(C) by Springer-Verlag 1976

Harmonic Analysis on Real Reductive Groups. II

Wave-Packets in the Schwartz Space
Harish-Chandra (Princeton)

To Jean-Pierre Serre

§ 1. Introduction

The theory of the constant term, which has been developed in [1(e)] will now be applied to construct wave-packets in the Schwartz space of a reductive group G. Keeping to the notation of [1(e)], let A be the split component of a θ-stable Cartan subgroup of G. Fix a $\operatorname{psgp} P_{1}=M A N_{1}$ with the split component A and let τ be a unitary double representation of K on a finite-dimensional Hilbert space V. Then $L={ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ also has finite dimension [1(e), Theorem 27.3]. Put $\mathfrak{F}=a^{*}$ and consider the Eisenstein integral

$$
\phi_{v}=E\left(P_{1}: \psi: v\right) \quad(v \in \mathfrak{F})
$$

for a given $\psi \in L$. We compute the constant term $\phi_{v, \boldsymbol{P}_{2}}$ of ϕ_{v} along a psgp $P_{2} \in \mathscr{P}(A)$ (Theorem 18.1). The expression for $\phi_{v, P_{2}}$ involves certain endomorphisms $c_{P_{2} \mid P_{1}}(s: v)(s \in \mathfrak{w}(\mathfrak{a}))$ of L. We shall see later that these c-functions can be extended to meromorphic functions of v on the whole complex space \mathscr{F}_{c}.

Let \mathfrak{F}^{\prime} be the set of all regular elements in \mathfrak{F}. Fix $\alpha \in C_{c}^{\infty}\left(\mathfrak{F}^{\prime}\right)$ and put

$$
\phi_{\alpha}=\int_{\underset{F}{ }} \alpha(v) \phi_{v} d v
$$

where $d v$ is the Euclidean measure on \mathfrak{F}. Then $\phi_{\alpha} \in \mathscr{C}(G, \tau)$ (Theorem 13.1). Now fix $P_{2} \in \mathscr{P}(A)$ and $m \in M A$ and consider the distribution

$$
\alpha \rightarrow \phi_{\alpha}^{\left(P_{2}\right)}(m)
$$

on \mathfrak{F}^{\prime}. It turns out that this distribution is actually a function which can be written quite simply in terms of the c-functions (Theorem 19.2).

Theorems 13.1, 13.2 and 18.1 contain the main results of this paper. They may be regarded as generalizations of the corresponding results on spherical functions obtained in $[1(a, b)]$. In fact here we have combined the methods of $[1(a, b)]$ with those of $[1(\mathrm{~d})]$ and our success depends in an essential way on the systematic use of the weak inequality.

As far as possible, we shall keep to the notation of $[1(\mathrm{e})]$ and therefore any undefined symbols should be given the same meaning as in [1(e)].

Most of the work presented here was done some years ago and I have given lectures on it on various occasions.

§ 2. Recapitulation of Some Algebraic Results

Let $(P, A)>\left(P_{0}, A_{0}\right)$ be two p-pairs in G such that $\left(P_{0}, A_{0}\right)$ is minimal. Then $P=$ $M A N, P_{0}=M_{0} A_{0} N_{0}$. Extend \mathfrak{a}_{0} to a Cartan subalgebra \mathfrak{h}_{0} of \mathfrak{g}. Then \mathfrak{h}_{0} is θ-stable and $\mathfrak{a}_{0}=\mathfrak{h}_{0} \cap \mathfrak{p}$. Put $W_{0}=W\left(\mathfrak{g} / \mathfrak{h}_{0}\right)$ and let W_{1} be the subgroup of those elements of W_{0} which leave a pointwise fixed. Put $S=\boldsymbol{G}\left(\mathfrak{h}_{0 c}\right)=S\left(\mathfrak{h}_{0 c}\right)$ and let J and J_{1} denote the algebras of invariants of W_{0} and W_{1} respectively in S. Let $s_{1}, s_{2}, \ldots, s_{q}(q=$ [$W_{0}: W_{1}$]) be a complete system of representatives for $W_{1} \backslash W_{0}$ so that

$$
W_{0}=\bigcup_{1 \leqq i \leqq q} W_{1} s_{i}
$$

Select homogeneous elements $u_{1}=1, u_{2}, \ldots, u_{q}$ in J_{1} such that [1(a), Lemma 8]

$$
J_{1}=\sum_{1 \leqq i \leqq q} J u_{i}
$$

Fix a system of positive roots for $\left(\mathfrak{g}, \mathfrak{h}_{0}\right)$ and put

$$
\varpi_{0}=\varpi_{\mathfrak{g} / \mathfrak{h}_{0}}, \quad \varpi_{1}=\varpi_{\mathbf{m}_{1} / \mathfrak{h}_{0}}, \quad \varpi_{01}=\varpi_{\mathbf{g} / \mathbf{m}_{1}},
$$

where $m_{1}=\mathfrak{m}+a$. Then $\varpi_{0}=\varpi_{01} \varpi_{1}$. Define $u^{j} \in C\left(J_{1}\right)$ by

$$
\operatorname{tr}_{J_{1 / j} /}\left(u_{i} u^{j}\right)=\delta_{i}^{j} \quad(1 \leqq i, j \leqq q)
$$

and put $\tau^{j}=\omega_{01} u^{j}$. Then [1(a), Lemma 12] $\tau^{j} \in J_{1}$.
Every element of S may be regarded as a polynomial function on $\mathfrak{b}_{0 c}^{*}$. For $p \in J_{1}$ and $\Lambda \in \mathfrak{b}_{0 c}^{*}$, define

$$
\begin{aligned}
& f_{\Lambda}=\sum_{1 \leqq i \leqq q} \tau^{i}(\Lambda) u_{i} \\
& v^{j}(p: \Lambda)=\operatorname{tr}_{J_{1} / J}\left\{(p-p(\Lambda)) f_{\Lambda} u^{j}\right\} \quad(1 \leqq j \leqq q)
\end{aligned}
$$

Then it is clear that $v^{j}(p: \Lambda) \in J$ and, for p fixed, $\Lambda \mapsto v^{j}(p: \Lambda)$ is a polynomial mapping of \mathfrak{b}_{0}^{*} into J. Let S_{A} denote the set of all $p \in S$ such that $p(\Lambda)=0$. Put $J_{A}=J \cap S_{A}$. Then it is obvious that $J_{s A}=J_{A}\left(s \in W_{0}\right)$.

