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Wave-Packets in the Schwartz Space 
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To Jean-Pierre Serre 

w 1. Introduction 

The theory of the constant term, which has been developed in [1 (e)] will now be 
applied to construct wave-packets in the Schwartz space of a reductive group G. 
Keeping to the notation of [1 (e)], let A be the split component of a 0-stable Cartan 
subgroup of G. Fix a psgp P1 = MAN~ with the split component A and let z be a 
unitary double representation of K on a finite-dimensional Hilbert space V. 
Then L =  ~ rM) also has finite dimension [l(e), Theorem 27.3]. Put ~ = a *  
and consider the Eisenstein integral 

~v=E(P~:~:v) (vE~) 

for a given ~ e L. We compute the constant term 4~, e2 of q~ along a psgp P2 ~ ~(A) 
(Theorem l8.1). The expression for q~,p2 involves certain endomorphisms 
cp~lp ~ (s: v) (sew(a)) of L. We shall see later that these c-functions can be extended 
to meromorphic functions ofv on the whole complex space ~c. 

Let ~' be the set of all regular elements in ~. Fix ~ C~(~') and put 

where dv is the Euclidean measure on ~. Then ~b, eCg(G, z) (Theorem 13.1). Now 
fix P2e~(A) and m e M A  and consider the distribution 

~-~ ~'(m) 

on ~'. It turns out that this distribution is actually a function which can be written 
quite simply in terms of the c-functions (Theorem 19.2). 

Theorems 13.1, 13.2 and 18.1 contain the main results of this paper. They may 
be regarded as generalizations of the corresponding results on spherical functions 
obtained in [1 (a, b)]. In fact here we have combined the methods of [1 (a, b)] 
with those of [1 (d)] and our success depends in an essential way on the systematic 
use of the weak inequality. 



2 H a r i s h - C h a n d r a  

As far as possible, we shall keep to the notation of [l(e)] and therefore any 
undefined symbols should be given the same meaning as in I-1 (e)]. 

Most of the work presented here was done some years ago and I have given 
lectures on it on various occasions. 

w 2. Recapitulation of Some Algebraic Results 

Let (P, A)>-(Po, Ao) be two p-pairs in G such that (Po, Ao) is minimal. Then P =  
MAN, Po---Mo Ao No. Extend ao to a Cartan subalgebra bo of g. Then [9~ is 0-stable 
and ao = bo ~ p. Put Wo = W(,q/bo) and let W 1 be the subgroup of those elements of 
I41o which leave a pointwise fixed. Put S = ~ (Do c)= S (bo c) and let J and J1 denote 
the algebras of invariants of Wo and W~ respectively in S. Let s~, s2 . . . . .  sq (q = 
[Wo: W1]) be a complete system of representatives for W 1 \ Wo so that 

Wo=U 
l=<i=<q 

Select homogeneous elements u~ = 1, u 2 . . . . .  Uq in J1 such that [1 (a), Lemma 8] 

,1,= J ul. 
1 <i<=q 

Fix a system of positive roots for (g, bo) and put 

~ 0  = ID'g/~o , U/1 ---~ ~77mt/~ o , 070 1 w W g / r a l ,  

where m t = m  + a. Then Wo = t~ol t~l. Define uJr C(JO by 

trs,/s(uiuJ)=6~i (1<i ,  j<q) 

and put z~=Wol #. Then [l(a), Lemma 12] vJ~J~. 
Every element of S may be regarded as a polynomial function on b~c. For  

PeJ1 and AEb~c, define 

fA = ~ "ci(A)ui, 

d (p: A) = tU,/s {(p - p (A))f~ u J} ( l < j < q ) .  

Then it is clear that v J(p: A) e J and, for p fixed, A ~ v "/(p: A) is a polynomial mapping 
of I)~ c into J. Let SA denote the set of all peS such that p(A)=0. Put JA =Jc~ SA. 
Then it is obvious that J,a =JA (S~ Wo). 

Identify bo with its dual by means of the bilinear form B. We call an element 
uEJ 1 harmonic if 0(p) u = 0  for all peJ  c~ So in the notation of [1 (c), w 3]. Then it is 
easy to conclude from [1 (c), Lemma 4] that u 1 . . . . .  Uq may be so chosen as to span 
the space U of all harmonic elements in ,/1. Moreover "/1 = U + J1 JA where the sum 
is direct [l(a), p. 256]. The following lemma enables us to diagonalize the action 
o f J  1 onJx/JIJa~-U. 
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Lemma 1. Fix Pe J1, A e b ~  and put Ai= si A (1 ~ i ~ q). Then 

1) vJ(p:Ai)eJA, 

2) (p--p(Ai) ) fa= ~ vJ(p:Ai)uj, 
l<=j<=q 

3) Z ~ (s0 ~ (A0f~. = ~o(A) 
l<_k<_q 

for 1 < i < q. Here e(s)= _+1 is defined as usual by ~o =e(S)~o (st  Wo). 

We know from [1 (a), Lemma 15] that 

(p -p (A) ) faeSJa  c~ J~ =JAJ1. 

Hence the first two statements are obvious. Both sides of 3) being polynomial in A, 
it is sufficient to consider the case when ~vo(A)4:0. Then the rational function u j 
is defined at A k and 

g (Sk)~1 (Ak)fa~ = ~VO (A) i u (AOu, .  
k i,k 

But since 

Y~ (u')<'- ' - '  - t r s , j  u - 6~ ,  
k 

we conclude that 

i u (A 0 ui =- 1 
i,k 

and this proves 3). 

w 3. Further Algebraic Results 

Let I) be a 0-stable Cartan subalgebra of g. Then b = Ih +bn as usual [1 (e), w 8]. 
If 2~(b/)*, ve(ba)*, we extend them to linear functions on bc by defining 2 = 0  on 
DR and v = 0 on bl. In this way D* becomes the direct sum of (bl)* and (bR)*- 

An element 2e(b~)* is called singular if 2(H,)=0 for some imaginary root ~ of 
(g, t)). Otherwise we call it regular. Put 3 = b* and 

where ~ runs over all positive roots of (g, b) (under some fixed order). Fix a regular 
element 2E(-1)1/2b* and let 3'c(2) denote the set of all v~3c such that 

~(,~ + (-- 1) 1/2 V) 4=0. 

Put 3 ' (2)=  3 C~ 3'c(2). Then 3'(2)is an open and dense subset of 3. 

Now we use the notation of w 2. Fix koeK such that b~~ . Let 3 denote the 
centralizer of b~ ~ in g. Then b k~ and Do are two Cartan subalgebras of 3. Hence we 
can choose yoeG C such that Yo centralizes b~ ~ and b~=bo~ where y=yoAd(ko) ,  
Put A ~ = ( 2 + ( - 1 ) l / a v y  for ve3~. (Here we have identified bc with its dual by 
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means of the restriction of the bilinear form B on b,.) Then if ve ~'c(2), it is clear 
that mo (Ad 4= 0 and therefore the rational functions u ~ are defined at A~. 

Fix an element Aeb~ ~ and let Wo (A) be the subgroup of all se  Wo which leave 
A fixed. Let Po be the set of all positive roots of (g, t)o ) and Po (A) the set of those 
aepo for which A(H~)+O. Put 

1-I /L. 
ae po(A) 

Let J(A) be the algebra of all invariants of Wo (A) in S. 

Lemma 1. Let v be an element in C(S) such that trs/s(uv)eJ for all u~S. Then 
too, a trs/s(a) (v) ~ S. 

Put v '= trs/j(a~ v. Then if u E J(A), it is clear that 

trstA)/j (V' U) = trs/s (v u) ~ J .  

Hence we conclude from [l(a), Lemma 12] that mo, AV'SS. 
Now put 

U =  2 Cui 
l <i<q 

and ms, z=mo, a where A = s 2  r ( s e W  o). Define a rational mapping e~ ( s e W  o) of 
~c into U by 

es(v)= ~ u~(sA~)uj (Ve~c(2)). 
l<=j<q 

Since u~eC(J0, it is clear that ets=es (te W O. 
Put W o (s, 2) = W o (s 20. 

Lemma 2. Fix se I41o. Then the mapping 

v~-"ws,~(sav) ~ e,,(v) 
teWo(s, 2) 

is a polynomial mapping of ~ c into U. 

Let u e S and put u'= trs/sl u. Then u'e J1 and it is obvious that 

trs/fiu~u)=trs,/fiu3u')~J (l=<j<q). 

Hence we conclude from Lemma 1 that 

U~O, A trs/s(a) uJ E S 

where A =s2 y. Since C(J(A)) is the fixed field of Wo(A)= Wo(s, 2) in C(S), it follows 
that 

trs/s(a) uj= E (uJ)t" 
t~ Wo(s, 2) 
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Hence the mapping 

vv-'~s,z(sA,) ~ ~uJ(tsAv)uj  
teWo(s, 2) j 

=ws, z(sAv) Z e,~(v) (veX'c(2)) 
te Wo(s, 2r 

extends to a polynomial mapping of ~c into U. 
Let p(2) be the set of all positive roots c~ of (fl, b) such that 2(H~)~ 0. Put 

IqH . 
aEp(2) 

Lemma 3. Fix se W o and ve ~. Then 

Iws, ~ (s A~)I > Imp, ~ (s 2r)[ = Iw2(2)1 > 0 .  

This is obvious from the definitions. 
Now put ei = e~, and 

i e = [ W l  ~ W o ( s i , ' ~ ) ] - I  Z ez~, (1 =</__q). 
teWo(s. A) 

Let Q denote the set {1, 2, ...,q}. It is clear that ~ e = f  if si2r=sj)L r (i, jeQ). 
Choose a maximal subset OQ of Q such that si2Y=ksy~ r for i~ j  in OQ. 

Lemma 4. Fix ieQ. Then ie is a rational mapping of q~ into U which is every- 
where defined on 3. Moreover the mapping 

v~--~w~,z(siAOie(v ) (re ~'r 

extends to a polynomial mapping from (~ into U. Finally 

ie= l. 
ieoQ 

The first two statements follow from Lemmas 2 and 3. Moreover since trj,/j u ~ 
= 6~, it is clear that 

e i = l .  
l <_i<_q 

The third statement is an immediate consequence of this fact. 
Put 

vij(p:v)=trs,/s{p-p(siA~)uJei(v)} (vet's(2), 1=<i, j<q) 

for peJ1. Then vo(p:v)eJ. 

Lemma 5. Fix v e ~'~(2) and p e J~ . Then 
1) vij(p:v)eJa~ , 

2) (p-p(siA~))ei(v)= ~, Vlk(P:V)UR, 
3) ~ ek(V)=l, l<=k~q 

1 <k<~q 

for l<i,j<=q. 
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This follows immediately from Lemma 2.1. 
We know from [1 (a), p. 256-] that J1 = U + J 1 J, for p ~ b* c, the sum being direct. 

Hence for any vE~c, we can define a representation F~ of J1 on U as follows. For 
pEJ1, I'~(p) is the linear transformation on U given by 

F~(p)u-pumodJ1J4~ (u~U). 

Corollary 1. Fix v~'c(2). Then 

F~(p)ei(v)=p(siAOeg(v), F~(ei(v))ej(v)=6qel(v) 

for p e J 1 and 1 <= i, .j<= q. Moreover 

U = Y~ C ei(v). 
l < i < q  

This follows from Lemma 5 if we note that [1 (a), p. 259] 

ei(v: sj A~)= ~, uk (si AOu~ (sj A~)=fiij . 
k 

Corollary 2. F~ (p ei (v)) = p (si a v) g (el (v)) and 

g (e, (v) ej (v)) = 6ij r%(v)) 

for l <i, j < q  and v~'c(2). 

This is obvious from Corollary 1 above. 

Corollary 3. For any p ~ J1, v w-~ F~(p) is a polynomial mapping, of~c into End U. 

Put p~=trj~/j(pu~u~)eJ. It would be enough to verify that 

C(p)u~=~ pl(&)u~ (veFi~). 
J 

By Corollary 1 above, the left side is a rational function of v. Hence it would be 
sufficient to prove this for veX'c(2). Fix vet's(2). Then 

F~(p) ul = F~ (p ui) 1 = ~ F~ (p ui) ek(v) 
k 

=~P(SkAdUi(stAOek(V) from Corollary 1, 
k 

= ~ p(s~ zl~) u,(sk zl~) u ~(sk/1~) uj. 
k , j  

But [1 (a), p. 258] 

Y', (P ui u J) ~ '  =- tr~,/j (p u l u ~) = p~ 
k 

and therefore the required statement is obvious. 

Corollary 4. Let pe J~. Then 

I7t {F~(p)-p(siA~)}=O (vea~). 
1 <-i~-q 
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If v~ ~'~ (2), then ei(v) (1 < i <  v) is a base for U and so our statement is obvious 
from Corollary 1. The rest follows from Corollary 3. 

Corollary 5. Fix i~Q. Then 

[I  (F~(p)-p(tsiA~)) F~(ie(v))=O 
t~Wo(s,, 2) 

fo~ w ~. 

This is proved in the same way by taking Lemma 4 into account. 

w 4. Application to Differential Operators 

We keep to the notation of w167 2, 3. Put 7o =7~/bo and ';t =7,.,/bo (see [1 (e), w 11]) 
where ml = m  + a  as in w 2. Also define 93l~ = 9319.I and 31 =3M ~ (As usual 3M 
is the center of 93/.) Finally put 

rli(v)= 7{ l (fs, av)~ 31 

zls((:v)=7,o~(Va(7~(():siAO)~3 (1=<i, j<=q) 

for (e31 and v s ~  c in the notation of Lemma2.1. (Here Av=(2+(-1) l /2v)  y 
as in w 3.) Then for fixed i,j and (, v~--, r/i (v) and v~--~ zis ((: v) are polynomial mappings 
of ~c into 31 and 3 respectively. 

Put 7=7g/~ and #=Tg/,~ so that ~o=71o/~ [l(e), w 11]. 

Lemma 1. Define wj=Ti-l(u~)~31 . Then 
1) 7(zi i ( ( :v):2+(-  1)1/2v)=0, 

2) (rli(v)- Ti((:siAv)tli(v)--- Z fl(ziJ((:v))wJ 
l<j<q 

.['or ~ 3 1 ,  v ~ c  and l < i , j < q .  

This follows from 1) and 2) of Lemma 2.1. 
Put d(m)=dp(m) [l(e), w for m ~ M  1 = M A  and define v ' = d - l v o d  (v~gJll) 

as usual [1 (d), w 45]. Let 

g i ( ( : V ) = - -  2 {7'ij(~:V)--#(ZiJ((:V))'}WJ ( l < i < q )  
l<j<q 

for fiE31 and v E ~ .  

Corollary. gi (if: v) ~ 0(rt) ~ n and 

~'~h(v)'-~(~:s~AOn~(v)'=~z~s(~:v)wj+g~(~:v) (1 < i < q )  
J 

for ~ ~ 31 and vs  q~. Moreover for i and ~ fixed, v~--~gi(~ : v) is a polynomial mapping 
of  ~ into 0 (rt) ffi ft. 

This is obvious from the above lemma if we recall I-1 (d), p. 110] that 

z-#(z)' ~O(n)~Sn (z~3). 
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w 5. The Basic Differential Equations 

Let V be a complete, locally convex, Hausdorff space and z a differentiable double 
representation of K on V [1 (e), w 19]. Fix ve ~c and let ~b be an element in C ~ (G, ~) 
[1 (e), w 19] such that 

zqS=7(z:2+(-1)l/2v)49 (ze3).  

Put 

(gi(m)=de(m)(o(m; rli(v)') (rneM1). 

Lemma 1. Let me M 1 . Then 

too(A~)dt,(m)cp(rn)= ~ ~(Si)/D'I (siAv)(oi(m) 
l <-_i<=q 

and 

(ai(m; O=71(~:siA,)q~i(m)+de(m)(o(m;gi(~:v)) (1 < i < q )  

for ~e3 , .  

