | • • | ٠. | 41 | 16 | 12 | 2 | 10 | 3 | 4 | 2 | | ,, | 1520 | • • | ٠. | 30 | 11 | 9 | 7 | 7 * | 3 | 1 | 2 | | ,, | 1521 | | | 40 | 17 | 16 | 7 | 20 | 2 | 7 | •• | | ,, | 1522 | •• | ٠. | 20 | 6 | 5 | 3 | 3 | 3 | 2 | • • | | ,, | 1523 | •• | ٠. | 32 | 7 | 11 | 3 | 8 | 2 | 2 | | | | | Total | | 218 | 68 | 68 | 26 | 67 | 15 | 21 | 6 | | Expe | cted, 2
3:3:1 | 27:9:9:
ratio | 3: | 206.31 | 68 · 77 | 68 · 77 | 22.92 | 68 · 77 | 22.92 | 22.92 | 7.64 | The following family segregates for the factors S_p and B_f in conjunction with segregations for the seed coat colours black (KK PP C_hC_h) and khaki (KK PP c_hc_h). It was not possible to distinguish *Speckling* in the khaki seed coat colour. The numbers obtained agree with the theoretical expectation if we assume that khaki *Speckling* cannot be made out from khaki solid colour. #### TABLE XXVII Pure for K and P Black Speckled Whole colour $(C_h C_h s_p s_p B_f B_f) \times Khaki micropylar colour (c_h c_h S_p S_p b_f b_f)$ F_1 —Black Whole colour $(C_h c_h S_p s_p B_f b_f)$ | | | Ві | Кнакі | | | | |--------------------------------|--------------|-----------------------------|----------------------|----------------------------------|--------------|----------------------| | F ₂ Family No. | Whole colour | Speckled
Whole
colour | Micropylar
colour | Speckled
Micropylar
colour | Whole colour | Micropylar
colour | | D.L. 1430 | 33 | 7 | 10 | 2 | 14 | 5 | | Expected, 27:9:9: 3:12:4 ratio | 29 • 94 | 9.98 | 9.98 | 3.33 | 13.31 | 4 · 44 | P > 0.8 When a buff was crossed with the *Speckled Whole* seed coat, a solid *Whole colour* was produced in the F_1 . In the F_2 , this segregated into *Whole*, *Speckled Whole* and *Buff* in the ratio of 9:3:4 (vide Table XXVIII). #### TABLE XXVIII Pure for B_f , P and C_h Black Speckled Whole colour (KK $s_p s_p$) × Buff (kk $S_p S_p$) F_1 —Black Whole colour (Kk $S_p s_p$) | F ₂ Family No. | Black
Whole
colour | Black
Speckled
Whole
colour | Buff | |---------------------------|--------------------------|--------------------------------------|-------| | D.L. 1442 | 117 | 51 | 54 | | ,, 1498 | 32 | 11 | 16 | | ,, 1499 | 32 | 11 | 14 | | Total | 181 | 73 | 84 | | Expected, 9:3:4 ratio | 190 · 13 | 63 · 38 | 85.50 | From one of the above families (D.L. 1442), selections of *Buff* and *Speckled Whole colour* were carried forward to the next generation. All the *Buffs* bred true while some of the *Speckled Whole colour* selections segregated according to expectation into *Speckled Whole colour* and *Buff* in a 3:1 ratio (vide Table XXIX). #### TABLE XXIX Pure for P, C_h , B_f and s_p Buff (kk × Black Speckled Whole colour (KK) | F ₁ —Black Speckled Whole colour (Kk) | F_1 —Bla | ick Spe | eckled | Whole | colour | (Kk) | |--|------------|---------|--------|-------|--------|------| |--|------------|---------|--------|-------|--------|------| | | F ₂ Far | nily No. | | Black Speckled
Whole colour | Buff | |------|--------------------|-----------|-----|--------------------------------|------| | D.L. | . 1500 | • • | • • | . 31 | 9 | | ,, | 1503 | •• | | 32 | 9 | | ,, | 1558 | •• | | 20 | 5 | | ,, | 1559 | | | 28 | 9 | | ,, | 1560 | •• | | 21 | 8 | | | | Total | | 132 | 40 | | Expe | ected, 3 | : 1 ratio | • • | 129 | 43 | P > 0.5 The factor s_p has thus no visible effect on the buff seed coat also. # Summary - 1. In the seed coat colours black, chocolate and khaki, five heritable types of localisations are met with namely, the *Micropylar colour*, the *Caruncular patch*, the *Dorsal patch*, the *Marbled* and the *Eye* patterns. - 2. These patterns arise by the interaction of the five factors K, C_p , D_p , M and B_f . By itself, the factor K produces the *Micropylar colour*. K being present, the association of one or more of three factors C_p , D_p and M, produces the various patterns. Thus, with the C_p factor the pattern *Caruncular patch* is produced. In the presence of K and C_p , the factor D_p produces the *Dorsal patch* while the factor M produces the *Marbled* pattern. The combined presence of K, C_p , D_p and M results in the *Eye* pattern. - 3. The factor B_f which by itself produces a buff seed coat is capable of converting any of the above patterns into a *Whole colour*. Factors K and B_f are absolutely linked. 4. A factor S_p produces the smooth and even distribution of colour over the seed coat. Its allelomorph s_p is responsible for *Speckling*. Thus with K and B_f , S_p produces a solid *Whole colour*, while s_p results in the *Speckled Whole colour*. The factors K, b_f , and s_p are necessary for the production of each of the *Speckled patterns*. *Speckling* can manifest itself in only two colours black and chocolate and is not perceptible when it occurs on a khaki or buff background.