Identify \mathfrak{h}_{0} with its dual by means of the bilinear form B. We call an element $u \in J_{1}$ harmonic if $\partial(p) u=0$ for all $p \in J \cap S_{0}$ in the notation of [1(c), §3]. Then it is easy to conclude from [1(c), Lemma 4] that u_{1}, \ldots, u_{q} may be so chosen as to span the space U of all harmonic elements in J_{1}. Moreover $J_{1}=U+J_{1} J_{A}$ where the sum is direct [1(a), p.256]. The following lemma enables us to diagonalize the action of J_{1} on $J_{1} / J_{1} J_{\Lambda} \simeq U$.

Lemma 1. Fix $p \in J_{1}, \Lambda \in \mathfrak{b}_{0 c}^{*}$ and put $\Lambda_{i}=s_{i} \Lambda(1 \leqq i \leqq q)$. Then

1) $v^{j}\left(p: \Lambda_{i}\right) \in J_{A}$,
2) $\left(p-p\left(\Lambda_{i}\right)\right) f_{\Lambda_{i}}=\sum_{1 \leqq j \leqq q} v^{j}\left(p: \Lambda_{i}\right) u_{j}$,
3) $\sum_{1 \leqq k \leqq q} \varepsilon\left(s_{k}\right) \varpi_{1}\left(\Lambda_{k}\right) f_{\Lambda_{k}}=w_{0}(\Lambda)$
for $1 \leqq i \leqq q$. Here $\varepsilon(s)= \pm 1$ is defined as usual by $\varpi_{0}^{s}=\varepsilon(s) \varpi_{0}\left(s \in W_{0}\right)$.
We know from [1(a), Lemma 15] that

$$
(p-p(\Lambda)) f_{A} \in S J_{\Lambda} \cap J_{1}=J_{A} J_{1}
$$

Hence the first two statements are obvious. Both sides of 3) being polynomial in Λ, it is sufficient to consider the case when $\varpi_{0}(A) \neq 0$. Then the rational function u^{j} is defined at Λ_{k} and

$$
\sum_{k} \varepsilon\left(s_{k}\right) \varpi_{1}\left(\Lambda_{k}\right) f_{\Lambda_{k}}=\varpi_{0}(\Lambda) \sum_{i, k} u^{i}\left(\Lambda_{k}\right) u_{i} .
$$

But since

$$
\sum_{k}\left(u^{i}\right)^{s_{k}^{-1}}=\operatorname{tr}_{J_{1} / J} u^{i}=\delta_{1}^{i},
$$

we conclude that

$$
\sum_{i, k} u^{i}\left(\Lambda_{k}\right) u_{i}=1
$$

and this proves 3).

§ 3. Further Algebraic Results

Let \mathfrak{h} be a θ-stable Cartan subalgebra of \mathfrak{g}. Then $\mathfrak{h}=\mathfrak{h}_{I}+\mathfrak{h}_{R}$ as usual [1(e), §8]. If $\lambda \in\left(\mathfrak{h}_{I}\right)_{c}^{*}, v \in\left(\mathfrak{h}_{R}\right)_{c}^{*}$, we extend them to linear functions on \mathfrak{h}_{c} by defining $\lambda=0$ on \mathfrak{h}_{R} and $v=0$ on \mathfrak{h}_{I}. In this way \mathfrak{h}_{c}^{*} becomes the direct sum of $\left(\mathfrak{h}_{I}\right)_{c}^{*}$ and $\left(\mathfrak{h}_{R}\right)_{c}^{*}$.

An element $\lambda \in\left(\mathrm{h}_{I}\right)_{c}^{*}$ is called singular if $\lambda\left(H_{\alpha}\right)=0$ for some imaginary root α of $(\mathfrak{g}, \mathfrak{h})$. Otherwise we call it regular. Put $\mathfrak{F}=\mathfrak{b})_{R}^{*}$ and

$$
\varpi=\varpi_{\mathfrak{g} / \mathfrak{h}}=\prod_{\alpha>0} H_{\alpha}
$$

where α runs over all positive roots of $(\mathfrak{g}, \mathfrak{b})$ (under some fixed order). Fix a regular element $\lambda \in(-1)^{1 / 2} \mathfrak{h}_{I}^{*}$ and let $\mathfrak{F}_{c}^{\prime}(\lambda)$ denote the set of all $v \in \mathscr{F}_{c}$ such that

$$
\varpi\left(\lambda+(-1)^{1 / 2} v\right) \neq 0 .
$$

Put $\mathscr{F}^{\prime}(\lambda)=\mathfrak{F} \cap \mathfrak{F}_{c}^{\prime}(\lambda)$. Then $\mathfrak{F}^{\prime}(\lambda)$ is an open and dense subset of \mathfrak{F}.
Now we use the notation of § 2. Fix $k_{0} \in K$ such that $\mathfrak{b}_{R}^{k_{0}} \subset \mathfrak{a}_{0}$. Let \mathfrak{z} denote the centralizer of $\mathfrak{h}_{R}^{k_{0}}$ in \mathfrak{g}. Then $\mathfrak{h}^{k_{0}}$ and \mathfrak{h}_{0} are two Cartan subalgebras of \mathfrak{z}. Hence we can choose $y_{0} \in G_{c}$ such that y_{0} centralizes $\mathfrak{h}_{R}^{k_{0}}$ and $\mathfrak{h}_{c}^{y}=\mathfrak{h}_{0 c}$ where $y=y_{0} \operatorname{Ad}\left(k_{0}\right)$. Put $\Lambda_{v}=\left(\lambda+(-1)^{1 / 2} v\right)^{y}$ for $v \in \mathfrak{F}_{c}$. (Here we have identified $\mathfrak{h}_{\mathrm{c}}$ with its dual by
means of the restriction of the bilinear form B on \mathfrak{h}_{c}.) Then if $v \in \mathfrak{F}_{c}^{\prime}(\lambda)$, it is clear that $w_{0}\left(\Lambda_{v}\right) \neq 0$ and therefore the rational functions u^{i} are defined at Λ_{v}.

Fix an element $\Lambda \in \mathfrak{b}_{0 c}^{*}$ and let $W_{0}(\Lambda)$ be the subgroup of all $s \in W_{0}$ which leave Λ fixed. Let p_{0} be the set of all positive roots of $\left(\mathfrak{g}, \mathfrak{h}_{0}\right)$ and $p_{0}(\Lambda)$ the set of those $\alpha \in p_{0}$ for which $\Lambda\left(H_{\alpha}\right) \neq 0$. Put

$$
\varpi_{0, \Lambda}=\prod_{\alpha \in p_{0}(\Lambda)} H_{\alpha} .
$$

Let $J(\Lambda)$ be the algebra of all invariants of $W_{0}(\Lambda)$ in S.
Lemma 1. Let v be an element in $\mathbf{C}(S)$ such that $\operatorname{tr}_{S / J}(u v) \in J$ for all $u \in S$. Then $\varpi_{0, \Lambda} \operatorname{tr}_{S / J(\Lambda)}(v) \in S$.