This follows from the corollary of Lemma 4.1. 
Let ~ be a root of (Po,Ao). Fix Xeno such that [H, X]=~(H)X for all Heao .  

Lemma 2. Let gl,g2effi and heAo. Then 

~b (gl ; h; O(X) g2) = e-'r176 h) q~ (g~ 0(X); h; g2) 

and 
qS(g~ X;h; gz)=e-~(l~ X gz). 

This is obvious. 
Define 

~i,r gi(~:v)) ( l < i < q ,  meM1) 

for ~r It is clear that 6~,r depends linearly on ~. Since a = 3 1 ,  the following 
result is an immediate consequence of Lemma 1. 

Lemma 3. 
T 

~i(m exp TH)e-TS'n~(1t)=q~i(m ) + ~ ~i,u(m exp tH)e-tS'A~(H)dt (1 < i<q) 
0 

for m e M  1, Hea and TeR. 

w 6. Asymptotic Behavior of Eigenfunctions 

For ve~,  let d(G,T, 2, v)=d(2, v)=d(v) denote the space of all (a~d(G,z) 
[1 (e), w 21] such that 

z4~=~(z:,t+(-1)l/2v)4~ (z~3). 

Fix ve 5, ~b e d ( v )  and let us use the notation ofw 5. Our object is to study the asymp- 
totic behavior of ~bi. Put M + =K 1 �9 Cl(A+) �9 K 1 as in [1 (e), w where K 1 = 
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K M = K  c~ M. The following lemma is proved in the same way as [1 (e), Lemma 
22.1]. 

Lemma 1. Fix ~ 3 1 ,  vl, v2~gJll and s~SC(V). Then we can choose numbers 
c, r>O such that 

@i. ~ (vl ; m exp H; v2)[s <= c~M (m)[(m, H){ r e-~P~n) 

for m e M ~  and H e C I a  +. 

Here the notation is the same as in [1 (e), Lemma 22.3]. 
Let 2i (ieQ) denote the restriction of si2 y on a. We decompose Q into three 

disjoint sets Q+, Q~ and Q- as follows. An element ieQ lies in Q+ if 2 / (H)>0 
for some H e a +, i~ Q~ if 2i = 0 and i e Q- if ~,i(H)< 0 for all H e  a +. Define 

~bloo(m)= lim ~bi(mexp TH)e -Ts'avtm (m~M1) 
T ~ + ~  

for i~Q ~ and H ~ a  +. One proves as in [1 (e), w 22] that this limit exists and is inde- 
pendent of the choice of H. Moreover dPio~d(M1, ZM). Define ~bio~=0 for 
i e Q + u Q  - 

Choose a number b (0<b<�89 such that 

~,(H)__< - ~ B~(H) 

for all i~ Q- and H ~ a +. We have seen in [1 (e), w 22] that this is possible. 

Lemma 2. Let i~Q. Then r =0  unless i~Q ~ Moreover c ~ i ~ d ( M 1 ,  ZM) and 

Finally 

]c~i(v 1 ;m exp TH; v2) - ~b i oo (vl ;m exp TH; rE)Is 

< e- r~ptn) ]qbi (vl; m; v2)l, + ~ 10i, n(vl ; m exp tH; V2)[. e tpP(H)/2 
0 

for vl ,v2eg~ 1, m~M1, H ~ a  +, T>O and s~5'~(V). (In case P=G,  the right side 
should be replaced by zero.) 

This is proved in the same way as [1 (e), Theorem 22.1]. 

Lemma 3. Fix i(1 <i<q)  and suppose ve~'(2). Then ~bio~ =0  unless s? 1 a=D k~ 

Suppose ~bi 00 4 =0. Clearly Do is a 0-stable Cartan subalgebra of ~)/~. Hence 
by [1 (e), Lemma 29.3] we can choose s~ W(m~/Do) such that 

s i ( 2 - ( -  1) ~/2 v ) r=sOs i (2+( -  1) ~/2 v) y. 

Choose xeG~ such that x y  -1 =s~ on bo. Then 

( 2 -  ( -  1) ~/2 v) x = s 0 (~ + ( - 1) ~/2 v) x 
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and x .  b~--bo~ since y.  bc =Do ~ (see w 3). Fix Ho ea +. Then we conclude from 
I-l(e), Lemma 33.1] that 

v r-ko 
O ~ X . [~R-~- Si DR~--- Si t}R . 

This proves the lemma. 

w 7. The  Funct ions  ~bp, 

Let P = M A N  be a psgp of G. Given k~K, let s denote the restriction of Ad(k) 
on a. Then s determines the coset kK M completely. Hence if H is any subgroup of 
G which is normalized by KM, we can define HS=Hk=kHk -1. In particular 
P'= MSASNL For any c~ed(MA, TM)  , w e  define ~bk= c~'ed((MA) ~, ZM,) by 

c~" (m k) = z (k) c~ (m) z (k- 1) (m e MA) .  

It is easy to see that ~b ~ depends only on s. Similarly we define 

~s=~k=Ad(k)( ((e3Mg.[), a~=a k (aeA). 

If I) is a Cartan subalgebra on g, sometimes it will be convenient to write 7G/~ 
instead of ~g/~. 

Let P'=M'A'N'  be another psgp of G. Then we have [l(e), w 5] the finite set 
to(a'la) of linear injections of a into a'. For every sem(a'la) we can choose k~K 
such that Ad(k)=s  on a [l(e), w Put w(a)=w(ala). Then re(a) is a group of 
linear transformations in a. 

Fix 2 as in w 6. 

T h e o r e m  1. Suppose ve~'(2) and ~bed(G, z, 2, v) in the notation of w 6. Put 
w=w(bsia).  Then there exist unique functions ~)p, sEJJ(MI,ZM) (SEW) with the 
following two properties. 

1) ~be(m)= ~q~e,~(m) (meMi),  
$6W 

2) ~c~p,~=~/b((~:A+(-1)l/2v)q~e,s ( (e31 ,  sew). 

Here ~be is the constant term of~b along P [1 (e), w 21]. 

Corol lary .  Cp,~ (m a) = Cp, s (m) e ( -  1),/2 ~ (log.~)(m e M 1 , a e A, s e to). 

Since a ~ 3~, the corollary is obvious from the second statement of the theorem. 
First we prove the following lemma. 

L e m m a  1. Given sew(bRla), there exists a unique index i ( l = i < q )  such that 
sH=Ad(kffl)sF1H for all Hea. 

Choose a representative k e K  for s. (This means that Ad(k)=s on a.) Then 

(a)~~ %. 

Hence we can choose t~ W o = W(g/bo) such that Ad(kok)= t -1 on a. Clearly the 
coset W~ t is uniquely determined by this condition. Hence there exists a unique i 
such that W~ t = W~ s~. This s~ satisfies our condition. 
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L e m m a  2. Let  s and i be related as in Lemma 1. Then 

71((: siAv)=YM~/b(~ s: 2 + ( - -  1) 1/2 v) ( (e31) .  

Choose  y i~G c such that  y i=s i  on bo and define k as in the proof  of  L e m m a  1. 
Then  it is clear that  

ml = Yi Ad(ko k)~ Mlc 

where Mlc is the centralizer of o in G~. Now si Av=(2  + ( - 1 )  1/2 V) y ' r  and 

Yl Y = ml Ad (ko k ) -  1 y. 

Moreove r  Ad(ko t) y centralizes DR (see w 3) and bR ~ s a = a k. Hence  

m 2 = Ad(ko k)-  1 y Ad(k)~ Mtr 

Put  

re=m1 m2 =YiY Ad(k)E MI~ 

so that  Yi Y = m A d ( k -  1). Since (w 3) 

(yiy) -1 b o c = y  -1 boc=b~ 

it follows that  m -1 boc=b~-'. Therefore  

71 (~: si A~) = 7M1/~o(~: (2 + ( -- 1) 1/2 V)"') 

= YM,/~k-' (~: (2 + ( - -  1 )X/2 V)k-') = YM~/b ( ~ :  2 + ( - -  1)1/Z V). 

We now come to the p roof  of T h e o r e m  1. Since too(A,)+0,  it is clear that  
s A , ~ : t A ,  for sW-t in Wo. Hence siA~ and sjAv cannot  be conjugate under  W~ 
unless i= j .  Put  

Zs(() = 7M~/t~((~: 2 + ( - -  1) 1/2 v) (sew, ~ 3 1 ) .  

Then it follows f rom L e m m a  2 that  Z~:t:Zt if s#:t  in to. The  uniqueness of  ~bv, ~ is 
now obvious.  On the other  hand if s and i are related by L e m m a  1 and we set 

c/ge,~=rOo~ (si Av) -1 (ai~, 

it follows f rom L e m m a s  5.1 and 6.2 that  all the condi t ions of  T h e o r e m  1 are ful- 
filled and this completes  the proof.  

We state the above  result as a l emma  for later reference. 

L e m m a  3. Suppose s and i are related as in Lemma 1. Then 

4~,~=wol(S~A0-' 4~i+. 
Let (P', A')-<(P, A) be another  p-pair  in G and put  *P = P'c~ (MA).  Then (*P, A') 

is a p-pair  in M 1. Fo r  any s6W(bgla), let w~(bRla') be the set of all t~tO(bR]O') such 
that  t = s on a. (We note  that  a c a'.) 

Fix sew(bRla)  and choose a representat ive k ~ K  for s. Put  

= (fbe,~)~ ~ ~I((MA) ' ,  ZM,). 



12 Harish-Chandra 

Then 

~ ~ =;'M~/~(~': ~. + ( -  1)1/2 v) ~ (~e3~). 

and ,pk=(,p)k is a psgp of M~ with split component (A') k. 

Lemma 4. For any t~w~(I)g[a'), 

(~,,, , ) ' = (~ , ,~  ,o~-0 '~ . 

Here t o k -1 denotes the mapping H~-~ t(Ad(k-1)H) (H6(o') k) of a rk into DR. 
We know [l(e), Lemma 21.1] that 

(4,~,J.~,= (~. , ,0 ~- '  . 

Let mO(DR[a 'k) denote the set of all t'~m(DR[o 'k) such that t ' = A d ( m  k) on a 'k for 
some m 6 M  1. Then it is easy to verify that t~-~tok -1 is a bijection of Ws(bRta') on 
rOo(bg[a'k). Therefore by applying Theorem 1 to (M~, ~/) in place of (G, qS), we 
conclude that 

tem~(l)R[a') 

Now put Mi = M' A', 3'1 = 3~ '  92', 

)Ct(rl)=~(Mi)t/b(rlt: ,~.--b(-- 1) 1/2 V) (r] ~3~ ) 

and 

~e(t)=(~,.p~ ,o~-,) ~-' 

for tem,(b~la'). Then 

~/~ (t) = )G(r/) ~P(t) (~/~ 3'1). 

On the other hand ~p, = (qSe), e [l(e), Lemma 21.1]. Hence 

~,~,= Y. (,~,~).p. 

For every sem(~Rla), choose a representative k~ in K and define 

~(S, t)=(~.pk,tok-,) k-' (teWs(DRlO')), 

with ~J =(~e,~) ~ and k=k~. Then, by the above result, 

(~,~,~).,,= Y~ ~(s, t) 
tE ~,~(bR la') 

and 

~e(s, t) = Zt('7) ~e(s, t) (~ E 3'~) 

for s~w(1)sla) and t~m,(bnla'). Hence 

se~(bala) 

= E E ~'(~,t). 
s~a'(bala) t~ms(ba[a') 
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It is now obvious from Theorem 1 that 

4~p, ,= ~(s, t) 

for t ~ to~(bRla') and the statement of the lemma follows immediately. 
We define the space ~ ZM) as in [l(e), w 19]. 

Lemma 5. Fix s~m(DRIct) and let f denote the restriction of ~p,~ on M. Then if 
prk P = dim t) R, f 6 ~ ZM). 

Let * P =  *M *A *N be a psgp of M with prk * P >  1. Then by [l(e), Lemma 25.1], 
it is enough to verify that fie = 0. Let P' = M' A' N' be the psgp of G corresponding 
to *P [l(e), Lemma 6.1] so that (P', A')<(P, A). Then 

prk P' = prk *P + prk P > dim bR 

and therefore to(bRI a') is empty. Fix a representative k ~ K for s and put ~9 = (~be,~)~, 
Q=(P 'nMO k. Then Q is a psgp of M~=MA and it follows from the proof of 
Lemma 4 that ~bQ=0. Since [l(e), Lemma 21.1] 

f,~ =(~)~-~ 

on *M *A, we conclude that fie = 0. 

w 8. Functions of Type H(2) 

Now, instead of keeping% fixed, we shall allow it to vary in 3. Note that DR, being 
a subspace of g, has a Euclidean norm. Hence, by duality, the same holds for 3. Put 

I(v, x)l =(1 + Ivl)(1 + o-(x)) 

for (v, x ) ~ 3  x G. Let ~3=~3(3c) denote the algebra of polynomial differential 
operators on 3 (or 3c) [l(c), w Put ( ~ = ~ |  [l(e), w Let ~b be a C ~ 
function from 3 • G to V. For D ~ ,  s~6e(V) and r>0 ,  put 

so.r(~b)= sup ID~bls ~-1 I(v, x)L -r  
~xG 

in the notation of [l(e), w 15]. If F is a finite subset of 6 ,  we set 

SF,r(~)= Y~ So,~(~). 
D~F 

A function ~b: 3 x G ~  V will be said to be of type 11(2) if the following con- 
ditions hold. 

1) ~b is of class C% 

2) For  any r e 3 ,  the function q~v=qS(v) is a z-spherical function on G and 

Z(gv=7g/b(Z: ) ~ + ( -  1) 1/2 V)t~v ( Z e 3 ) .  

3) For  any D e e  and sESe(V), we can choose a number r > 0  such that 
SD, r(~) • 00. 



1 4 H a r i s h - C h a n d r a  

Fix a function tp of type 11(2) and let us use the nota t ion of w 5. Then  q~i and 
IPi,~ ( (~31)  are now functions on ~ x M1. Put  

I(v, x, X)] =(1 + Ivl)(1 + ~r(x))(1 + IlXll) 

for (v, x, X)e  q~ x G x g. 

Lem ma  1. Fix (~31,  vl, v2~9)ll, peS(~c) and saSg(V). Then we can choose c, 
r > 0 such that 

]~,i.4(v; ~3(p): v 1 ;m e x p H ;  vz)ls <c ~M(m)](V, m, H)I r e -oPera 

for m ~ M  + , H e C l a  +, v ~  and l <i<q.  

The p roof  is the same as for Lemma  6.1. 
It follows without  difficulty from the above estimates that  qSi~, regarded as 

functions on ~ x M1, are of class C ~. In fact we have the following analogue of 
Lemma  6.2. 

Lemm a  2. 1) 49i~(v: m; ( ) =  71((: si Av)~ai~(v: m)((E31). 
Given vl, v 2 ~ 9)11, p e S(~c) and s ~ 6P( V), we can choose c, r > 0 such that 

2) I~bi~(v; 0(p): vl ;m; v2)ls<c ~M(m)I(v, m)r. 

Finally 
3) I~bi(v : v x ; m exp TH; V2)  - -  ~ i  ao (V : V 1 ; m exp TH; v2)Is 

<e-TaaPm){ '(ai(v:vl~m;v2ls+~l~i'H(v'vl;mexptH;v2)lse'al'tH'/2dt } o  

for H e a  +, T > 0 .  

Here i~Q, v6~, rn6M 1 and the right side in 3) is to be replaced by zero in case 
P=G. 