Put $v^{\prime}=\operatorname{tr}_{S / J(A)} v$. Then if $u \in J(\Lambda)$, it is clear that

$$
\operatorname{tr}_{J(A) / J}\left(v^{\prime} u\right)=\operatorname{tr}_{S / J}(v u) \in J
$$

Hence we conclude from [1 (a), Lemma 12] that $\varpi_{0, \Lambda} v^{\prime} \in S$.
Now put

$$
U=\sum_{1 \leqq i \leqq q} \mathbf{C} u_{i}
$$

and $\varpi_{s, \lambda}=\varpi_{0, \Lambda}$ where $\Lambda=s \lambda^{y}\left(s \in W_{0}\right)$. Define a rational mapping $e_{s}\left(s \in W_{0}\right)$ of \mathfrak{F}_{c} into U by

$$
e_{s}(v)=\sum_{1 \leqq j \leq q} u^{j}\left(s \Lambda_{v}\right) u_{j} \quad\left(v \in \mathscr{F}_{c}^{\prime}(\lambda)\right)
$$

Since $u^{j} \in \mathbf{C}\left(J_{1}\right)$, it is clear that $e_{t s}=e_{s}\left(t \in W_{1}\right)$.
Put $W_{0}(s, \lambda)=W_{0}\left(s \lambda^{y}\right)$.
Lemma 2. Fix $s \in W_{0}$. Then the mapping

$$
\nu \mapsto \omega_{s, \lambda}\left(s \Lambda_{v}\right) \sum_{t \in W_{0}(s, \lambda)} e_{t s}(v)
$$

is a polynomial mapping of \mathscr{F}_{c} into U.
Let $u \in S$ and put $u^{\prime}=\operatorname{tr}_{S / J_{1}} u$. Then $u^{\prime} \in J_{1}$ and it is obvious that

$$
\operatorname{tr}_{S / J}\left(u^{j} u\right)=\operatorname{tr}_{J_{1 / J} J}\left(u^{j} u^{\prime}\right) \in J \quad(1 \leqq j \leqq q)
$$

Hence we conclude from Lemma 1 that

$$
\varpi_{0, \Lambda} \operatorname{tr}_{S / J(\Lambda)} u^{j} \in S
$$

where $\Lambda=s \lambda^{y}$. Since $\mathbf{C}(J(\Lambda))$ is the fixed field of $W_{0}(\Lambda)=W_{0}(s, \lambda)$ in $\mathbf{C}(S)$, it follows that

$$
\operatorname{tr}_{S / J(A)} u^{j}=\sum_{t \in W_{0}(s, \lambda)}\left(u^{j}\right)^{t}
$$

Hence the mapping

$$
\begin{aligned}
v & \mapsto \omega_{s, \lambda}\left(s \Lambda_{v}\right) \sum_{t \in W_{0}(s, \lambda)} \sum_{j} u^{j}\left(t s \Lambda_{v}\right) u_{j} \\
& =\sigma_{s, \lambda}\left(s \Lambda_{v}\right) \sum_{t \in W_{0}(s, \lambda)} e_{i s}(v) \quad\left(v \in \mathscr{F}_{c}^{\prime}(\lambda)\right)
\end{aligned}
$$

extends to a polynomial mapping of \mathfrak{F}_{c} into U.
Let $p(\lambda)$ be the set of all positive roots α of $(\mathfrak{g}, \mathfrak{h})$ such that $\lambda\left(H_{\alpha}\right) \neq 0$. Put

$$
\varpi_{\lambda}=\prod_{\alpha \in p(\lambda)} H_{\alpha} .
$$

Lemma 3. Fix $s \in W_{0}$ and $v \in \mathscr{F}$. Then

$$
\left|\varpi_{s, \lambda}\left(s \Lambda_{v}\right)\right| \geqq\left|\varpi_{s, \lambda}\left(s \lambda^{y}\right)\right|=\left|\varpi_{\lambda}(\lambda)\right|>0 .
$$

This is obvious from the definitions.
Now put $e_{i}=e_{s_{1}}$ and

$$
{ }_{i} e=\left[W_{1} \cap W_{0}\left(s_{i}, \lambda\right)\right]^{-1} \sum_{t \in W_{0}\left(s_{i}, \lambda\right)} e_{t s_{1}} \quad(1 \leqq i \leqq q)
$$

Let Q denote the set $\{1,2, \ldots, q\}$. It is clear that ${ }_{i} e={ }_{j} e$ if $s_{i} \lambda^{y}=s_{j} \lambda^{y}(i, j \in Q)$. Choose a maximal subset ${ }^{o} Q$ of Q such that $s_{i} \lambda^{y} \neq s_{j} \lambda^{y}$ for $i \neq j$ in ${ }^{o} Q$.

Lemma 4. Fix $i \in Q$. Then ${ }_{i} e$ is a rational mapping of \mathfrak{F}_{c} into U which is everywhere defined on \mathfrak{F}. Moreover the mapping

$$
v \mapsto \varpi_{s_{i}, \lambda}\left(s_{i} \Lambda_{v}\right)_{i} e(v) \quad\left(v \in \mathscr{F}_{c}^{\prime}(\lambda)\right)
$$

extends to a polynomial mapping from \mathfrak{F}_{c} into U. Finally

$$
\sum_{i \in o}{ }_{i} e=1 .
$$

The first two statements follow from Lemmas 2 and 3. Moreover since $\operatorname{tr}_{J_{1 / J}} u^{j}$ $=\delta_{1}^{j}$, it is clear that

$$
\sum_{1 \leqq i \leqq q} e_{i}=1
$$

The third statement is an immediate consequence of this fact.
Put

$$
v_{i j}(p: v)=\operatorname{tr}_{J_{1} / J}\left\{p-p\left(s_{i} A_{v}\right) u^{j} e_{i}(v)\right\} \quad\left(v \in \mathfrak{F}_{c}^{\prime}(\lambda), 1 \leqq i, j \leqq q\right)
$$

for $p \in J_{1}$. Then $v_{i j}(p: v) \in J$.
Lemma 5. Fix $v \in \mathscr{F}_{c}^{\prime}(\lambda)$ and $p \in J_{1}$. Then

1) $v_{i j}(p: v) \in J_{A_{v}}$,
2) $\left(p-p\left(s_{i} A_{v}\right)\right) e_{i}(v)=\sum_{1 \leqq k \leqq q} v_{i k}(p: v) u_{k}$,
3) $\sum_{1 \leqq k \leqq q} e_{k}(v)=1$,
for $1 \leqq i, j \leqq q$.