We have only to comment  on the proof  of 2). Put  

r (v: m: H) = r m exp H) e - "  a~ (m, 

I~~162 -~'A~m ( (~31) ,  

for v e ~ ,  m e M  1 and H e a .  Then  

T 

49~ Tn)=qSi(v:m)+ ~ ~,i~ (TER) 
0 

f rom L e m m a  5.3. N o w  if i~Q ~ it follows from Lemma  1 that 

~bl ~(v ; tg(p): v 1 ;m; v2)= (oi(v; O(p): v 1 ;m; v2) 
oo 

o 11. + ~ ~i,H( ,d(P):vl;m;v 2 : tH)  dt 
0 

for vl, v2 EgJ/1 and paS(~c). N o w  fix p. Then  it is obvious that 

63(p)oe-S'a~(n)=e-S'a~tn) 63(pn) ( H e a )  
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where H~--, PH is a polynomial mapping of a in S(3r Hence 2) is an easy consequence 
of Lemma 1 and standard arguments [l(d), p. 69]. (We recall that by Lemma 6.2 
~b/oo = 0  unless ieQ~ 

Put ~bp(v)= (~bdp (v s 3) and ~bp,~(v)= (qS~)e, ~ for v e 3'(2) and s eto(bRI a). 

Lemma 3. Suppose ve 3'(2). Then 

q~p(V)= 2 wol(SiAv) -1 ~i~(v) = 2 q~P,s(V) �9 
i~2 ~ s~w(bnla) 

This is obvious from the results of w 7. 

w 9. Functions of T y p e / / '  (2) 

Let ~'  be the set of all psgps of G. We keep to the notation of w 8. 
Let ~b be a function from 3 x G to V. We say that 4) is of type II'(2), if it is of 

type 11(2) and the following additional condition holds. Given P = M A N  in 
and s~m(ls[a),  the function (~bp,~) ~ on 3 ' (2 )x (MA)  s extends (uniquely) to a 
function of type 1I(2) on 3 x (MA)L 

Lemma 1. Suppose c~ is of type 11'(2) on 3 • G. Then for any P = M A N  in ~ and 
sew(bRla) ,  (4,p,~) ~ is of type II ' (2) on 3 x (MA)L 

This is an immediate consequence of Lemma 7.4. 

Theorem 1. Suppose c~ is a function of type II(2) on 3 x G. Define 

O(v:x):t~J(2 +(-1)l/2v)c~(v:x) (ve3,  x eG  ). 

Then 0 is of type II'(2). 

This is an immediate consequence of Lemmas 7.3 and 8.2. 

w 10. Continuity of ~bp 

Fix a function 4) of type II(2) on 3 x G and a psgp P = M A N  of G. We intend to 
show that ~be is a continuous function on 3 • MA. So we may assume that P 4= G. 

We use the notation of w 3. Let U* be the space dual to U and (u* . . . . .  u*) the 
base for U* dual to (u 1 . . . . .  uq). For  any v E 3, we have defined in w 3 a representation 
F~ of J~ on U. The corresponding (right-)representation F~* on U* is given by 

(u* C*(p),u)=(u*,C(p)u) (peJl,usU, u*~U*). 

Define 71 as in w 4 and put ~/i = 71-1 (ui)~31 (1 < i <  q). 
We regard U* as a Hilbert space with (u~,...,  u*) as an or thonormal  base. 

Put V = V|  U*. Then by letting K act trivially on U*, we get a double represen- 
tation ~ of K on V. Put 

~(~)= 1| (~e31). 

Then ~ is a right-representation of 31 on V which commutes with ,. 
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We now proceed in the same way as in [l(e), w 22]. If seSP(V) and 

v= ~ vi| (vlcV), 
1 < i<q 

we put 

s(v)--Ivl,  = (Y~ Iv, ID '/2. 
i 

Let [I T[I denote the Hilbert-Schmidt norm of a linear transformation T on U*. 
(We write T on the right.) Then it is easy to verify that 

s(v-(l| IITII (sc~(V),vcV). 

N o w  define a C ~ function q~ from ~ • M 1 to V by 

q~(v:m)=d(m) ~. c~(v:m;q'i)Qu* (v~ ,mEM1) .  
l <i.<q 

Here MI=MA,  d(m)=dp(m)(m~M1) and v'=d -1 rod for vcgJ~ 1 as in w Fix 
(~  31 and consider ~(v:m; ~). Put p = 71 (0~ J1. Then 

p U i = F v ( P )  U i +  Z ViJ(p:v)  u j  (l=i_-_q) 
1 <=j<q 

where 

vii(P: v) = trj1/j {uJ(p u i -  F~(p) ui)} ~ Jay 

from the definition of F~(p). Define 7o and/ t  as in w 4 and put 

z~((: v) = ?~ 1 (vij(p: v)) c 3 .  

Then it is clear that 

?(Zij(~ : Y): ,~, "Jr'( - -  1) 1/2 V) = 0  

and [l(d), p. 110] 

g i j ( (  : V) = Z l j ( (  : V) - -  t~ (Zij(~ : V))' E 0(11) ffJ n .  

Put 

g,(~:v)=- ~ g~j(~:v),l~. 
1 <j<=q 

Then g~((:v) is linear in ( and for fixed i and (, v v-~g~((: v) is a polynomial mapping 
of ~ into O(n) ff~ n by Corollary 3 of Lemma 3.5. 

Lemma 1. Fix (E31 and put 

~(v:m)=d(m) ~ c/)(v:m;gi((:v))| (vc~8, mcMO. 
l <=i<q 

Then 

�9 (v:m; 0 = ~(v:m)~(O+ ~(v:m) 

for vc~  and m 6 M  1. 
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Let  p = 71 (0. Then  

Y~ ui| u* re(p) = y r~(p) u,(9 u* = Y p u,(9 u* - Y, v,j(p: v) u j |  u* 
i i i i,j 

in J1 | U*. Therefore  since yl(~(zu(~: v)))= vu(p: v) and zu((: v)(a(v)=0, we con- 
clude that  

4~(v: m) F~(0 = d(m) ~ ck (v: m; (' tfi ) | u* - d(m) ~ O(v: m; gi(~: v)) | u* 
i i 

and this implies our  assert ion.  

L e m m a  2. Let H~a. Then 
T 

tb(v: m exp TH) e- Try (U) = (b(v: m) + ~ t I tu (v :m exp t H) e-try(H) dt 
o 

for ve~j, m e M  1 and T~R. 

Since a c 31, this is an immedia te  consequence of L e m m a  1. 

Put  

E i ( v ) = l ' v * ( i e ( v ) )  ( V ~ ,  i~Q) 

in the nota t ion  of L e m m a  3.4. Then  it is clear that  E~ is a C ~ function f rom 
to End U* and 

El(v) = 1. 
i~oQ 

Moreover  it is easy to verify f rom Coro l la ry  2 of L e m m a  3.5 that  

Ei(v ) Ej(v)=b 0 Ej(v) (i, j6~ 

Put E~(v) = 1 (9 Ei(v). Since J~ is an abel ian algebra, it is obvious  that  E~(v) commute s  
with F~(~)(~e31) and  the opera t ions  of  K on V. Put  

4,~(v)= ~(v) E~(v) (ve ~). 

Then the following result is immediate .  

L e m m a  3. Let H e a. Then 
T 

cbi(v: m exp TH) e- Try(H) = ~ i ( v : m  ) jr_ ~ tritH(V: m exp t n )  E l ( v )  e - t r v ( m  dt 
o 

for vE~, m~M1, T6R  and i~Q. 

Let  21 (isQ) denote  the restr ict ion of s~ 2 r on a as in w 6. 

Lemma 4. Put 

/]/(v: H) = Ei( v ) e r*~(m - ~, m) 

for ieQ, veq@, H~a. Then we can choose Co, ro>O such that 

IlFi(v:H)ll<eo(l+llHl[)~~ "~ ( i ~ Q , H ~ a , v ~ ) .  

Put  

F~(v: H) = Ei(v ) (F~* (H) - 2i(H)) 
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and fix He  a. We claim that all eigenvalues of F~(v: H) are purely imaginary. Since 
F/(v:H) is a continuous function of ve~,  it would be enough to verify this for 
ve~'(~.). But this follows from Corollary 1 of Lemma 3.5 since 

F~(H) ej(v) = sj A~(H) ej(v) (1 < j  < q). 

N o w  

Fi(v : H) = Ei(v) e v'tv: n). 

Since 

v~--~ w, ,  ~(sl AO Ei(v) 

is a polynomial mapping (Lemma 3.4) and 

ires,, x(si Z~)l > Itoz(2)I >0  

(Lemma 3.3), the required result follows from [-l(a), Lemma 60]. 

Lemma5.  Fix ~e31, vl, v2egJll and se~9~ Then we can choose c, r>O 
such that 

I ~(v: v 1 ~-m exp H;/)2) I, ~ C ~'-~U (m) [(v, rn, H)I r e- ap tn~ 
t 

for m e M  +, H e  Cla + and veq~. 

We recall that v~-- ,g~((:v) ( l<j~q)are  polynomial mappings of ~ into 
O(n)O n. Therefore our assertion follows without difficulty from Lemma 5.2. 

Define Q§ QO and Q- as in w Then (see w we can choose 3 (0<3<�89 
such that 

~,( n )  <= - ~ ~ (  H) 

for all i e Q -  and H e a  +. 
Fix ieQ ~ vl, v2egJl~, seS'~(V) and Hea  +. Then it follows from Lemmas4 

and 5 that the integral 

oo 

~ [ k OH(V: V 1 ;m e x p t n ;  v2)ls IlF/(v:- tn)[[ dt 
0 

converges uniformly as v and m vary within compact subsets of ~ and M 1 respec- 
tively. Put 

~i~(v:m)= lim r -'r~ttt) ( ve~ ,meM1) .  
t ~ § ct~ 

Then, from Lemma 3, this limit exists and we prove as in [l(e), w 22] that it is 
independent of H e a  +. Moreover ~i~ is a continuous function from ~ • M 1 to V 
which is differentiable in meMo. In fact 

�9 i~(v:/)l;m;/)2) = lim ~i(v: Vx;mexptH;/)2) e-tr~ta) 
t ~  §  

for v~, v2 egJ/~ and H e a  + 

Define q~i~ = 0  for i~Q + u Q- .  
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Lemma 6. F i x  i~Q. Then 

crpi~(v:m; ()=cI)i~o(v:m)F~(() ((~31) 

and 

]~i(v : Vl ; m exp TH;  v2) - ~i oo (v" v I ~ m exp TH;  v2)Is 

tlq~(v: vl"~m; v2)ls [[Fi(v: TH)][ 
t. 

+ ~ I ~n(v: vl ;m exp tH;  v2)ls [IFi(v: ( r - t ) H l l  e '~P(m/2 de 
o 

for  vl ,  v2 e~Jll, m e  M1, H e a  +, ve  ~,  s s ~ ( V )  and T>O. 

This is proved in the same way as [l(e), Theorem 22.1]. 
Put OQO = OQ c~ QO. Since 

2 E,(v)= 1, 
i~oQ 

we get the following corollary. 

Corollary. 

Iq~(v: vl ; m e x p  TH;  v 2 ) -  ~ 45ioo(v: v l ; m e x p  TH;  Vz)ls 
i~oQ o 

~l~(v: v 1 ;m; v2)ls llF/(v: E TH) II 
i~~ k 

+ ~ I ~n(v: vl ; m e x p t H ;  v2)[s IIF/(v: ( r - t ) g l l  e '~'~H~2 dt . 
o 

Define functions 0~ ( ieQ)  from ~ x M~ to Vby the formula 

i e~  ~ i~Q 

Since u~ = 1, it is clear from the above results and the definition of q5 e [l(e), Theo- 
rem 21.1] that ~ = q~v. The following result is now obvious from Lemma 6. 

Lemma 7. Fix  vl , v 2 e gJl 1 . Then the function (v, m)~---, ~) v(v : vl ; m; v2) is continuous 
on q~ x M 1 . Moreover  for  each s ~ ~Sa(V), we can choose c, r > 0 such that 

[q~e(V: v 1 ;m; V2)[~<C~M(m ) I(V, m)r 

for  v ~ ~ and m ~ M 1 . 

Corollary. Suppose 4) is o f  type 11'(2). Then 

sew(bala) 

on ~ x M 1 . 

By Lemma 8.3 the equality holds on ~ ' (2)x M 1. But since both sides are 
continuous, it must hold on ~ x M~. 
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We recall that P+G. Fix a compact subset O of a + and choose % > 0  such 
that fle(H)>2eo for all HeO.  Put e=feo. Then the following result is an easy 
consequence of the corollary of Lemma 6. 

Lemma 8. Given v 1, V 2 e ~  1 and s~Sg(V), we can choose c, r > O such that 

I dp(m exp TH) ~b(v: v~ ; m exp TH; v'2) - C~e(V: Vl ; m exp TH; rE)Is 

=<c e -~r ~M(m)I(v, m)l r 

for v~ ~, m~ M +, H ~ Q and T> O. 

w 11. A Criterion for a Function to be of Type H'O.) 

We assume in this section that z is a unitary I-l(e), w 20]. Let #(bR) denote the set of 
all psgps P = M A N  of G such that a = hR. Clearly M is independent of P ~ ( b R ) .  

Let qS be a function on ~ x G of type II(2). Put a=bR and fix Pe~(a ) ,  sere(a) 
and v e ~ ' (2)(P = MAN). Then the function mw-~ ~bp,~(v: m)(me M) lies in ~ rM) 
(Lemma 7.5). We observe that ~ rM), being a closed subspace of Cg(M, %t) 
I-l(e), w 18], is a locally convex space. 

Lemma 1. Let 49 be a function on ~ • G of type II(2) and P' = M' A' N' a psgp 
of G. Then ~pe,(V)~0 (v e q~) unless a' is a conjugate to a under K. 

Fix a 'eA' ,  fe~ and assume that a' is not conjugate to under K. 
Then it follows from [l(e), Theorem 29.1] that 

S (f(m'), Ce,(v:m'a'))dm'=O 
M '  

for ve ~'(2). On the other hand, it is obvious from Lemma 10.7 that the left side is a 
continuous function of v e ~. Hence Cp,(v)~ 0 for all v e ~. 

Corollary. Fix v e ~ and suppose ~bp(V)= 0 for all P e,~(a). Then 49(v)= O. 

This is an immediate consequence of [l(e), Lemma 25.2] and the above 
result. 

Theorem 1. Let qb be as above and S a collection of continuous seminorms on 
~ rM). We assume that f e~ rM) and s ( f ) = 0  for all seS, implies that f = 0 .  
Then, in order that (o be of type II'(2), it is necessary and sufficient that the following 
condition holds. For Pe~(a)  and sew(a), let fp,,(v) denote the restriction of c~v,s(v ) 
on m (re ~'(2)). Then s(fp,s(v)) should remain locally bounded on ~ for every Pe~(a ) ,  
seto(a) and se S. 

For  example we can take S to consist of the single element s given by 

s ( f ) =  IlfllM (fe~ zM)), 

where 

[IflJ~t = S If(m)[ 2 din. 
M 

We first need a simple result. 
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Lemma 2. Let Ho+O be a point in o and 49 a function of type 11(2) on ~ •  
such that 49(v) =0  whenever v(Ho)-O (v6 ~). Then the function 

~b(v: x)=v(Ho) -1 49(v: x) (ve~, x~G) 

is also of type 11(2). 

This follows from Lemma 22.1. 
Now we come to the proof of Theorem 1. If 49 is of type 11'(2), then for fixed 

P e ~ ( a )  and s~to(a), )],.s defines a C ~ mapping from ~ to ~ ZM) (see Lemma 12.1 
below). Hence our condition is certainly necessary. So it remains to verify that it is 
sufficient. 

Put 

~b(v:x)=va(2+(-1)l/2v)49(v:x) (ve~,xeG).  

Then by Theorem 9.1, ~ is of type 11'(2). Let p be the set of all positive roots of 
(g, b), p(2) the subset of those e e p  for which 2(H,)4:0 and p'(2) the complement 
of p(2) in p. Put 

~'~= lq H,, ~ =  lq H~. 
~pO~)  aEp'O-) 

Then ~v = toz. m~ and 

I~vz(2 + ( -  1)'/2 v)l > I~va(2)l > 0 ( v ~ ) .  

Hence it follows without difficulty that 

4,'(v: x ) = ~ ( 2  + ( -  1) 1/2 v) -10(v: x) 

=~i(2 + ( -  1) 1/2 v) 49(v: x) 

is a function of type 11'(4). Since 2 is a regular element in (-1)1/2 b~' (see w 3), it 
is clear that we can choose elements H i 4:0 (1 < i<r )  in o and a complex number 
c + 0  such that 

r~ =c I-I v(ni) ( v ~ ) .  
l ~ i _ < r  

Hence it is enough to prove the following result. 

Lemma 3. Put 

Q(v)= 1KI v(H,) (ve~) 
1 <-i < r  

where Hi 4:0 are elements in o. Suppose 49 satisfies the condition of Theorem 1 and 

~b(v:x)=Q(v)49(v:x) (ve~, xeG) 

is a function of type II' (4). Then 49 is also of type 11' (2). 

By induction we are reduced to the case r = 1. Fix a psgp P' = M '  A' N' and 
t~w(ala'). Then 

~bp,,,(v)=v(nl) 49e,,,(v) (ve ~'(2)). 
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We have to verify that (the,, ,)~ is of type II (2). Since ~ is of type II' (2), we know from 
Lemma 9.1 that (0e', t) t is also of type 11' (2). Hence in view of Lemma 2, it would 
be enough to verify that Oe,.,(v)=O whenever v(H1)=0. 

Now'f'Lx Pe:~(a) and sew(a). Then 

Ce,~(v)=v(HOthe,~(v) (v ei~'(,~)). 

Let g(v) denote the restriction of ~ke,~(v) on M. Then we conclude from Lemma 12.1 
below that v~-*g(v) is a continuous mapping from ~ into ~ rM). 

Fix a point Vo~ ~ such that vo(H1)=0. Let v be a variable point in 5'(2) which 
tends to v o. Then if seS, 

s(g(vo)) = l im s(g(v)) = lim Iv(H1)l s(fe,~(v))=0 
V V 

by our assumption on th. Hence g(vo) =0  and this implies (Corollary of Theorem 
7.1) that ~9p,~(Vo)=0. But then we conclude from Lemma 7.4 and the corollary 
of Lemma 1 that ~e', t(Vo)= 0. 

This proves Lemma 3 and therefore also Theorem 1. 

w 12. An Auxiliary Result 

Let G = M A  be the Langlands decomposition of G and assume a = 1) R . Let th be a 
function of type 11(2) on ~ • G and ~k its restriction on ~ • M. Then we know from 
Lemma 7.5 that ~k(v)e~ ~M) for ve~.  (We note that ~ ' ( 2 ) = ~  and w(a)={1} 
in this case.) 

Lemma 1. v~--~ ~b(v) is a C ~ mapping ofq~ into ~ TM). 

This is an immediate consequence of the following lemma. 

Lemma 2. Suppose [~R={0}. Fix gl ,g2el~ and ro>O. Then we can choose a 
finite subset F of (5 (2) with the following property. Given r>O and seSe(V), we 
can choose a number c >0  such that 

ICp(gl;x;g2)~,(x)-l(l  +tr(x))r~ r(th) (xeG) 

for all functions th on G of type 11(2). 

Let P = M A N  be a psgp of G (P+G). Since I)g={0}, tO(1)RJa)=~ and 5'(2)= 
5 =  {0}. Therefore the=0 by Lemma 8.3. Moreover 

zth=7(z:,~)th (ze3). 

Therefore Lemma 23.4 of [1 (e)] is applicable. Fix a minimal p-pair (Po, Ao) in G. 
Then G = K .  ClA~.  K and there are only a finite number of p-pairs (P, A) >-(Po, Ao). 
Our assertion is an easy consequence of these facts. 
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w 13. Statement of the Two Main Theorems 

We keep to the notation of w 8. For D ~ ~ ,  s ~ 6r and r _>-0, define 

~ r ( f ) = s u p l D f l s ~ - l ( l + a )  -r ( f ~ C ~ ( ~ •  
~• 

Similarly if F is any finite subset of (~, we write 

~ r0O= Z ~ r~.  
D ~ F  

A function ~b: ~ x G --* V will be said to be of type 1(2) if: 

1) q5 is of type 11(2). 

2) For  any D~I~ and ssAe(V), we can choose r>=0 such that ~ r(~b) < oo. 

Moreover we say that ~b is of type I' (2) if it is both of type I(2) and type II'(2). 
Let o~(I'(2)) denote the space of all functions of type I'(2) and dv the Euclidean 

measure on ~. 

Theorem 1. For ~b~(I'(2)),  define 

j,(x)= ~ r (xeG). 

Then j4,e~(G, z). Fix g l ,gzeqJ  and r o >0. Then we can choose a finite subset F 
of (fi with the following property. Given r>O and seSP(V), there exists a number 
c > 0 such that 

IJ~,(g, ;x; g2)l,<c~ +~(x)) -~~ (xsG) 

for all ~er 

Define the Schwartz space ~(~)  as usual. 

Corollary. Fix a function (o on ~ x G of type II' (2) and define 

~(x)= ~(v)4~(v:x)dv (x~6) 

for ~scg(q~). Then ct~---*d?, is a continuous mapping of C~(~) into ~(G, z) and 

q~(gl ;x; g2)-- f ct(v)c~(v:gl;x; g2) dv ( x e a )  

for gl, g2~@ and ~sc~(~). 

This is an immediate consequence of Theorem 1. 
Fix ~b as in the above corollary. Then if P = M A N  is a psgp of G and ~ ( ~ ) ,  

it follows from Lemma 9.1 and the corollary of Lemma 10.7 that the function 

~pp,~(m): ~c~(v)c~v(v:m)dv (meMA)  

lies in C~(MA, ru). Extend it to a function on G by setting 

q~e,~(kmn)=z(k)dpp,~(m) (k~K, m ~ m A ,  neN) .  
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Put /5=0(P), /V=0(N), P=Pe ,  H(x )=He(x )  (xeG) and define q~P~ as in [l(e), 
Lemma 16.1]. 

Theorem 2. Let  dfi denote the Haar measure on N. Then 

dp~ P) (m) = de(m ) S 49~ (n m) dfi = ~ e-  orate)) dpe, ~ (fi m) d fi 

for m~ m A and aecg(~). 

This is a generalization of [1 (b), Theorem 4, p. 610]. (It is part of the assertion 
of the theorem that the above integrals are well defined.) 

In view of the corollary of Lemma 10.7, the following result is obvious. 

Corollary. ~b~P~=0 unless ak ~ I')R for some k~ K. 

The above two theorems contain the main results of this paper. The significance 
of Theorem 2 may be explained as follows. Extend de and q~p(V) to functions on G 
as in [1 (e), w 24]. Then Theorem 2 asserts that 

S dP(fi) -1 dfi ~ a(v)dp(F~m)qb(v:Fzm)dv 

= S (meMA) 

for ae~(~) .  This shows that the integral on the left remains unchanged when we 
replace deck(v) by its asymptotic value ~be(v ) [1 (e), Lemma 24.1]. 

w 14. Some Preparation 

Put ~ = ~(~c), 8 '  =d~ ' (2)) and let ~ =g(I(2)) denote the space of all functions 
on ~ x G of type 1(2). It is obviously enough to prove the statement of Theorem 13.1 
for seb~176 [l(e), w 22]. 

Let R + denote the set of all real numbers r > 0. In order to avoid tedious repeti- 
tions, we agree to the following conventions. The variables r, s and v shall range 
freely over R+, 5e~ and ~ respectively unless explicitly mentioned otherwise. 
Let Y be any set and f, g two functions from R+ x 6a~ x ~ x Y to R+ u {~}. 
Then we write 

f ( r , s , v , y ) .Kg( r , s , v , y )  ( y~Y) ,  

if for any given r and s we can choose a real number c (r, s) > 0 such that 

f(r, s, v, y)<c(r ,  s)g(r, s, v, y) 

for all v e ~  and y~Y. Finally the letter F will always stand for a finite set. Thus 
F c Y means that F is a finite subset of Y. 

We now use the notation of w 5 and fix numbers Co, do > 0 such that 

de(m)~(m) < c o ~M(m)(1 + o'(m)) d~ (me M~-). 
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L e m m a  1. Fix ~e31 ,  vl , v2e?Oll and D e ~ .  Then we can choose F c ~  such that 

[~hi, ~(v; D: v 1 ; m; v2)ls __< ~ r (~b) ~M(m)I(m, n)l a~ +'  e - a ~ m  

for c~eS, meMO-, H e C l a  + and l <_i<q. 

Here  ~h~, ~ is the function defined in w 5 corresponding to 4). This l emma  is proved  
in the same way as [1 (e), L e m m a  22.3]. 

L e m m a  2. Given D e ~  and Vl, v2egJll, we can choose FcCb such that 

I(pi~o(v;O:vl;m; v2)ls-<~ r(4))SM(m)(l+a(m)) a~ (ieQ ~ 

for m e M  a and ~be5 ~ 

We use the nota t ion  of the p roo f  of L e m m a  8.2. Fix H e a  +. Then  

~b/~o(v; D:Vl;m; v2) 
at) 

o v" : tH)dt  =~bi(v; D:v~;m; vz)+ ~ ~1i, H ( , O:vl;m; v 2 
0 

and our assert ion follows without  difficulty. 
N o w  suppose ~beS'. Then  for any sew(bRla) ,  tpv, s extends to a C ~ function 

on ~i x M 1 . 

L e m m a  3. Given D e ~  and vl , v2egJ/x, we can choose F ~ such that 

kbv, s(v; D: vl ;m; V2)[~(~ +a(m)) a~ 

for meM1,  q~eg' and seW(bRla). 

In view of L e m m a s  3.3 and 7.3, this is an immedia te  consequence of L e m m a s  2 
and 22.2. 

Corollary.  I f  dper then for any sem(bRla), (c~v,~) ~ is a function of type 1'(2) 
on ~ x M ~ .  

This follows f rom L e m m a s  3 and 9.1. 
N o w  let us use the nota t ion  of L e m m a  10.5. 

L e m m a  4. Fix ~e3~ ,  vl,  VE e gJll and r 1 >=0. Then we can choose F c(fi  such that 

I ~ ( v : v  I ;m exp H ;  ve)l~(1 + Iv[) ~ <~ H)[a~ -~'(m 

for m e M  +, H e  Cla +, (oeg. 

As before this follows f rom L e m m a  5.2. 
N o w  assume tha t  P C  G. Fix a compac t  set f2 in a + and choose ~o > 0  such tha t  

flv(H)>2e o for all H e O .  Select b ( 0 < 6 < � 8 9  as in w 10 and put  e = f e o .  

L e m m a  5. Given vl, v2egJl I and r 1 >=0, we can choose F c (~  such that 

[dv(m exp Tn)dp(v: v' 1 ;m exp T H  ; v'2)- ~)v(v: vl ;m exp T H  ; Va)l,(1 + Iv ly  ' 

<~ ~ , (~b) ~M(m)(1 + a (m)) a~ +~ e - ~  r 

for m e M  +, Her2, T>=O and qbe~. 
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This is proved in the same way as Lemma 10.8. 
Now fix r 1 > 0  such that 

[. (l +[vl)-*'dv<oo. 

If the#' ,  we know (Corollary of Lemma 10.7) that 

sem(bala) 

Put j(th : x) =j~(x) (x e G) and 

j(thv,~:rn)= ~ thp,~(v:m)dv (meM1) 

for sero(1)Rla ) and the#' .  

Corollary. 

Idp(mexp TH)j(th:v'l;mexp TH; v'2)- ~ j(thp,~:vl;mex p TH; v2)l~ 
sem(bRla) 

< ~ ~ (th) S~(m)(1 + a (m)) d~ +~ e-~ T 

for meM;-,  n e o ,  T>O and the~'. 

This follows immediately from Lemma 5. 

w 15. Proof of Theorem 13.1 

We now come to the proof of Theorem 13.1. It is clearly enough to prove the second 
part of the theorem. 

We proceed by induction on dim G. First assume that prk G > 0 and let G = MA 
be the Langlands decomposition of G. Then bR = m  n DR + a  where the sum is 
direct. Let ~1 and ~2 be the subspace consisting of all v e ~ which vanish identically 
on m ~ DR and a respectively. Then ~ = ~1 + ~2 where the sum is direct. We note 
that ~3 i = ~3(~ic ) c ~3 = ~(~c) [1 (c), p. 540]. Let d vj denote the Euclidean measure 
on ~i so normalized that dv=dvldv  2 ( v=v l+v  2, v ie~ i, i=1,2) .  Since a c 3 ,  it 
follows from our assumptions that 

th(V 1 +v2:ma)=~9(v 1 +v2:m)e (-1)t/2~1(1~ (meM, aeA) 

for the# '  and vie~i. Fix vl, v2 e~Y/and u e ~ .  Then 

j~(v I ;ma; v 2 u) = S ~b(Vl + v2: vl; m; v2) u(( - 1) 1/2 vl)e (-l}l/2vlt1~ dv 1 dv 2 . 

(We regard u as a polynomial function on ~ c  in the right side.) Now fix ro >0. Then 
we can choose peS(~l~) such that 

p ( ( - 1 ) l n n ) > ( l  +llnll) ~~ (neo) .  

Also we can select a polynomial function p~ on ~ such that p~ > 1 on ~ and 

~. p~-~ dv~ < 00. 
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Hence it is obvious  that  there exists an element D 1 e ~1 such that  

[j~(v x ;ma; v 2 u)[~(1-4- a(a)) ~~ ~ sup [ ~ ~b(v 1 + v 2 ; D1 :v, ;m; v2) dv2l ~ 
vle~ ~2 

for meM,  a e A  and q~ed ~'. 
On the other  hand d im M < d im G and so the induct ion hypothesis  is appl icable 

to M. Let 8 ~  be the space of all functions ~k on ~2 x M o f  type [(2).  Then  we can 
choose a finite subset F 2 ofg)l = ~2  | 9J/~z) such tha t  

I ~ I~(V2:Vl ;m; v2)dvzls<~ +a(m) )  -~~ 
~2 

for m e M  and ~O ~g~t.  
We regard 9"J/as a subalgebra  of ~i = 33 | 0b ~2). Let F denote  the subset of ~i 

consisting of all elements of the form DzD 1 (DzeF2). Fix ~bed ~', v I e ~ l  and put  

~k(v2:m)=c~(Vl +V2; Dl:m ) (v2e~2 ,  meM).  

Then  ~ , e d ~  and so we conclude from the above result tha t  

Ijq,(vl ;ma; v 2 u)ls-<~ r(c~)Z(m)(1 +tr(m))-~~ (1 + a(a)) -r~ 

for meM,  aeA  and qSeg'. This obviously implies T h e o r e m  13.1 in this case. 
So now suppose prk G = 0. The  case G = K being trivial, we may  assume that  

G is not compact .  Fix a minimal  p-pair  (Po, Ao) in G and let S + be the set of all 
H e C1 a~- with I}H II = 1. Fix H 0 e S + and let F o be the set of all simple roots  of(Po, Ao) 
which vanish at H o . Put  (P, A)=(Po ,  Ao)vo. Then  Hoea +. Fix a compac t  neighbor-  
hood f2 o of H o in S § such that  

~(H)>-_~(Ho)/2 (He~o) 

for every root  e of (P0, Ao). Pu t  e o = flp(Ho)/4 and e = 6 eo where 6 is defined as 
in w 10. Since 

e x p t H = m t e x p ( t H o / 2  ) (Hef2o, t>O), 

where m , = e x p t ( H - � 8 9  ~, we get the following result f rom the 
corol lary of  L e m m a  14.5. 