This follows immediately from Lemma 2.1.
We know from [1 (a), p. 256] that $J_{1}=U+J_{1} J_{\mu}$ for $\mu \in \mathfrak{b}_{0 c}^{*}$, the sum being direct. Hence for any $v \in \mathscr{F}_{c}$, we can define a representation Γ_{v} of J_{1} on U as follows. For $p \in J_{1}, \Gamma_{v}(p)$ is the linear transformation on U given by

$$
\Gamma_{v}(p) u \equiv p u \bmod J_{1} J_{A_{v}} \quad(u \in U)
$$

Corollary 1. Fix $v \in \mathscr{F}_{c}^{\prime}(\lambda)$. Then

$$
\Gamma_{v}(p) e_{i}(v)=p\left(s_{i} A_{v}\right) e_{i}(v), \quad \Gamma_{v}\left(e_{i}(v)\right) e_{j}(v)=\delta_{i j} e_{j}(v)
$$

for $p \in J_{1}$ and $1 \leqq i, j \leqq q$. Moreover

$$
U=\sum_{1 \leqq i \leqq q} \mathrm{C} e_{i}(v)
$$

This follows from Lemma 5 if we note that [1(a), p. 259]

$$
e_{i}\left(v: s_{j} \Lambda_{v}\right)=\sum_{k} u^{k}\left(s_{i} \Lambda_{v}\right) u_{k}\left(s_{j} \Lambda_{v}\right)=\delta_{i j} .
$$

Corollary 2. $\Gamma_{v}\left(p e_{i}(v)\right)=p\left(s_{i} \Lambda_{v}\right) \Gamma_{v}\left(e_{i}(v)\right)$ and

$$
\Gamma_{v}\left(e_{i}(v) e_{j}(v)\right)=\delta_{i j} \Gamma\left(e_{j}(v)\right)
$$

for $1 \leqq i, j \leqq q$ and $v \in \mathscr{F}_{c}^{\prime}(\lambda)$.
This is obvious from Corollary 1 above.
Corollary 3. For any $p \in J_{1}, v \mapsto \Gamma_{v}(p)$ is a polynomial mapping of \mathfrak{F}_{c} into End U.
Put $p_{i}^{j}=\operatorname{tr}_{J_{1} / J}\left(p u_{i} u^{j}\right) \in J$. It would be enough to verify that

$$
\Gamma_{v}(p) u_{i}=\sum_{j} p_{i}^{j}\left(\Lambda_{v}\right) u_{j} \quad\left(v \in \mathfrak{F}_{c}\right)
$$

By Corollary 1 above, the left side is a rational function of v. Hence it would be sufficient to prove this for $v \in \mathscr{F}_{c}^{\prime}(\lambda)$. Fix $v \in \mathscr{F}_{c}^{\prime}(\lambda)$. Then

$$
\begin{aligned}
\Gamma_{v}(p) u_{i} & =\Gamma_{v}\left(p u_{i}\right) 1=\sum_{k} \Gamma_{v}\left(p u_{i}\right) e_{k}(v) \\
& =\sum_{k} p\left(s_{k} \Lambda_{v}\right) u_{i}\left(s_{k} \Lambda_{v}\right) e_{k}(v) \quad \text { from Corollary } 1, \\
& =\sum_{k, j} p\left(s_{k} \Lambda_{v}\right) u_{i}\left(s_{k} \Lambda_{v}\right) u^{j}\left(s_{k} \Lambda_{v}\right) u_{j}
\end{aligned}
$$

But [1(a), p. 258]

$$
\sum_{k}\left(p u_{i} u^{j}\right)^{s_{k}^{-1}}=\operatorname{tr}_{J_{1} / J}\left(p u_{i} u^{j}\right)=p_{i}^{j}
$$

and therefore the required statement is obvious.
Corollary 4. Let $p \in J_{1}$. Then

$$
\prod_{1 \leqq i \leqq q}\left\{\Gamma_{v}(p)-p\left(s_{i} A_{v}\right)\right\}=0 \quad\left(v \in \mathscr{F}_{\mathfrak{c}}\right)
$$

If $v \in \mathscr{F}_{c}^{\prime}(\lambda)$, then $e_{i}(v)(1 \leqq i \leqq v)$ is a base for U and so our statement is obvious from Corollary 1. The rest follows from Corollary 3.

Corollary 5. Fix $i \in Q$. Then

$$
\prod_{t \in W_{0}\left(s_{v}, \lambda\right)}\left(\Gamma_{v}(p)-p\left(t s_{i} A_{v}\right)\right) \Gamma_{v}\left({ }_{i} e(v)\right)=0
$$

for $v \in \mathscr{F}$.
This is proved in the same way by taking Lemma 4 into account.

§ 4. Application to Differential Operators

We keep to the notation of $\S \S 2$, 3. Put $\gamma_{0}=\gamma_{g / b_{0}}$ and $\gamma_{1}=\gamma_{m_{1 / b_{0}}}$ (see [1(e), § 11]) where $\mathfrak{m}_{1}=\mathfrak{m}+\mathfrak{a}$ as in $\S 2$. Also define $\mathfrak{M}_{1}=\mathfrak{M} \mathscr{M}$ and $\mathfrak{Z}_{1}=\mathfrak{3}_{M} \mathfrak{H}$. (As usual $\mathfrak{3}_{M}$ is the center of \mathfrak{M}.) Finally put

$$
\begin{aligned}
& \eta_{i}(v)=\gamma_{1}^{-1}\left(f_{s_{i} \Lambda_{v}}\right) \in 3_{1} \\
& z_{i j}(\zeta: v)=\gamma_{0}^{-1}\left(v^{j}\left(\gamma_{1}(\zeta): s_{i} \Lambda_{v}\right)\right) \in 3 \quad(1 \leqq i, j \leqq q)
\end{aligned}
$$

for $\zeta \in \mathcal{Z}_{1}$ and $v \in \mathscr{F}_{c}$ in the notation of Lemma 2.1. (Here $\Lambda_{v}=\left(\lambda+(-1)^{1 / 2} v\right)^{y}$ as in § 3.) Then for fixed i, j and $\zeta, v \mapsto \eta_{i}(v)$ and $v \mapsto z_{i j}(\zeta: v)$ are polynomial mappings of \mathfrak{F}_{c} into 3_{1} and 3 respectively.

Put $\gamma=\gamma_{\mathrm{g} / \mathrm{h}}$ and $\mu=\gamma_{\mathbf{g} / \mathrm{m}_{1}}$ so that $\gamma_{0}=\gamma_{1} \circ \mu$ [1(e), § 11].
Lemma 1. Define $w_{j}=\gamma_{1}^{-1}\left(u_{j}\right) \in 3_{1}$. Then

1) $\gamma\left(z_{i j}(\zeta: v): \lambda+(-1)^{1 / 2} v\right)=0$,
2) $\zeta \eta_{i}(v)-\gamma_{i}\left(\zeta: s_{i} \Lambda_{v}\right) \eta_{i}(v)=\sum_{1 \leqq j \leqq q} \mu\left(z_{i j}(\zeta: v)\right) w_{j}$ for $\zeta \in \mathcal{S}_{1}, v \in \mathfrak{F}_{c}$ and $1 \leqq i, j \leqq q$.

This follows from 1) and 2) of Lemma 2.1.
Put $d(m)=d_{P}(m)[1(\mathrm{e}), \S 21]$ for $m \in M_{1}=M A$ and define $v^{\prime}=d^{-1} v \circ d\left(v \in \mathfrak{M}_{1}\right)$ as usual [1(d), § 45]. Let
$g_{i}(\zeta: v)=-\sum_{1 \leqq j \leqq q}\left\{z_{i j}(\zeta: v)-\mu\left(z_{i j}(\zeta: v)\right)^{\prime}\right\} w_{j}^{\prime} \quad(1 \leqq i \leqq q)$
for $\zeta \in \mathfrak{Z}_{1}$ and $v \in \mathscr{F}_{c}$.
Corollary. $g_{i}(\zeta: v) \in \theta(\mathfrak{n})(\mathfrak{G} \mathfrak{n}$ and
$\zeta^{\prime} \eta_{i}(v)^{\prime}-\gamma_{1}\left(\zeta: s_{i} A_{v}\right) \eta_{i}(v)^{\prime}=\sum_{j} z_{i j}(\zeta: v) w_{j}^{\prime}+g_{i}(\zeta: v) \quad(1 \leqq i \leqq q)$
for $\zeta \in \mathcal{Z}_{1}$ and $v \in \mathfrak{F}_{c}$. Moreover for i and ζ fixed, $v \mapsto g_{i}(\zeta: v)$ is a polynomial mapping of \mathfrak{F}_{c} into $\theta(\mathrm{n}) \mathfrak{G} \mathrm{r}$.

This is obvious from the above lemma if we recall [1(d), p. 110] that
$z-\mu(z)^{\prime} \in \theta(\mathfrak{n})(5 \mathfrak{n} \quad(z \in \mathfrak{Z})$.

§ 5. The Basic Differential Equations

Let V be a complete, locally convex, Hausdorff space and τ a differentiable double representation of K on $V[1(\mathrm{e}), \S 19]$. Fix $v \in \mathscr{F}_{c}$ and let ϕ be an element in $C^{\infty}(G, \tau)$ [1(e), § 19] such that

$$
z \phi=\gamma\left(z: \lambda+(-1)^{1 / 2} v\right) \phi \quad(z \in \mathcal{Z})
$$

Put

$$
\phi_{i}(m)=d_{P}(m) \phi\left(m ; \eta_{i}(v)^{\prime}\right) \quad\left(m \in M_{1}\right)
$$

Lemma 1. Let $m \in M_{1}$. Then

$$
\varpi_{0}\left(\Lambda_{v}\right) d_{P}(m) \phi(m)=\sum_{1 \leqq i \leqq q} \varepsilon\left(s_{i}\right) \varpi_{1}\left(s_{i} \Lambda_{v}\right) \phi_{i}(m)
$$

and

$$
\phi_{i}(m ; \zeta)=\gamma_{1}\left(\zeta: s_{i} \Lambda_{v}\right) \phi_{i}(m)+d_{P}(m) \phi\left(m ; g_{i}(\zeta: v)\right) \quad(1 \leqq i \leqq q)
$$

for $\zeta \in \mathcal{Z}_{1}$.
This follows from the corollary of Lemma 4.1.
Let α be a root of $\left(P_{0}, A_{0}\right)$. Fix $X \in \mathfrak{n}_{0}$ such that $[H, X]=\alpha(H) X$ for all $H \in \mathfrak{a}_{0}$.
Lemma 2. Let $g_{1}, g_{2} \in \mathfrak{G}$ and $h \in A_{0}$. Then
$\phi\left(g_{1} ; h ; \theta(X) g_{2}\right)=e^{-\alpha(\log h)} \phi\left(g_{1} \theta(X) ; h ; g_{2}\right)$
and
$\phi\left(g_{1} X ; h ; g_{2}\right)=e^{-\alpha(\log h)} \phi\left(g_{1} ; h ; X g_{2}\right)$.
This is obvious.
Define
$\psi_{i, \zeta}(m)=d_{P}(m) \phi\left(m ; g_{i}(\zeta: v)\right) \quad\left(1 \leqq i \leqq q, m \in M_{1}\right)$
for $\zeta \in \mathcal{B}_{1}$. It is clear that $\psi_{i, \zeta}$ depends linearly on ζ. Since $\mathfrak{a} \subset \mathcal{Z}_{1}$, the following result is an immediate consequence of Lemma 1.

Lemma 3.

$\phi_{i}(m \exp T H) e^{-T s_{i} A_{\nu}(H)}=\phi_{i}(m)+\int_{0}^{T} \psi_{i, H}(m \exp t H) e^{-t s_{i} \Lambda_{\nu}(H)} d t \quad(1 \leqq i \leqq q)$
for $m \in M_{1}, H \in \mathbf{a}$ and $T \in \mathbf{R}$.

§ 6. Asymptotic Behavior of Eigenfunctions

For $v \in \mathscr{F}$, let $\mathscr{A}(G, \tau, \lambda, v)=\mathscr{A}(\lambda, v)=\mathscr{A}(v)$ denote the space of all $\phi \in \mathscr{A}(G, \tau)$ [1(e), § 21] such that

$$
z \phi=\gamma\left(z: \lambda+(-1)^{1 / 2} v\right) \phi \quad(z \in \mathcal{3})
$$

Fix $v \in \mathfrak{F}, \phi \in \mathscr{A}(v)$ and let us use the notation of $\S 5$. Our object is to study the asymptotic behavior of ϕ_{i}. Put $M_{1}^{+}=K_{1} \cdot C l\left(A_{0}^{+}\right) \cdot K_{1}$ as in [1(e), §22] where $K_{1}=$
$K_{M}=K \cap M$. The following lemma is proved in the same way as [1(e), Lemma 22.1].