L e m m a  1. Given vl , V2E~J~I, w e  can choose F cCfi such that 

[de(exptH)j(q~:V'x;exptH; v'2)- ~. j((ae, s:vl;exptH; v2)ls 
sew(bala) 

-<~ r (~b) SM(ex p t n ) (1  + t)4+re -~' 

for Hef2o,  t >O and (oeg'. 

On the other hand since prk  G = 0 and H 0 ~: 0, it is clear that  d im M 1 < d im G. 
Moreove r  for sew(bRla)  and ~beg',  (~bp,~) ~ is a function of type I ' (2) on ~ • M~ 
(Corol lary  of L e m m a  14.3). Hence  if we take into account  L e m m a  14.3 and apply  
the induction hypothesis  to M~, we get the following result immediately.  
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Lemma 2. Fix vl, v2egJll and ro>O. Then we can choose F c l~  such that 

[j(~be, ~: v 1 ; m; v2)ls < ~ r (dp) SM (m) (1 + a (m))- ro 

for seto(DRla), m e M  1 and c~eg'. 

Combining this with Lemma 1 and standard inequalities relating ~ and ~M, 
we get the following result. 

Lemma 3. Given vl , v2egJl 1 and r o >0, we can choose F c f~  such that 

[j(~b: v 1 ;exp t n ;  V2)I,'~~ r (~b)S(exp tn)(1 + t) -r~ 

for Hef2o, t~O and (/)e$'. 

On the other hand the following result is an immediate consequence of 
Lemma 5.2. 

Lemma 4. Fix D e ~,  gie15 (1__<i<4) such that gl e15 n and g4e0(n) 15. Then 
we can choose F ~ if5 such that 

Z ]~b(v; D:gi~ exp tH; gi+l)l~<~ tH)(1 +t) 'e  -2'~ 
i = 1 , 3  

for c~e~, Her2 o and t>__O. 

Now fix a polynomial function p on ~ such that p > 1 on ~ and 

~ p - l  dv < oo. 

Then taking D = p in the above lemma, we get the following corollary. 

Corollary.Let gl (1 < i<4) be as above. Then we can choose F ~(~ such that 

[j(qS: gi ~exp t n ;  gi+l)[~ < ~ S(exp tn)(1 + t) ~ e -2~~ 
i = 1 , 3  

for 4)e~, Hef2o and t ~O. 

Now fix gl, g2 e15. Since G = K .  CIAff.  K, S § is compact and 

j4~(gl ; k l l  ak2; - 1 .  k l .  . k2 g2)=Z(kl )J,(gl ,a ,g2)z(k2)  

(kl, k2eK,  aeAo ,  ~beo~'), in order to prove Theorem 13.1, it would be enough to 
verify the following lemma. 

Lemma 5. Fix gl, g2 e ~  and HoeS  +. Then we can choose a neighborhood [2 o 
of H o in S + satisfying the following condition. Given r o ->_0, there exists F c 1~ such 
that 

IJ(4~: hi; exp tH; g2)l,~(%F,,(~b) E(exp tH)(1 + t) -r~ 

for ~beg', Her2 o and t >=O. 

Since 

15 = StY1 9l  = 0(91) 9-Jll ~1 
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and z is differentiable, we may without loss of generality assume that gl egY/1 91 
and g2e0(91) 9J/1. Then we can choose vlegJl~(i= 1, 2) such that 

gl -Vx effin, g2-v2eO(n) ff). 

Our assertion now follows immediately from Lemma 3 and the corollary of 
Lemma 4. 

This completes the proof of Theorem 13.1. 

w 16. Proof of Theorem 13.2 

We shall now begin preparation for the proof of Theorem 13.2. Fix a function 4~ 
on ~ x G of type 11'(2). We use the notation of w 10 and assume, as we may, that 
P +  G. We also agree to the convention that the variables v, fi and m shall range 
freely over ~, ~7 and M 1 respectively unless explicitly stated otherwise. Put  

~(v: t :  m)=de(m ) ~ (b(v: him; r/i)| 
1 <_i<__q 

and consider the obvious pairing [l(e), w of V|  U*, U into V given by 

<v| (veV, u*eU*,ueU). 

For any h6Cr U) =cg(~) | U, define 

r  t :  m) = S ( r  t :  m), b(v)) dv 

and put 

Fb(m)=f(b: m)= Sr fi: m)dfi. 
N 

It follows from the corollary of Theorem 13.1 and [l(e), w 16] that this integral is 
well defined and in fact we have the following result. 

Lemma 1. b ~ F b is a continuous mapping of c~(~, U) into C~(M1, zM). 
For ( e 3 1 ,  define gi((: v) (1 <i<q) as in w 10 and put 

~(v: t :  m)=de(m) ~ qS(v: tim; gi(~: v))| 
1 <-i<-q 

Lemma 2. Let ( ~ 31. Then 

~(v: t :  m; ( )=~(v :  t :  m)F~(0+ ~(v: t :  m). 

This is proved in the same way as Lemma 10.1. 
Now put 

~(b:  t :  m)= ~ (~ (v :  t :  m), b(v)) dv 

for ~e31 and b e ~ ( ~ ,  U). 

Lemma 3. Let ~ E31 and beCs U). Then 

~(b: fi: m)d t=O.  
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We know (see w that v~--~gi((: v) is a polynomial mapping of ~ into fiffi. 
Therefore (Corollary of Theorem 13.1) the above integral is defined and it would 
be enough to verify the following result. 

Lemma 4. Fix X eff, g~ff~ and b~C6(~). Then 

.fdfi~b(v) ~(v: tim; Xg) dv=O. 

Put 

q/(x)= ~ b(v) ~k(v: x; g) dv (xeG). 

Then ~beC~(G, V) (Corollary of Theorem 13.1). Let 

f (x )=  ~b(Flx)d~i (x~G). 
N 

Then [l(e), w 16] f e  C~176 V) and 

f(x; X)= ~b(fi• X)dh. 

Therefore since f ( t  x)= f(x) and X m ~ ,  we conclude that 

f(m; X)= f (X  '~ ~m)=0. 

This proves the lemma. 
For any b~Cr U) and ~ 3 1 ,  let F(~)b denote the function v~--~(Yl(0)b(v) 

from ~ to U in the notation ofw 10. It is clear from Corollary 3 of Lemma 3.5 that 
for a fixed ~, bv--~ F(~)b is a continuous endomorphism of cg(~, U). 

Lemma 5. Let b~Cr U) and ~ E31. Then 

F(b: m; 0 = F ( F ( ( ) b :  m). 

This is an immediate consequence of Lemmas 2 and 3. 
Define OQ and ~e(ie~ as in Lemma 3.4 and put 

ib(v)  --- ffv(ie(v)) b(v)  

for b~Cr U). Then it is clear from Lemmas 3.3, 3.4 and Corollary 3 of Lemma 3.5 
that b ~ ib is a continuous endomorphism of c~(~, U) and 

b= ~ib. 
ieoO 

Put OQO =OQ ~ Qo as in w 10 and define 

i~ooo 

b~ y' ,b V)). 
i~oOo 

Lemma 6. Let b ~ ( ~ ,  U) and i~~ Then F(ib: m)=0 unless i~~ ~ Hence 
F(b: m)=F(b~ m). 

Put 
F(b: m: #)= J" F(b: m exp H) e -r dH 

t l  
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for beCff(~, U) and #ea*.  (Here d H  denotes the Euclidean measure on a and a* 
the dual of a.) It follows from Lemma 1 that for (m, #) fixed, 

b---~ F(b: m: #) 

is a continuous mapping of ~(~,  U) into V. Moreover we conclude from Lemma 5 
that 

F(F(H)  b: m: # ) = ( - 1 )  1/2/~(H) F(b: m: y) 

for Hea.  
Now fix m o e M 1 , I~ e a*, i e OQ and put 

T(b)=F(ib: mo: #) (be~(~ ,  U)). 

Since dim U < oe, T may be regarded as a tempered distribution on ~ with values 
in V| U* (i.e. a continuous linear mapping o f ~ ( ~ )  into V@ U*). 

L e m m a  7. Fix  Hea ,  beC6~(~, U) and put 

b'(v)= [ I  { ( -1 ) l /2  y ( H ) - t s ,  Av(H)} " ,b(v) 
teWo(s~, A) 

in the notation ofw Then T(b')=0. 
It follows from what we have seen above that 

T(F(H) b ) = ( -  1) 1/2 #(H) T(b) (He a, b e ~ ( ~ ,  U)). 

Hence our assertion is an immediate consequence of Corollary 5 of Lemma 3.5. 
Now suppose T:I:0. Then if v o e S u p p T ( v o e ~ ) ,  it follows from Lemma 7 that 

I-[ {(- 1) 1/2 # ( H ) - - t s  i Avo(H)} = 0  
teWo(si. A) 

for all H e a .  Since ~RtsiA~o(H)=siAY(H), this implies that ie~ ~ Therefore if 
iq~~ ~ we conclude that F(ib: m: # ) = 0  for all m e M  1 and yea*.  The statement 
of Lemma 6 now follows immediately by Fourier transform. 

Now introduce the structure of a Hilbert space on U so that (ul, ..., Uq) be- 
comes an orthonormal base. Moreover for any Ee  End U, let IIEII denote the 
Hilbert-Schmidt norm of E. 

L e m m a  8. Put  

E(H:  v) = e rv~m F~(e~ (H e a). 

Then for a given D e  ~(~c),  we can choose c, r >O such that 

IIE(n : v; D)ll <c(1 +lvl)r(1 + Ilnll)" 

for  all H e a .  
Set 

p(v) = 1~ ms,, x(si A~) 
i eOQ o 

in the notation of w Then p is a polynomial function on ~ and by Lemma 3.3, 

Ip(v) l > I tox(2) l q~ > 0 
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where qo is the number of elements in oQo. Put E~176 Then for a fixed 
H e a ,  v~-~F~(H) and v~-~p(v)E~ are polynomial mappings of ~ into End U 
(see w 3). Moreover 

E(H : v) = e rv(m ~o(v). EO(v) 

and all eigenvalues of F~(H)E~ are pure imaginary (Corollaries 2 and 5 of 
Lemma 3.5). Hence our assertion follows without difficulty from [ 1 (a), Lemma 60]. 

Now fix H0ea , a e ~ ( ~ ,  U) and for any t~R, put 

at(v) = E (  - trio: v) a(v). 

Then it follows from Lemma 8 that t~--~a t is a C ~ function from R to ~(~,  U). 

Lemma 9. Fix m e M  I and #ca*.  Then 

F(a: m: p)=F(a~ m: #)=et-1)'/~t~tH~ m: #) 

for t eR .  
Put 

T(b)=F(b: m: #) ( b ~ ( ~ ,  U)). 

Then, as we have seen above, T is a continuous linear mapping of ~(~, U) into V 
and 

T(r(/~) b) =(- 1) 1/2/~(H) T(b) (Hea). 

Now let 

f ( t )  = T(at) (t e R). 

It follows from the definition of a t that 

dat/dt = - F(Ho) at 

and therefore 

df/dt  = - ( - 1) 1/2 #(Ho)f " 

This implies that 

f(t) = e- (- i)'/5 t~ (Ho)f(0) ' 

which is equivalent to the required result, if we take Lemma 6 into account. 
Now assume that Hoea +. Then it is clear from Lemma 2 that 

d4~(at: h: m exp tHo)/dt 

= --q~(F(Ho) at: h: m exp tHo)+~(at:  h: m exp trio; Ho) 

= ~Ho(a,: h: m exp trio) (teR). 

Put  ~ =  ~Ho and for any bCr U) and 0~e C~(~7), define 

~(b: 0~: no: m)=  ~ ~(~) ~(b: no n: m) d~, 
s 

~g(b: 0c: no: m)= ~ ~(h) T(b: no n: m)d~ 

for ~o~]q. Then the following result is obvious. 
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Lemma 10. d~(a,:~:~:m 
and teR.  

Let us now put 

4'~(~: x)=4~(~x) (xe6) 

for beCr and define 

~,(~: ~o: x)= ~(~) q~(~o n: x) d~ 
/7 

for ~e C~ (~7). Then if Xef i  and geffi, it is clear that 

~b~(fim; Xg)=q~(h; X": m; g). 

Since X ' e ~ ,  it follows that 

q5~(~: ~: m; Xg)=  - ~b~(X" ~: fi: m; g). 

Put/~p(Ho)=2s so that e>0. 

33 

exp tHo)/dt= r cr fi: m exp trio) for ~e C~(lq) 

(~oeN, xeG) 

Lemma 11. Fix moeM1, ~e C7(A7), Xeff, g e ~ ,  seSa(V) and ro>O. Then we 
can choose a continuous seminorm t on cg(~) such that 

[q~b(0~: ~ :  mt: Xg)ls<t(b)e-ZEtS~ro(hTlomt)dh o 
co 

for t >O and beCg(~). Here mt=rno exp trio, 

Ero(X) =S(x)(1 + o(x)) -r~ (xeG) 

and co = Supp c(. 

This follows from the corollary of Theorem 13.1 and the above remarks. 

Corollary. We can choose c > 0 such that 

[ 7/(at: or fi: mr) Is < c e-  ~t de(mr) ~ Ero(fi rio mr) dno 
oJ 

for t >O. 

This follows from the corollary of Theorem 13.1 and the above remarks. 
Now fix ee  C~(AT). Then it follows from the above corollary and [l(e), w 10] 

that 
oo 

~ b 7J(at ' 0r fi: mexptHo)l~dt<oo 
0 

for seSP(V). Put  

r174 ~: fi: m) = q~(a~ cr fi: m)+ S ~(a~: cr fi: m exp tHo)dt. 
0 

Then it follows from Lemma 10 that 

q~| 0~: fi: m)= lim ~(at: 0(: fi: m exp trio). 
t ~  -F oo 

Lemma 12. Fix ~e C~(lq) such that ~ ~(fi) dfi= i. Then 
/7 

F(a: m)= ~ ~oo(a: 0(: ~: m)dfi. 
17 
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It follows from [1 (e), w 10] and the corollary of Lemma 11 that 

oo 

j" dh I I ~(at: ~: n: m exp tHo)]~ d t < 
/7 o 

for s eSg(V). Therefore we conclude from the corollary of Theorem 13.1 that 

I~| ~: fi: m)l~ dfi< oo. 
17 

On the other hand it is clear from Lemma 3 that 

7~(at: ~: fi: m exp tHo)dfi=O. 
/7 

Therefore by Fubini's theorem we obtain 

�9 ~(a: e" ~: m)dfi= f q~(a~ c(: ~: m)dfi 

= F(a~ m) = f (a:  m) 
from Lemma 6. 

Now put 

dP~ fi: rn)=~(v: fi: m)E~ 

~I'~ fi: m)= ~(v: fi: m)E~ 

where E~ = 1 | F~*(e~ Then 

�9 (at: fi: m exp t r io)= f (q~(v: fi: m exp trio), at(v)) dv 

= ~ (4~~ fi: m exp trio) e -try(H~ a(v)) dr. 

Lemma 13. Fix x e G ,  Xegt,  ge (5  and seSP(V). Then we can choose c, r>=O 
such that 

i(h(v: x exp trio; Xg)ls  <c(1 + Iv l )  r e -2~t ~(x exp trio)(1 + t) r 

for t>=O. 

This follows immediately from the fact that 

~b(v: xt; Xg)=~b(v" Ad(xt) X;  xt; g) 

where xt = x exp t H o . 

Corollary. Fix ~elV, m s M  1 and seSa(V). Then we can choose c, r>O such that 

I ~~ fi: m exp trio) e- 'r '(n~ + Ivl) ~ 

for t_>0. 