Lemma 1. Fix $\zeta \in \mathfrak{Z}_{1}, v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $\mathbf{s} \in \mathscr{S}(V)$. Then we can choose numbers $c, r \geqq 0$ such that

$$
\left.\left|\psi_{i, \zeta}\left(v_{1}: m \exp H ; v_{2}\right)_{\mathrm{s}} \leqq c \Xi_{M}(m)\right|(m, H)\right|^{r} e^{-\beta_{P}(H)}
$$

for $m \in M_{1}^{+}$and $\mathrm{H} \in \mathrm{Cla}^{+}$.
Here the notation is the same as in [1(e), Lemma 22.3].
Let $\lambda_{i}(i \in Q)$ denote the restriction of $s_{i} \lambda^{y}$ on \mathfrak{a}. We decompose Q into three disjoint sets Q^{+}, Q^{0} and Q^{-}as follows. An element $i \in Q$ lies in Q^{+}if $\lambda_{i}(H)>0$ for some $H \in \mathfrak{a}^{+}, i \in Q^{o}$ if $\lambda_{i}=0$ and $i \in Q^{-}$if $\lambda_{i}(H)<0$ for all $H \in \mathfrak{a}^{+}$. Define

$$
\phi_{i \infty}(m)=\lim _{T \rightarrow+\infty} \phi_{i}(m \exp T H) e^{-T s_{s} \Lambda_{v}(H)} \quad\left(m \in M_{1}\right)
$$

for $i \in Q^{o}$ and $H \in \mathfrak{a}^{+}$. One proves as in $[1(\mathrm{e}), \S 22]$ that this limit exists and is independent of the choice of H. Moreover $\phi_{i \infty} \in \mathscr{A}\left(M_{1}, \tau_{M}\right)$. Define $\phi_{i \infty}=0$ for $i \in Q^{+} \cup Q^{-}$.

Choose a number $\delta\left(0<\delta \leqq \frac{1}{2}\right)$ such that

$$
\lambda_{i}(H) \leqq-\delta \beta_{P}(H)
$$

for all $i \in Q^{-}$and $H \in \mathfrak{a}^{+}$. We have seen in $[1(\mathrm{e}), \S 22]$ that this is possible.
Lemma 2. Let $i \in Q$. Then $\phi_{i \infty}=0$ unless $i \in Q^{o}$. Moreover $\phi_{i_{\infty}} \in \mathscr{A}\left(M_{1}, \tau_{M}\right)$ and

$$
\zeta \phi_{i \infty}=\gamma_{1}\left(\zeta: s_{i} \Lambda_{v}\right) \phi_{i \infty} \quad\left(\zeta \in \mathcal{Z}_{1}\right) .
$$

Finally

$$
\begin{aligned}
& \left|\phi_{i}\left(v_{1} ; m \exp T H ; v_{2}\right)-\phi_{i \infty}\left(v_{1} ; m \exp T H ; v_{2}\right)\right|_{\mathrm{s}} \\
& \quad \leqq e^{-T \delta \beta_{P}(H)}\left\{\left|\phi_{i}\left(v_{1} ; m ; v_{2}\right)\right|_{\mathrm{s}}+\int_{0}^{\infty}\left|\psi_{i, H}\left(v_{1}: m \exp t H ; v_{2}\right)\right|_{\mathrm{s}} e^{t \beta_{P(H}(\boldsymbol{H}) / 2}\right\}
\end{aligned}
$$

for $v_{1}, v_{2} \in \mathfrak{M}_{1}, m \in M_{1}, H \in \mathfrak{a}^{+}, T \geqq 0$ and $\mathbf{s} \in \mathscr{Y}(V)$. (In case $P=G$, the right side should be replaced by zero.)

This is proved in the same way as [1(e), Theorem 22.1].
Lemma 3. Fix $i(1 \leqq i \leqq q)$ and suppose $v \in \mathscr{F}^{\prime}(\lambda)$. Then $\phi_{i \infty}=0$ unless $s_{i}^{-1} \mathfrak{a} \subset \mathfrak{b}_{R^{k}}^{k_{0}}$.
Suppose $\phi_{i \infty} \neq 0$. Clearly \mathfrak{h}_{0} is a θ-stable Cartan subalgebra of \mathfrak{M}_{1}. Hence by [1(e), Lemma 29.3] we can choose $s \in W\left(\mathfrak{m}_{1} / \mathfrak{h}_{0}\right)$ such that

$$
s_{i}\left(\lambda-(-1)^{1 / 2} v\right)^{y}=s \theta s_{i}\left(\lambda+(-1)^{1 / 2} v\right)^{y} .
$$

Choose $x \in G_{c}$ such that $x y^{-1}=s_{i}$ on \mathfrak{b}_{0}. Then

$$
\left(\lambda-(-1)^{1 / 2} v\right)^{x}=s \theta\left(\lambda+(-1)^{1 / 2} v\right)^{x}
$$

and $x \cdot \mathfrak{h}_{c}=\mathfrak{h}_{0 c}$ since $y \cdot \mathfrak{h}_{c}=\mathfrak{h}_{0 c}$ (see §3). Fix $H_{0} \in \mathfrak{a}^{+}$. Then we conclude from [1 (e), Lemma 33.1] that

$$
\mathfrak{a} \subset x \cdot \mathfrak{h}_{R}=s_{i} \mathfrak{h}_{R}^{y}=s_{i} \mathfrak{h}_{R}^{k_{0}} .
$$

This proves the lemma.

§7. The Functions $\boldsymbol{\phi}_{\boldsymbol{P}, \mathrm{s}}$

Let $P=M A N$ be a psgp of G. Given $k \in K$, let s denote the restriction of $\operatorname{Ad}(k)$ on \mathfrak{a}. Then s determines the coset $k K_{M}$ completely. Hence if H is any subgroup of G which is normalized by K_{M}, we can define $H^{s}=H^{k}=k H k^{-1}$. In particular $P^{s}=M^{s} A^{s} N^{s}$. For any $\phi \in \mathscr{A}\left(M A, \tau_{M}\right)$, we define $\phi^{k}=\phi^{s} \in \mathscr{A}\left((M A)^{s}, \tau_{M^{s}}\right)$ by

$$
\phi^{s}\left(m^{k}\right)=\tau(k) \phi(m) \tau\left(k^{-1}\right) \quad(m \in M A) .
$$

It is easy to see that ϕ^{s} depends only on s. Similarly we define

$$
\zeta^{s}=\zeta^{k}=\operatorname{Ad}(k) \zeta \quad\left(\zeta \in \mathcal{3}_{M} \mathfrak{H}\right), \quad a^{s}=a^{k}(a \in A)
$$

If \mathfrak{h} is a Cartan subalgebra on \mathfrak{g}, sometimes it will be convenient to write $\gamma_{G / \mathfrak{h}}$ instead of $\gamma_{g / h}$.