This is an immediate consequence of Lemmas 13 and 8. 
On the other hand it follows from Lemma 2 that 

~~ fz: m exp THo)e  -rr~(n~ 
T 

=~~ fi: m)+ ~ q'~ ~: m exp tr io)e  -try(u~ dt. 
o 
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Moreover we conclude from the above corollary that 

~] ~P~ fi: m exptHo)e-tr~(n~ dt < oo 
0 

for s ~ ( V ) .  Therefore if we put 
o0 

~oo(v: ~: m)=~~ ~" m)+ ~ ~P~ fi: m exp tHo)e-'r~m~ 
o 

it follows that 

[~o(v: n: m)-qb~ n: m exp THo) e-Trv(H~ 

< ~[ ~Y~ fi: m exp trio) e-'r~(n~ dt 
T 

for T > 0  and s~6e(V). Hence we get the following result from the corollary of 
Lemma 13. 

Lemma 14. Fix fi~N, m ~ M  and put 

�9 ~(v: fi: m)= lim ~~ Fz: m exp trio)e -tr~m~ 
t ~ + o 0  

Then for any s~S~(V), we can choose c, r >O such that 

](/ioo(v: fi: m)-~~  gz: m exp THo)e-rrv(n~ +]v[)" 

for T>O. 
Now define 

�9 ~o(a: n" m)= lim qb(at: fi' m exp trio). 
t ~  d- 00 

It is clear that this limit exists and in fact 

q~(a: fi: m)= lim ~ (~~ ~' m exp trio) e -try(n~ a(v)) dv 
t ~ + o o  

= ~ ( ~ ( v :  fi: m), a(v)) dv. 

On the other hand, let us put 

qb~o(v: m)=~oo(v: 1: m) 

= lim ~(v: m exp trio) E~ e -tr~m~ 
t ~ q- ~x3 

Extend this to a function on ~ x G by setting 

~ ( v :  kmn)=~(k)  ~o~(v: m) (kEK, meM1, n~N). 

Lemma 15. ~ ( v  fi: m)=e -pro(n)) ~oo(v: tim). 

It is obvious from Lemma 14 that for fixed fi and m, ~(v: ~: m) is a continuous 
function of v. Therefore, in view of its definition, the same holds for ~o~(v: ~m). 
Hence it would be enough to verify the above relation for v~ ~'(2). 

Fix ve~'(2) and let e*(v) ( l < i < q )  be the base of U* dual to ei(v ) ( l < i < q ) .  
Then 

ui | u* = ~ ei(v) | e*(v). 
i i 
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Hence 

u i | u* F~* (e~ e - t  r:~no) __ ~ e - t  rv ~no)F~(eO(v)) el(v) | e* (v) 
i i 

= ~ e -ts'Avm~ ei (v)Qe*(v)  
i~Q ~ 

from Corollary 1 of Lemma 3.5. Hence 

�9 ~ ~: mr)e -trv~H~ 

= de(mr) ~ Wo i (si A v) - 1 e-ts, av ~no) (o (v: ~mt; ~li(v)') | e* (v), 
i~Q ~ 

where m t = m e x p t H  o and tool, ~i(v) have the same meaning as in w and w 
respectively. 

Now fix i~ QO. Then (see w 6) 

~bioo(v: m)= lim de(mr) ~b(v: mr; ~li(v)') e -ts'av~H~ 

and 
~bi| m e x p H ) = c ~ i ~ ( v :  m ) e  ~a~m (H~a) 

from Lemma 6.2. Therefore 

lim {de(mr) q~(v: m t; ill(V)' ) - ~i ~ (v : mr)} = 0 
t ~ + o 9  

and we conclude from [1 (e), Lemmas 21.3 and 24.1] that 

C~e(v: m; rh(V))=c~i~(v: m). 

Extend ~bi~o(v ) to a function on G by setting 

c~ioo(v: k m n ) = z ( k )  qSi~(v: m) ( k ~ K ,  m s M  1, n e N ) .  

Then we conclude from [1 (e), Lemma 24.1] that 

lim {de(x~)tp(v: x,; rh(V)')-~blo~(v: x~)} =0. 
t ~  q- or3 

Here x is a fixed element in G and x t = x exp t H  o . But this implies that 

lim de(x,) c~ (v: xt; rl~(v)') e -  '~' a~tno) = c~i | (v: x) 
t ~ + o O  

and therefore 
�9 | ~: m)= lim ~~ 7t: mt)e  -tr~r176 

= e- p oath)) ~, mo 1 (si A~)- 1 ~b i o~ (v: fi m) | e* (v). 
i~ QO 

The assertion of the lemma is now obvious from the definition of ~o (v: m). 

L e m m a  16. e*(v)= ~, ui(s jA~)u* ( l < j < q ) f o r v ~ ' ~ ( ) , ) .  
1 < i < q  

By Corollary 1 of Lemma 3.5 

u i = C ( u i ) l =  ~, F~(ui)ej(v) 
l<--j<q 

= ~ ui(s~ A~) ej(v). 
J 
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Therefore 

ul | u* = ~ ui(s j A~) ej(v) | u*. 
i i , j  

But since 

Y', ui | u* = ~ ej(v) | e* (v), 
i j 

our assertion is now obvious. 

Corollary. Let v E ~' ( 2 ). Then 

~ ( v :  m)= ~ ~ Wol(siAO -1 (9io~(v: m)| 
i~Q ~ i < j < q  

This follows immediately from Lemma 16 and what we have seen above. 
Now put 

�9 ~(a: m)= S (~oo(v: m), a(v)) dv. 

Then it follows from Lemmas 7.3, 8.2 and the corollary of Theorem 13.1 that 
~o(a)e~(M1, rM). Hence we conclude from [1 (e), Lemma 32.1] that 

e -~ I ~ ( a :  ~m)ls d~<  ~ (seAe(V)), 

provided ~oo(a) is extended to a function on G in the usual way so that 

qbo~(a: kmn)=z(k) ~o~(a: m) (keK, m~Ml,  n~N). 

Now put, as before, 

@o~(a: fi: m)= ~ ( ~ ( v :  ~: m),a(v))dv. 

Then it follows from Lemma 15 that 

�9 ~(a: ~: m)=e -~ ~oo(a: ~m) 

and therefore from Lemma 12 that 

F(a: m)= ~ e -~ ~oo(a: ~m)d~. 

Substituting the definition of F(a) we obtain the following result. 

Lemma 17. Let a~C6(~, U). Then 

q~(a: n: m) d~ = ~ e -p(H(~)) ~ ( a :  ~m) d~. 

In order to prove Theorem 13.2 we take a(v)= a(v) u~. Then we claim that 

( ~ ( v :  m), a(v)) = cr (or(v: m). 

Since both sides are continuous in v, it is sufficient to verify this for vet'(A). But 
u~ = 1 and so this is an immediate consequence of Lemma 7.3 and the corollary 
of Lemma 16. The statement of Theorem 13.2 is now obvious from Lemma 17. 
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w 17. Application to Eisenstein Integrals 

Let U be an open subset of ~c. A function f :  U x G--, V will be said to be of 
type H x Coo if 1) it is of class Coo on U x G and 2) for all x s G the function v -+f(v: x) 
from U to V is holomorphic. 

Fix a psgp P1 = M A ~  in ~'(bR). Then for any ~k~ C~176 ZM), we consider the 
Eisenstein integral E(P,: ~) [l(e), w Clearly it is a function of type H x Coo on 
~cxG.  

Put 

s~(ff) = sup 16~ Is E~I 
M 

for seAa(V), 6E93/t2) =931| and ~be Coo(M, V). Moreover let 

J~F 

for any finite subset F of~J~ {2). If vs{}~, define v R and v, in ~ by v=vR+ ( -  1) 1/2 V l . 
Then it is easy to see that we can choose c o > 0 such that 

I~R(- 1) 1/2 v(He,(x))l<Co Iv, l ~(x) (Ve~c, xea) .  

Extend the norm on ~c by setting 

Ivl2=lvRl2+lvll 2 

and put 

I(v, x ) l=( l+ lv l ) ( l+a(x) )  (vea4c, x~G). 

Lemma 1. Fix gl, g2e~  and De~(q~c). Then we can choose r>=O and a finite 
subset F of 991 ~2) with the following property. For any seAa(V), there exists a 
number c > 0 such that 

[E(P1 : ~: v; D: g l ; x ;  g2)[s =_~ CSF(~//)~(X)I(V, X)l r exp {c o Iv, l a(x)} 

for all ~ ~ Coo(M, TM), V e ~  and xeG. 

It is enough to consider the case D = 1. The general result would follow from 
this if we fix x, consider the complex polycylinder with center v and radius 
(1 + a(x)) -1 and apply the Cauchy integral formula. 

We drop the subscript and write P=P~, N = N 1. Put  

O~(x)= O(x) exp {((-- 1) 1/2 v--p)(H(x))} (x6G) 

in the usual notation [1 (e), w 19] where p =pp and H(x)= He(x). Then it is obvious 
that 

IE(P: ~: v: gl ; x; g2)[s~ ~ I ~k,(gl ~ xk;  g~)ls dk 
K 

for s~SP~ [l(e), w But if x = k m a n  (k~K, m~M, a~A, n~N), it is clear that 

~k~(gl;kman;g2)=z(k) k-I ~(ga ;man;g2). 

Moreover 

ffi=ffi n + RgJl~ =ff~ n + ~ l  R. 
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Therefore  for given gl, g2 ~ ffi, we can choose r > 0 and ul, vi e g Y/(1 < i <  p)such that  

l~kv(gl; kman;  g2)ls< ~ IqJ(ul m; vi)ls(l+lvl)" e -tv'+p)a~ 
l < i < p  

for all v ~ c ,  s ~ ~  and (k, m, a, n)~K • M x A x N. The  required result now 
follows immediately from [1 (e), Corol lary  of L e m m a  30.1]. 

Let  ~ b . 0  be an eigenfunction of 3M in C~(M, ZM). Then  [l(e),  Theo rem 18.3] 
there exists a regular element 2 ~ ( -  1) 1/2 I)* such that 

Put  ~b=E(P1 : ~b). Then  it is obvious from Lemma  1 and [l(e),  L e m m a  19.1] that 
~b defines a function of type II(2) (see w 8) on ~ x G. 

Let  P = M A N  be another  psgp in ~([R). We shall now investigate the be- 
havior  of 

de(a) qb(v: ma) (me=M, a~A) 

as a --v-* oo. The case P = G being trivial, we assume that a = bg does not lie in the 
center of g. 

We now use the nota t ion  of w 5 and put  

I(v, x, n)l---I(v, x)l (1 + HHII) 

for v ~ c ,  x~G and H~a. Note  that a=I3RCa o and therefore we may assume 
that  ko=  1 (see w Then  y centralizes a and therefore A , = 2 r + (  - 1) ~/2 v. 

Lem ma  2. Fix ~ 3 1  and Vl, v2~gYR. Then we can choose r>O and for each 
s~Sa(V) a number c ( s )>0  such that 

Iffi,~(v: vl; m exp H; v2)[, 

< c(s) 3M(m)I(V , m, H)I ~ e-P~'ln)exp {Co lVxl(a(m ) + liB II)} 

for v E ~ ,  m 6 M  +, H ~ C l a  + and l < i < q .  

This is proved in the same way as Lemma  6.1. 
Define 2 i (i ~ Q) and Q~ as in w 6. Fix two positive numbers  e, c5 and an element 

HoEa + with Ilnol[ = 1. Let ~ ( 6 )  denote  the set of all v e ~  with Iv~l <,~. By choosing 
e, fi sufficiently small, we can assume that:  

1) f lv(no)>4e, 

2) [2i(Ho)l>>_3e if 2i(Ho)~O, 

3) Isl v1(H0)l +Co Ivll <e  
for ieQ and v ~ ( 6 ) .  Put  

~k~ m: t)=l[li, no(V: m exp trio)e -'~'a~r176 

Fix s~S~(V) and v~gJ/x. Then  it follows from L e m m a 2  that if 2~(Ho)>0 , the 
integral 

oO 

]" ]~~ m; v: t)[, dt 
0 
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converges  uniformly as (v, m) varies within a compac t  subset of ~c(6) • M1. Hence  
by L e m m a  5.3, we can define 

~bi| m ) =  lim ~bi(v: m exp t r i o ) e  -ts'A~(H~ 
t ~ + O O  

for (v, m)e ~c(6) x M 1 . T h e n  q5 i oo is a function of type H x C ~176 

L e m m a  3. F i x  i such that 21(Ho)> 0. Then 

fo r  v e ~c( 6) and m e  M 1 . M o r e o v e r  rki oo = 0  unless i ~ Q ~ and si -1 a = a. 

I f  2i(Ho) > 0, it is clear that  

9t si A~(Ho) - co I v~l > 0 

for v ~ ( 6 )  and therefore ~b~oo = 0  from L e m m a  1. So now assume that  2 i (Ho)=0.  
Then  it follows easily f rom L e m m a s  6.2 and 6.3 that  our  s ta tement  is t rue if v~ ~. 
The  rest is obvious  by ho lomorphy .  

Corollary.  q~ioo(v: m expH)=~bloo(v: m ) e  s*av(It) for  m e M  1, H e a  and v ~ r  ). 

This  is obvious  f rom L e m m a  3. 
Define ~bio o = 0  if 21(Ho) < 0. 

L e m m a  4. F i x  v ~ ( 6 ) ,  m ~ M  1 . Then 

[~bi(v: rn exp THo)-dpioo(v:  m exp THo)ls 

~e-2eT l~gi(V: m) l s+ S I~ki, no( v: m exp trio)l, e 2Et dt  
0 

f o r  seS: (V) ,  T > O  and i e Q .  

Put  m t =  m exp tHo ( teR) and  first suppose  21(Ho) > 0. Then 

0o 

~b i oo(V: roT) = ~)i(V: roT) -t- ~ I]/i, Ho(V: m,) e - ( ' -  T)si a~(no) dt  
T 

f rom L e m m a  5.3. M o r e o v e r  

91 si A~(Ho) = 21(Ho) - si v t (Ho)  > - e. 

Hence  
o0 

[(pioo(V; mT)--~)i(V; mT)[,< f ]~i, Ho(V: m , ) ]  e e(t-T) dt 
T 

and  this implies the required inequality. 
N o w  suppose  2 i (Ho)<0.  T h e n  ~b i oo = 0 and 

T 

(~i(V: mT) = ~gi(V: m) e Ts' Av(Ho) ..[_ ~ ~]i, HO( 1:: mr) e (T-O s, Av (Ho) dt  
o 

f rom L e m m a  5.3. But 

91 sl A~( n o )  = 2i(no) - si v l( H o) < -- 2 e 
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and therefore 

[q~i(v: m exp THo)[s<e  -2~T ]4~i(v: re)Is+ S ]Oi, no(V" m exp trio)l, e 2~' dt  . 
0 

This proves the lemma. 
Let  ~;(~, 2) denote the set of all ve~c(3) where w ( 2 + ( -  1) 1/2 v)+0,  so that  

(see w 3) 

~c(a,  ,~) = ~c(a)  r~ ~'( , l ) .  

For  any sew=to (a ) ,  there exists a unique index i e Q  such that s = s F  1 on a 
(Lemma 7.1). Define 

~p,s(V: m)=wOl(S  i AO -1 dpioo(v: m) 

for ve ~'~(~, 2), m e M  1 . Note  that  

si A v ( n )  = A v ( s n )  = M(sn)  + ( - 1) 1/2 v ( s n )  

= ( -  1) 1/2 v ( s n )  ( n e a )  

since y centralizes a and 2 = 0 on a = hR. This shows that i e QO. Therefore  the 
following result is obvious from L e m m a s 2  and 4, Corol lary  of L emma  3 and 
Lemma  5.1. 