Let $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ be another psgp of G. Then we have [1(e), §5] the finite set $\mathfrak{w}\left(\mathfrak{a}^{\prime} \mid \mathfrak{a}\right)$ of linear injections of \mathfrak{a} into \mathfrak{a}^{\prime}. For every $s \in \mathfrak{w}\left(\mathfrak{a}^{\prime} \mid \mathfrak{a}\right)$ we can choose $k \in K$ such that $\operatorname{Ad}(k)=s$ on $\mathfrak{a}[1(\mathrm{e}), \S 5]$. Put $\mathfrak{w}(\mathfrak{a})=\mathfrak{w}(\mathfrak{a} \mid \mathfrak{a})$. Then $\mathfrak{w}(\mathfrak{a})$ is a group of linear transformations in \mathfrak{a}.

Fix λ as in $\S 6$.
Theorem 1. Suppose $v \in \mathcal{F}^{\prime}(\lambda)$ and $\phi \in \mathscr{A}(G, \tau, \lambda, v)$ in the notation of §6. Put $\mathfrak{w}=\mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$. Then there exist unique functions $\phi_{P, s} \in \mathscr{A}\left(M_{1}, \tau_{M}\right)(s \in \mathfrak{w})$ with the following two properties.

1) $\phi_{P}(m)=\sum_{s \in \pm} \phi_{P, s}(m) \quad\left(m \in M_{1}\right)$,
2) $\zeta \phi_{P, s}=\gamma_{M_{1}^{s} / \mathfrak{h}}\left(\zeta^{s}: \lambda+(-1)^{1 / 2} v\right) \phi_{P, s} \quad\left(\zeta \in \mathcal{B}_{1}, s \in \mathfrak{w}\right)$.

Here ϕ_{P} is the constant term of ϕ along $P[1(\mathrm{e}), \S 21]$.
Corollary. $\phi_{P, s}(m a)=\phi_{P, s}(m) e^{(-1)^{1 / 2} v\left(\log a^{s}\right)}\left(m \in M_{1}, a \in A, s \in \mathfrak{w}\right)$.
Since $a \subset 3_{1}$, the corollary is obvious from the second statement of the theorem.
First we prove the following lemma.
Lemma 1. Given $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$, there exists a unique index $i(1 \leqq i \leqq q)$ such that $s H=\operatorname{Ad}\left(k_{0}^{-1}\right) s_{i}^{-1} H$ for all $H \in a$.

Choose a representative $k \in K$ for s. (This means that $\operatorname{Ad}(k)=s$ on \mathfrak{a}.) Then $(\mathfrak{a})^{k_{0} k} \subset \mathfrak{h}_{R}^{k_{0}} \subset a_{0}$.

Hence we can choose $t \in W_{0}=W\left(\mathfrak{g} / \mathfrak{h}_{0}\right)$ such that $\operatorname{Ad}\left(k_{0} k\right)=t^{-1}$ on \mathfrak{a}. Clearly the coset $W_{1} t$ is uniquely determined by this condition. Hence there exists a unique i such that $W_{1} t=W_{1} s_{i}$. This s_{i} satisfies our condition.

Lemma 2. Let s and i be related as in Lemma 1. Then
$\gamma_{1}\left(\zeta: s_{i} A_{\nu}\right)=\gamma_{M_{1}^{s} / \zeta}\left(\zeta^{s}: \lambda+(-1)^{1 / 2} v\right) \quad\left(\zeta \in \mathcal{Z}_{1}\right)$.
Choose $y_{i} \in G_{c}$ such that $y_{i}=s_{i}$ on \mathfrak{h}_{0} and define k as in the proof of Lemma 1. Then it is clear that

$$
m_{1}=y_{i} \operatorname{Ad}\left(k_{0} k\right) \in M_{1 \mathrm{c}}
$$

where $M_{1 c}$ is the centralizer of a in G_{c}. Now $s_{i} \Lambda_{v}=\left(\lambda+(-1)^{1 / 2} v\right)^{y_{1} y}$ and

$$
y_{i} y=m_{1} \operatorname{Ad}\left(k_{0} k\right)^{-1} y
$$

Moreover $\operatorname{Ad}\left(k_{0}^{-1}\right) y$ centralizes $\mathfrak{h}_{R}(\operatorname{see} \S 3)$ and $\mathfrak{h}_{R} \supset s \mathfrak{a}=\mathfrak{a}^{k}$. Hence

$$
m_{2}=\operatorname{Ad}\left(k_{0} k\right)^{-1} y \operatorname{Ad}(k) \in M_{1 c}
$$

Put

$$
m=m_{1} m_{2}=y_{i} y \operatorname{Ad}(k) \in M_{1 c}
$$

so that $y_{i} y=m \operatorname{Ad}\left(k^{-1}\right)$. Since (§3)

$$
\left(y_{i} y\right)^{-1} \mathfrak{h}_{o c}=y^{-1} \mathfrak{h}_{o c}=\mathfrak{h}_{c}
$$

it follows that $m^{-1} \mathfrak{h}_{0 c}=\mathfrak{h}_{c}^{k^{-1}}$. Therefore

$$
\begin{aligned}
\gamma_{1}\left(\zeta: s_{i} A_{v}\right) & =\gamma_{M_{1 / 6} / b_{0}}\left(\zeta:\left(\lambda+(-1)^{1 / 2} v\right)^{y_{1} y}\right) \\
& =\gamma_{M_{1 / 5} k^{-1}}\left(\zeta:\left(\lambda+(-1)^{1 / 2} v\right)^{k^{-1}}\right)=\gamma_{M_{1}^{5} / \hbar}\left(\zeta^{s}: \lambda+(-1)^{1 / 2} v\right)
\end{aligned}
$$

We now come to the proof of Theorem 1. Since $\varpi_{0}\left(\Lambda_{v}\right) \neq 0$, it is clear that $s \Lambda_{v} \neq t \Lambda_{v}$ for $s \neq t$ in W_{0}. Hence $s_{i} \Lambda_{v}$ and $s_{j} \Lambda_{v}$ cannot be conjugate under W_{1} unless $i=j$. Put

$$
\chi_{s}(\zeta)=\gamma_{M_{1 / \mathfrak{h}}^{s}}\left(\zeta^{s}: \lambda+(-1)^{1 / 2} v\right) \quad\left(s \in \mathfrak{w}, \zeta \in \mathcal{Z}_{1}\right)
$$

Then it follows from Lemma 2 that $\chi_{s} \neq \chi_{t}$ if $s \neq t$ in \mathfrak{w}. The uniqueness of $\phi_{P, s}$ is now obvious. On the other hand if s and i are related by Lemma 1 and we set

$$
\phi_{P, s}=\varpi_{01}\left(s_{i} \Lambda_{v}\right)^{-1} \phi_{i \infty},
$$

it follows from Lemmas 5.1 and 6.2 that all the conditions of Theorem 1 are fulfilled and this completes the proof.