Lemma  5. Le t  ve~'r 2), m e  M 1 and sEAP(V). Then 

l i m e  "' }de(mr) qS(v: mr ) -  ~ ~be,~(v: m) e ~- t)~/2t~t*U~ = 0  
t ~ + o o  sew 

where rn t = m exp t H o . 

Corollary. Fix  v eq~;'r 2) and So e to and suppose v1(s o H o ) <  v1(sHo) for  every 
s 4= So in to. Then 

lim de(mr) ~b(v: mr) e -~-  1)l/2tv(s~ so(~Y: m) 
t~+oO 

for meMl. 

Since ]v1(So Ho) ] _-< e, this follows from Lemma  5 if we observe that  

9~( - 1) 1/2 {v(sHo) - v(s o Ho) } = v,(s o Ho) - v1(sno) < 0 

for s 4: so. 

w 18. The c-Functions 

Now assume that  dim ~ < oo and z is unitary. Put  

L = ~ zg). 

Then by [1 (e), Theo rem 27.9], dim L < 0o. Let ]. [ denote  the norm in the finite- 
dimensional  Hilber t  space V. Put  

]10112 = S [~b(m)[ 2 dm 
M 

for 0 eL .  This  defines the structure of a Hilbert  space on L. 
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Let ~2(M) be the discrete series of M (i.e. the set of all equivalence classes of 
irreducible, square-integrable representations of M). For fOESz(M), put 

L(a)) = L c~ (-~o, | V) 

where ~,o is the smallest closed subspace of L2(M) containing all the matrix 
coefficients of o9. Then 

L = Z L ( o ) )  
to 

where the sum is orthogonal. 
We keep to the notation of w and put a=I) R and m---re(a). Fix PE~(a)  

and define 

1-I m' (ve j 
l < i < r  

where ~l . . . .  , c~, are all the distinct roots of (P, A) and m~ the multiplicity of ~.  
As usual (~l, v>=o~i(HO. Let ~'~ be the set of all v E ~  where z(v)4=0. Clearly ~'~ 
is independent of the choice of P in ~(a). Put ~ ' =  ~ c~ ~'~ and ~'c(6)= ~ ( 6 ) n  ~'~ 
for 8>0.  

Theorem 1. Fix ve~ '  and P,,P2e~(a). Then there exist unique elements 
ce21 P, (s: v) e End L (s e no) such that 

EP2(8" ~O : v : m a) = ~ (cp2 r l,,(s: v) ~k) (m) e (-1)'/~s~t'~ 
S6W 

for ~keL, m e M  and aeA.  Moreover we can choose 6 > 0  such that for every sere, 
~(v) cp: I p,(s: v) extends to a holomorphic function of v on ~c(6). 

Fix vE~'. Then sv4:v for s4:1 in m (Lemma22.3). Hence the uniqueness is 
obvious. So now we have to prove existence. Fix a~Eg2(M) such that L(o))4= {0}. 
It is enough to define cp21p,(s: v) on L(~o). By [l(e), Theorem 18.3] there exists a 
regular element 2E(-1) 1/2 t)} ~ such that 

~=~m~,(~: ~-)q' (~EBM) 
for all ~EL(o)). Now fix ~eL(a~) and put ~ =E(PI: t~ :v). It is easy to verify that 
~'(2)~ ~'  and therefore by Theorem 7.1 

= E 

Moreover by Lemma 7.5 the functions 

m~.--~dpe2,,(m ) (mEM) 

are in L. Now define 

cp lp,(s- : (sew). 

Then the first statement of the theorem follows from Theorem 7.1 and its corollary. 
For any linear function/~ on 1/and mEM, put 

#m(~k) =/~(~k(m)) (eEL). 
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Then / t  m is a linear function on L. For  a given 0 e L ,  the condi t ion/z , , (0)=0 for 
all # and m, implies that 0 = 0. Hence we can choose a base (A 1 . . . . .  A,) for the 
space dual to L, consisting of linear functions of the form #m. Let (01, .-., 0,) be 
the dual base for L. For  each i, choose m~eM and a linear function #~ on V such 
that A i ( O ) = # i ( O ( m i ) )  for 0 e L .  Then 

Now fix m and 0 e L ( o  0 as above and put 

0s(v) = w(2 -4- ( - 1) 1/2 v) ~be2 ' s(v) 

for ve 3c(6) in the notation ofw 17 where 

4,(v)=e(P~ : O: v). 

Then for a fixed sew, the function 

(v, m)v--~ 0s(v: m) 

on 3r • M is of class H •  C ~. Moreover  Os(v)eL for r e 3 ' .  Hence 

O~(v: m)=~fti(O~(v: mi)) O;(m) (meM) 
i 

for ve3 ' .  Therefore by holomorphy this relation holds for all ve3~(5 ). This 
shows that Os(v)sL and v-~  0s(v) is a holomorphic mapping from 3c(5) to L. 
The second statement of Theorem 1 is now obvious. 

We observe that w operates on L. For  if sew and 0 e L ,  then s 0 = 0  ~ (see w 
is also in L. Clearly the sets 3c(~) and 3 '  are also stable under m. 

Lemma 1. Let P1, Pee~(a)  and s, tern. Then 

SCP21Pl(t: v)=Cp~lpl(St:  V) 

Ce~ i e~(t: v) s -1 =Ce~ I e[( ts  -1 : SV) 

for v e 3~(5). 
It is enough to prove this for v in 3 ' .  Fix OeL, re3 '  and put qS=E(P1 : 0: v). 

Then it follows from [1 (e), Lemma 21.1] that 

and the first assertion is an immediate consequence of this fact. 
Similarly the second statement is an easy consequence of the following lemma. 

Lemma 2. Fix Pe~(a)  and sere. Then 

E(P: O: v)=E(  P~: sO: sv) 

for OeL and vE3~. 

For  f, g e C~(G, z) and ~, fie C| zM), put 

(f, g)o = ~ (f(x), g(x)) dx, 
G 

(c~, fl)M = j (co(m), fl(m)) am, 
M 
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provided the integrals are absolutely convergent. Moreover for f e  C~ (G, z), define 
f~e)e C~(M, TM) ( V ~ c )  by 

f~e)(m)= ~ f(e)(ma) e -(-1)l/2v(l~ da (m~M) 
A 

in the notation of [1 (e), w 16]. Then it is clear that 

(E(P: O: v), f )c  =(~k, f~e~)M 

for r ~ L and v e 5. Similarly 

(E(P~: s O' s v), f )~  = (s ~O, c(e*)~ dsv ]M" 

However it is easy to verify that 

g~') = s(f~ (e)) 

and therefore 

(E(P: ~0: v), f ) 6=(E(W:  s~:  sv), f ) 6  

for all f e  C~(G, ~). The statement of Lemma 2 is now obvious. 
Lemma 1 shows that it is sufficient to investigate the functions ce~,e,(l:v) 

for Pa, P2 e~(a). 

Lemrna 3. Fix Pe~(a) ,  ~ e L ,  v e ~  and let P ' = M ' A ' N '  be a psgp of G. Then 

Ee,(P: ~: v),~O 

unless A' is conjugate to A under K. 

We may assume, without loss of generality, that ff~L(~o) for some o)~g2(M ). 
Then our assertion follows from Lemmas 11.1. and 17.1. 

w 19. Some Integral Formulas 

Fix P ~ ( a )  and let ~c(P) denote the set of all v ~ c  such that <a ,v ,>>0 for 
every root a of (P,A). Put p=pp  and H ( x ) = H e ( x  ) (x e G). Every x~G can be 
written uniquely in the form x = k m a n  where k e K ,  m 6 M n  expp, aeA,  heN.  
Put k = ~:(x) and m =p(x). As usual le t /5= O(P) and ~7 = O(N). 

Theorem 1. Cple(1 : v) and Cele(1 : - v) extend to holomorphic functions of v on 
~c(P) and they are given by the following integrals. 

(Cpl e(1 : v) ~)(m) = ~ z(~(fi)) ~b(#(fi) m) e ((- 1)1/2 ~-p)(tt(~)) d~, 
N 

(c~l~,(l: -- v) 0)(m)= ~ 0(m~(~) -~) z(~:(~))-' e"-  "/2 ~-")(~(~' d~. 
/r 

Here ~b~L, ve~c(P), m e M  and the Haar measure dfi on 1V is so normalized that 

I e -2p(H(~)) d r l =  1. 

We need some preparation. Observe that G = K P  and NP is an open dense 
subset of G whose complement is of Haar measure zero. Let d~ p and d, p denote 
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the left- and right-invariant Haar measures respectively on P so that dr p = dt p-  1. 
Then dr p = (5(p)dz p where (5 is a homomorphism of P into R ~_. We can normalize 
the Haar measures dx and d~ on G and N respectively in such a way that 

~ f ( x ) d x =  ~ f(~p)dFzdrp= ~ f ( k p ) d k d r p  
G I ~ x P  K x P  

for f e Co(G). Put 

f (~ ) =  ~f(xp) dzp (xEG) 
P 

where xv--~ ~ is the natural projection of G on G =  G/P. Note that 

G = K = K / K  n P = K / K  M 

and put f(k)=f(k-) (kEK). Then 

yf(k) dk = ~f(k p) dk d, p= ~f(kp) (5(p)-1 dk dr p. 
K 

Since K n P lies in the kernel of (5, we can extend (5 on G by defining (5(k p)= (5(p) 
(kE K, peP). Then 6(y p)=(5(y) (5(p) for yeG, p e P  and therefore 

~ f (k ) dk = ~ f (x) (5(x) -1 dx = ~f(fip) 6(fi p) -1 dfi dr p 
K 

= ~f(Fzp) (5(FO -1 dF~ d~ p. 

On the other h a n d / V n P = { 1 }  and so we may identify A 7 with its image under 
the projection of G on G. Then the above relation becomes 

~f(k) dk= ~f(~) b(FO-' dK 
K IV 

But since f~--~f is a surjective mapping of Cc(G ) on C(G/P), we have obtained the 
following result. 

Lemma 1. We can normalize the Haar measure d~ in such a way that 

qS(k) dk = ~ dp(~) (5(~)-1 d~ 
K N 

for all c~E C(G/P)= C(K/KM). 

It is easy to verify that 

(5(x)= e 2p~H{~' (x~G). 

Hence taking ~b = 1 in the above lemma we get the following result. 

Corollary. Under the above normalization of dfi we have 

e -  2p(n(h)) df i  = 1. 
~7 

Now we come to the proof of Theorem 1. It follows from [1 (e), Corollary of 
Lemma 32.2] that the two integrals converge uniformly when v varies in a compact 
subset of ~c(P). Therefore (see the proof of Theorem 18.1), it would be enough to 
verify the two equations for vE~r We prove only the first since the 
proof  of the second is quite similar. 
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Fix ~k~L, v ~ c ( P ) c ~  ~'~(6) and put 

4~ = E ( P :  q/: v). 

Then  

qS(x)= S ~b(x ~:(fi))r(sz(fi)) -1 exp ( ( ( - 1 )  a/z v-p) (H(xK( f i ) ) ) -2p(H( f i ) ) }  dfi 

for x ~ G, f rom Lemma 1. N o w  

= ~:(fi) #(fi) exp H(fi). n 

where n~N.  Hence if m ~ M  1 = M A ,  

~9(m-' x(fi))=ff(m -1 fi#(fi)-~), 

H(m -1 to(h))=H(m -1 fi)-H(fi) .  

Take  x = m  -1, replace fi by tim inside the integral and observe that  

dfim =e - 2p(lt(m)) dfi. 

Then  we obtain 

e~+ era,.)) ~)(BI-1)= S i//(~ m- 1 ~(~m)-l) ~.(K(~m))--I e ~- era.))-~+ men", dfi 
N 

where v_ = ( -  1) 1/2 v - p  and v+ - - ( -  1) 1/2 v+p.  On the other hand, we can choose 
c > 0 such that  

Iq,(m)[ < c-=M(m) 

for all m ~ M  1. N o w  let m = m o a a  where m o ~ M  and a~A.  Keep m o fixed and let 
a ~ ~ .  Then  

n (h m) __ n ( m o  1 Rio) = n ( m o  i K(fia)) + n(fi,). 

Hence H ( f i ' ) -  H(fi") remains bounded.  Moreover  

[r  -1 #(hm)-l)[ = Iq/(p(h) mo #(too 1 rio mo)-~)l. 

N o w  

~ ~  ~ #(h ~ AN. 

Hence  

mo t ha m0 ~ mo t ~r m0 ' #(fia),,~l. A N  

and therefore 

#(mo I h a mo)E K M �9 #(mo 1 K(fi") too) #(fia)'ot. 

This shows that  

mo #(mo 1 h,~ mo ) mo 1 ~ C #(ha) 

where C is a compact  subset of M. Hence 

#(fi) m o #(m~ 1 h" mo) -1 e#(n) #(n") -~ C -~ m o . 
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Therefore we can choose c a > 0 such that 

10(~ m-'/~(~m)-')l < C 1 ~-~M(/./(~) ]A(~a) -1)  

for all fiEg r and aeA. By Lemma 20.1, we can take the limit inside the integral 
and conclude that 

l ime v+tl~ q~(m o a - l ) =  5 ~b(fi too) e *-tm"~ dfi 
aT~176 

= S ~ (~ (~) )  0 ( ~ ( ~ )  too) e ~- ~"~">~ dn. 
Iv 

The required result now follows from the corollary of Lemma 17.5. 
We shall now derive some consequences of Theorem 1. 

Lemma 2. Fix me82(M ). Then L(o~) is stable under C~lp(l: v) and Celv(l: v). 

Since r162 is stable under both left and right translations of M, this is 
obvious from Theorem 1. 

The following result was pointed out to me by Langlands. 

Lemma 3. det Cp[p(l: V) is not identically zero. 

Put 

c(t)= 5 e-'~ dFz ( t>2)  
17 

and 

~,(fi) =ctt)  -1 e -'~ (fieiV). 

The proof  is based on the following simple fact. 

Lemma 4. Let f be a continuous function on lq which is integrable with respect 
to dFL Then 

lim 5~, fd f i=f(1) .  
t ~ + a o  /g 

We shall prove this in w 
Now fix ve~c(P) and put 

v t = v +  ( -  1) 1/2 tp, C(t)=c(t) -1 cPle(1 : -vt)  (t__>2). 

Then v,e~c(P) and C(t )eEnd L. Fix ~eL.  Then it follows from Theorem 1 that 

(C(t)  q/)(m) = I ~J(m#(n)- l )  z(/r e{(-1)'/2 v-o)(//(~))~t(~ )dn.  

Hence 

lim C(t) qJ = qJ 
t ~  -t- OO 

from Lemma 3. This proves that C(t)--> 1 and therefore det C(t)-* 1. Hence 
det C(t)4:0 for t sufficiently large. 

Combining Theorem 1 with Theorem 13.2, we can now obtain the following 
result. 
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Theorem 2. Fix d/eL, tee C~(~'), 111, P2 e~(a)  and put 

~(x )=  j'~(v) E(P~: d/: v: x)d~ (xee). 

Then d?,ef~(G, z) and 

~b~p=)(ma) = 7(p2)5 e{-1),/= ~,o,,)~. ct(s-1 v)(cp=le=( l : v) Cp=le,(s: s-1 v) d/)(m) dv 
s ~ m  

for meM,  aeA. Here 

lqz 

the integrand having the same meaning as in Theorem 1 for P = P2. 

There is no loss of generality in assuming that d/eL(m) for some ogeg~(M). 
Put 

c]~(v:x)=E(P~:d/:v:x) ( ve~ ,xeG) .  

Then it follows from Lemma 17.1 that tk is a function on ~ x G of type II(2) for a 
suitable 2 e ( - 1) ~/z b* (see the proof of Theorem 18.1 ). Therefore since S upp ct c ~', 
it follows from Theorem 18.1 that the function 

(v, x ) ~ ( v )  ~(v: x) 

is of type I'(2) (w 13). Hence we conclude from Theorem 13.1 that q~eCg(G, z). 
Now put P=P2 and let us use the notation of Theorem 13.2. Since p(H(~))>O, 

it is clear from this that 

~b~l')(m) = lim ~e-a+~)P(H(n))Op,~,(Ftm)dgt (meMl). 
e~O N 

(Here e > 0.) But 

~bp,,(fi m)= ~ e(v) z(x(fi)) Ep(PI: ~: v :p(fi) m exp H(fi)) dv. 

Fix e>0  and put v~=v+(-1) l /2ep  for ve~.  Then v~e~(P) and we conclude 
from [1 (e), Corollary of Lemma 32.2] and Theorems 1 and 18.1 that 

/V 

= 7(P) I ~(v) ~ (cpl e(l" (s v)~) CeIP~ (s: v) O)(m) e ~ - 1)~/~ ~(m.)) dv 
S E r e  

for m e M  and aeA.  But C~ls(1" v) is holomorphic on ~'c(6). Therefore since 
Supp ~ c ~', we obtain by making e ~ 0 that 

c~(J')(ma) = ~ ?(P) ~ ~(v)(CBe(l : sv) CslPl(S: v) d/) (m) e ( -  1)1/z s~(m.)) dv 
s 6 m  

and this is equivalent to the required result. 
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w 20. A Result on Uniform Convergence 

Let P = M A N  be a psgp of G. Define p, H(x),/~(x) (x~G), A + an d /q  as usual. 

Lemma 1. Fix  v~a* such that ( v , a ) > 0  for  every root ~ o f  (P ,A)  and put 
v+ = v + p, v = v -  p. Then the integral 

e-v+ (H (rid +v-(H (had ,~M (/~(~) ~/(~a)-l) d fi 
~7 

converges uniformly for  a ~ A + 

The present form of this lemma is due to Langlands [2, Lemma 3.12]. My 
original formulation was more complicated. 

We first need an auxiliary result. Let Po = Mo Ao No be a minimal psgp of G 
contained in P and let us use the notation of [1 (e), w 30]. 

Lemma 2. Let  x, y ~ G .  Then 

S(xy-1)  = ~ e -p~176176176176 dno, 
No 

where the Haar measure d~ o on No is so normalized that 

~ e -2p~176176 d~o = 1. 
~o 

Let tCo(X ) (x ~ G) denote the component of x in K corresponding tO the Iwasawa 
decomposition G = K A o N  o. Put k v = • o ( Y k ) ( k e K ) .  Then k~--+ky is a diffeomor- 
phism of K and [l(a), p. 281] 

e 2a~ (H~ dky = dk. 

Now 

~(xy-1)  = 5 e-OO(nO(xy-, k)) dk. 
K 

Replacing k by ky and observing that 

H o (x y -  1 kr) = H o (x k) - H o (y k), 

we get 

~ ( x y  -1) = ~ e -p~176176 d k  

K 

and the required result now follows from Lemma 19.1. 
Let * P = * M  *A *N be the minimal psgp of M corresponding to Po [l(e), 

Lemma 6.1] so that * P = M  c~P o. Put *N=0(*N).  Then ~7 is a normal subgroup 
of Ro and the mapping 

(fi, *n)~--~ no =n"  *n 

defines a diffeomorphism of ~7 • *A 7 onto ~7 ~ Let d~ and d*~ denote the cor- 
responding Haar  measures. Then d~.  d*~ =cd~o  where e is a positive constant. 

Let us now use the notations of [l(e), w 
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Lemma 3. We can normalize d~ and d*~ in such a way that 

S e-2ptn(n)) d ~ =  ~ e -2*p(*m*n)) d*Fz = 1. 
I~ *lg 

Then d ~ o = d ~  d*fi where dfi o is normalized as in Lemma 2. 

The proof of the first part  is the same as that of the corollary of Lemma 19.1. 
Since d~ d*~ =cdfi0,  we have 

c =  ~ d*~ ~ e -2p~176 d~. 
.I~ 

Fix *fi6*N. Then * ~ = k a n  (k~KM,  a~*A,  n6*N)  and 

H o (h *fi) = H o (h k) + log a = H o (k-  1 fi k) --[- *H(*~). 

But since K M normalizes/q,  we conclude that  

e -  Zpomo(~*~)) dh = e -  2*p(*H(*h)) ~ e -  2 po(no(n)) d~. 

On the other hand 

Uo(fi*k) = n(h) +*H(#(fi)*k) 

for *k ~KM.  Hence if d*k is the normalized Haar  measure on KM, we conclude 
from [l(a), Corollary p. 261] that 

S e-2p~176 d * k = e  -2p(H(~)) ~ e -2*p(*H(u(~)*k)) d*k 
KM KM 

Therefore = e -  2 p (n(n)) 

Se-~~176 ~d~ S e-~~ 
I~ I~ KM 

= ~e -2p(H(h)) d~=  1 

and this proves that 

C =  S e-2*p(*H(*~)) d ' n - - -  1. 

Corollary. 3M(m ~ rn21)= S e -*p(*H(ml*~)+*mm2*~)) d*fi for  ml ,  m z ~ M .  

This follows by applying Lemma 2 to (M, *P) in place of (G, Po). 
N o w  we come to the proof  of Lemma 1. Fix 0<e__< 1 such that 

( p o - e V ,  ~to) >-O 

for every root So of (Po, Ao). Note  that  

- v + ( n ( ~ ) )  + v _  ( n ( ~ " ) )  = v(H(~") - n(~))  - p(n(~") + H(h)) 

and it follows from [l(e), Lemma  30.4] that we can choose c > 0  such that 

v( n (~") - n (~)) < c 
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for all fi~57 and a e A  +. Pu t  v' = e v .  Then  

- v + ( n ( r ) )  + v _  ( n ( r " ) )  < (1 - e) c - v'+ ( n ( f i ) )  + v'_ ( n ( ~ " ) ) .  

Hence  it would  be enough  to p rove  L e m m a  1 for e v ins tead  of  v. 
So we may  now assume tha t  

<po-V, ~o>>_-0 

for every root  ~o of (Po, Ao). Let  r o = r .  *~ where r ~ h  7 and *~e '57 .  Then  

H o ( r o )  = H ( ~ )  + * H ( ~ ( r )  - *~), 
no(fi"o)=n(r")+ *n(#(fi" ) �9 *fi) (aeA). 

Therefore  

( v -  P o ) ( H o ( r ; ) ) -  (v + Po)(Ho(no)) 

= v_ (n(fi")) - v + (H(fi)) 

-*p(*H(~(r) *r))-*p(*H(~(m) *r)). 

co being a measurab le  subset  of  57, put  o) o = a ) .  *57. Then  in tegrat ing bo th  sides, 
we get 

~ e (v-p~176176176176 dro 
a ) o  

= ~ C -  (n(n-))- ~ + (n(,)) ~M(#(fi )/~(~a)-l) d r  = I,o(a) (say) 
o )  

from the coro l l a ry  of L e m m a  3. On  the o ther  hand  M = K M �9 *A �9 *N is an  Iwasawa  
decom pos i t i on  of  M. Hence  

- a _ f i . .  *k  * a  *n  n o -- * r = f i  a . . . 

where  *k~KM, *a~*A, *n~*N. Since M normal izes  57, it is c lear  tha t  

Ho(r~o) = Ho(r') + Ho(* a) 

where ~ ' =  *k-1 . r , .  *k E 57. Hence  we conc lude  from [1 (a), L e m m a  43] that  

(Po - v) (Ho(n")) > (Po - v)(So(*a)) = *p(*H(*r)).  

There fore  

(v - Po)(Ho(r~)) - (v + Po)(no(rio)) 

< - * p ( * S ( * r ) ) -  v+(U(h))-*p(*H(#(r)  *fi)). 

In teg ra t ing  bo th  sides on o) o and  app ly ing  L e m m a  3 and its corol lary ,  we find tha t  

Io,(a)<= ~ e-~+(n(")) EM(p(fi))dr (a~A). 
0,) 

N o w  choose  ~ > 0  so small  t ha t  ( v , a ) > ~ ( p , a )  for every roo t  a of (P, A). Then  

v+ (H(fi))>(1 + ~ ) p ( H ( r ) )  (relV) 

f rom [ l (e ) ,  L e m m a  30.4]. On the  o ther  hand  

e -(1 +~)P('(~)) EM(/~(~)) d r  < 
N 
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from [1 (e), Corollary of Lemma 32.2]. Therefore the assertion of Lemma 1 is 
now obvious. 

w 21. Pr oo f  of  L e m m a  19.4 

For T >0, let/q(T) denote the set of all points ~eh7 such that p(H(fi))< T. Then 
hT(T) is a compact set and /q(0)={1}. Let (~1, ..., ~l) be the system of simple 
roots of (P, A). Then 

2p = m  1 ~1 + " "  + ml ~z 

where ml are positive integers. Put  m = m x +--. + m~. 

Lemnm 1. There exis ts  a number c > 0 such that 

S d~>c52" 
N(e) 

for  O < e <  l. 

Put 

fl(a)= inf gi(loga)/2 (aeA+) .  
1 - - i - - I  

Then 

p(H(fi"))< log(1 +e  1-0~,)) 

for fiehT(1) and a 6 A  + from [l(e), Lemma 30.2]. F i x e ( 0 < e <  1) and choose a e A  
such that 

g~(log a)=2(1 - l o g  e) (1<i</) .  

Then a e A  + and 

1 - fl(a) = log  e. 

Hence 

p (H(fi")) < log (1 + 5) < 5 

for ~e/q(1). Therefore 

dR> ~ d~=e-Z"(~~ Co 
N(e) (N(1))a 

where 

Co = ~ dfi>0. 
N(1) 

But 

2p(log a)= m g/(log a) = 2m(1 - l o g  e). 

Hence 

dfi >=ee 2m 
N(~) 

where CmCoe-2m>o, 
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N o w  we come to the p roof  of  L e m m a  19.4. Fix e (0 < e < 1) and let ]~(e) denote  
the complemen t  of  ]q((r - 1) e) in bl(r e) (r > 1). Then  if t > 2, 

e-tP(H(")) df i> e -'~t ~ d f i = e - r ~ t ( # ( r e ) - # ( ( r - 1 ) e ) )  
17~(~) I%(0 

where 

/~(T)= ~ dfi ( T > 0 ) .  
17(T) 

Therefore  

c(t) = ~ e -  'p (H (., dfi >= ~ e -r~t(#(r e) - #((r -- 1) e)). 
N r> l  

On the other  hand 

# ( T ) =  ~ dfi<e2T ~e-Z~ d ~ = c ( 2 ) e  ?-r. 
N(T) N 

Hence  if t > 2, 

e - ~ t  ~(r~)-~O 

as r ~ + ~ .  Therefore  

c(t)>= ~, #(re) e -~ t (1  - e  -et) 
r > l  

> #(e) e-~t(1 -e-~t) .  

N o w  take e = t -~. Then  it follows f rom L e m m a  1 tha t  

c(t)>=#(t-X)e-l(1--e-1)>=Co t - 2 "  (t >2),  

where c o is a positive cons tant  independent  of  t. 
N o w  let U be any  open ne ighborhood  of 1 in ]q. We  have to show tha t  

~tt(h ) dfi -*  0 
eU 

as t ~ + ~ .  (As usual c U denotes  the complemen t  of U.)Fix e (0 < e < 1) such that  
N(e) c U. Then  if t > 2, 

~ o ~ , ( ~ ) d ~  ~ ~ t ( ~ ) d ~ = c ( t )  -1 ~ e - tP (H(" ) )dF l .  

~U ~/7(e) ~lq(~) 

But c(t) -1 <=Co s t 2m and 

e-t~ dt<=e -(t-2)~ ~ e-2~ dFl 
cI~(O clq(e) 

<c(2)  e -(`-2)~ 
Therefore  

at(fi) d~ N c~ t 2m e-t~--~ O 
c~ 

as t--~ + o% where c 1 =Co  1 c(2) e 2e. This proves  L e m m a  19.4. 
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w 22. Appendix 

Let x = ( x l , . . . ,  x,) denote a variable point in E=R".  Put D i=o/axi and D ' =  
D~1...D~ for a multi-index a=(~ l , . . . ,~ , ) .  We write [~ [=~1+c t2+ . . .+~ , ,  
Ix] = m a x  ]xi[ and denote by M the set of all multi-indices. 

Let Vand 5r be as before (w 

Lemma 1. Let f be an element in Coo(E, V) such that f = 0  on the hyperplane 
x 1 = O. Then f =  x 1 g where 

1 

g(x)= 5 fl (x 1 t, x2, ..., x.) dt 
0 

and fl =D 1 f Hence g~ C~176 V) and 

[D~g(x)[,< sup O'f~(y)l, 
lyl =lxl 

for all x~E,  oteM and s~SP(V). 

This is obvious. 
Let p 4= 0 be the product of N real linear forms on E and E' the set of all points 

x e E  where p(x) 4= 0. A function f from E' to V is said to be locally bounded (on E), 
if for every compact set co in E and seS~(V), [f(x)[s remains bounded for xeo~nE'.  

For a~M,  r > 0  and seSP(V), put 

s , ,~(f)= sup (1 +lxD r [D~f[~ (f~Coo(E, V)). 
E 

If F is a finite subset of M, put 

SF.,(f) = ~ s~,,(f). 
~t~F 

Let Cg(E, V) denote the set of all functions f ~  Coo(E, V) such that s,. ~(f )< oo for 
all ~ M  and r>0 .  

Lemma 2. Fix a e M  and let F denote the set of all f l eM such that Jill <lctl + N. 
Then for every r > 0, we can choose a number cr > 1 with the following property. 
Suppose f~Cg(E, V) and p - i f  is locally bounded. Then f = p g  where g~g(E,  V) 
and 

S~,,(g) < c~ SF. ~(f) 

for all s~9~(V). 

By an easy induction we are reduced to the case N = 1. Hence we may assume 
that p = x 1 . Then f =  xl g in the notation of Lemma 1. Let E1 and E2 be the sets 
of points x~E  where [xl[< 1 and Ix 11> 1 respectively. Then if x~E~, we have 

1 + Ix[ _-<2(1 + max Ixil) 
i > 2  

and therefore 

(1 +[x[) r [D'g(x)[s<T sup ]D'f~(y)l(1 + ly[) r. 
lyl <Ix[ 
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This means that  

sup (1 + Ix I)' IDa g(x) ls < 2" sp,,(f) 
E1 

where/3 =(~1 + 1, ~2, . . . ,  e,). 
On the other hand  g = x { l f  on E 2. Since Ix11 > 1, it follows directly by dif- 

ferentiation that 

ID=g(x)ls<cq! ~ IDrDaf(x)ls 
O <_m<_at 

o n  E 2 where f l=(0,  ~2 . . . .  , ~,). Therefore since E = E l w  E 2 the required result is 
obvious. 

Let us now use the notat ion of  Theorem 18.1. 

Lemma 3. Let H be an element in a such that e(H)=~O for every root ~ of(g, a). 
Then sH 4: H for every s =t= 1 in m. 

Extend a to a maximal abelian subspace a o of  p and put mo=tO(ao). Let Q 
be the set of all roots  of (g, ao) which vanish at H. Then if /3eQ, it is clear that  
/3=0 on a. 

Let to x be the stabilizer of  H in to o. Then to 1 is the subgroup of  to o generated 
by the Weyl reflexions sa for / ~  Q. Hence every element of ml leaves a fixed 
pointwise. 

N o w  suppose s H = H  for some s~to. We can choose SoEW o such that So=S 
on a. But then So~t01 and hence s o = 1 on a. This proves that s =  1. 
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