We state the above result as a lemma for later reference.
Lemma 3. Suppose s and i are related as in Lemma 1. Then
$\phi_{P, s}=\varpi_{01}\left(s_{i} \Lambda_{v}\right)^{-1} \phi_{i \infty}$.
Let $\left(P^{\prime}, A^{\prime}\right)<(P, A)$ be another p-pair in G and put ${ }^{*} P=P^{\prime} \cap(M A)$. Then $\left({ }^{*} P, A^{\prime}\right)$ is a p-pair in M_{1}. For any $s \in \mathfrak{w}\left(\mathfrak{b}_{R} \mid \mathfrak{a}\right)$, let $\mathfrak{w}_{s}\left(\mathfrak{b}_{R} \mid \mathfrak{a}^{\prime}\right)$ be the set of all $t \in \mathfrak{w}\left(\mathfrak{b}_{R} \mid \mathfrak{a}^{\prime}\right)$ such that $t=s$ on \mathfrak{a}. (We note that $\mathfrak{a} \subset \mathfrak{a}^{\prime}$.)

Fix $s \in \mathfrak{w}\left(\mathfrak{h}_{\boldsymbol{R}} \mid \mathfrak{a}\right)$ and choose a representative $k \in K$ for s. Put

$$
\psi=\left(\phi_{P, s}\right)^{s} \in \mathscr{A}\left((M A)^{s}, \tau_{M^{s}}\right)
$$

Then

$$
\zeta \psi=\gamma_{M_{1}^{s} / \mathfrak{h}}\left(\zeta: \lambda+(-1)^{1 / 2} v\right) \psi \quad\left(\zeta \in \mathfrak{Z}_{1}^{S}\right) .
$$

and ${ }^{*} P^{k}=\left({ }^{*} P\right)^{k}$ is a psgp of M_{1}^{s} with split component $\left(A^{\prime}\right)^{k}$.
Lemma 4. For any $t \in \mathfrak{w}_{s}\left(\mathfrak{h}_{R} \mid \mathfrak{a}^{\prime}\right)$,

$$
\left(\phi_{P^{\prime}, t}\right)^{t}=\left(\psi_{* p^{k}, t o k-1}\right)^{t o k-1} .
$$

Here $t \circ k^{-1}$ denotes the mapping $H \mapsto t\left(\operatorname{Ad}\left(k^{-1}\right) H\right)\left(H \in\left(\mathfrak{a}^{\prime}\right)^{k}\right)$ of $\mathfrak{a}^{\prime k}$ into \mathfrak{h}_{R}. We know [1(e), Lemma 21.1] that

$$
\left(\phi_{P, s}\right) * * P=\left(\psi_{* p^{k}}\right)^{k-1}
$$

Let $\mathfrak{w}_{0}\left(\mathfrak{h}_{\mathbb{R}} \mid \mathfrak{a}^{\prime k}\right)$ denote the set of all $t^{\prime} \in \mathfrak{w}\left(\mathfrak{h}_{\mathfrak{R}} \mid \mathfrak{a}^{\prime k}\right)$ such that $t^{\prime}=\operatorname{Ad}\left(m^{k}\right)$ on $\mathfrak{a}^{\prime k}$ for some $m \in M_{1}$. Then it is easy to verify that $t \mapsto t \circ k^{-1}$ is a bijection of $w_{s}\left(\mathfrak{b}_{R} \mid \mathfrak{a}^{\prime}\right)$ on $\mathfrak{w}_{0}\left(\mathfrak{h}_{R} \mid \mathfrak{a}^{\prime k}\right)$. Therefore by applying Theorem 1 to ($\left.M_{1}^{s}, \psi\right)$ in place of (G, ϕ), we conclude that

$$
\psi_{* p_{k}}=\sum_{t \in \mathbf{w}_{s}\left(h_{\mathbf{R}} \mid a^{\prime}\right)} \psi_{* p^{k}, t_{0} k^{-1}}
$$

Now put $M_{1}^{\prime}=M^{\prime} A^{\prime}, \mathfrak{3}_{1}^{\prime}=3_{M^{\prime}}, \mathfrak{N}^{\prime}$,

$$
\chi_{t}(\eta)=\gamma_{\left(M_{1}\right)^{t / h}}\left(\eta^{t}: \lambda+(-1)^{1 / 2} v\right) \quad\left(\eta \in \mathcal{Z}_{1}^{\prime}\right)
$$

and

$$
\Psi(t)=\left(\psi_{* p^{k}, t o k^{-1}}\right)^{k^{-1}}
$$

for $t \in \mathfrak{w}_{s}\left(\mathfrak{h}_{R} \mid \mathfrak{a}^{\prime}\right)$. Then

$$
\eta \Psi(t)=\chi_{t}(\eta) \Psi(t) \quad\left(\eta \in \mathfrak{Z}_{1}^{\prime}\right)
$$

On the other hand $\phi_{P^{\prime}}=\left(\phi_{P}\right)_{* P}$ [1(e), Lemma 21.1]. Hence

$$
\phi_{P^{\prime}}=\sum_{s \in w\left(\mathfrak{b}_{R} \mid a\right)}\left(\phi_{P, s}\right)_{* P}
$$

For every $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$, choose a representative k_{s} in K and define

$$
\Psi(s, t)=\left(\psi_{* p^{k}, t o k-1}\right)^{k^{-1}} \quad\left(t \in \mathfrak{w}_{s}\left(\mathfrak{h}_{R} \mid \mathfrak{a}^{\prime}\right)\right),
$$

with $\psi=\left(\phi_{P, s}\right)^{s}$ and $k=k_{s}$. Then, by the above result,

$$
\left(\phi_{P, s}\right)_{* P}=\sum_{t \in \mathbf{w}_{s}\left(\hat{b}_{R} \mid \mathbf{a}^{\prime}\right)} \Psi(s, t)
$$

and

$$
\eta \Psi(s, t)=\chi_{t}(\eta) \Psi(s, t) \quad\left(\eta \in \mathfrak{Z}_{1}^{\prime}\right)
$$

for $s \in \mathfrak{m}\left(\mathfrak{b}_{R} \mid \mathfrak{a}\right)$ and $t \in \mathfrak{w}_{s}\left(\mathfrak{h}_{R} \mid \mathfrak{a}^{\prime}\right)$. Hence

$$
\begin{aligned}
\phi_{P^{\prime}} & =\sum_{s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)}\left(\phi_{P, s}\right)_{* P} \\
& =\sum_{s \in \mathfrak{w}\left(\mathfrak{b}_{\mathbf{R}} \mid \mathbf{a}\right)} \sum_{t \in \mathfrak{w}_{s}\left(\mathfrak{b}_{R} \mid \mathbf{a}^{\prime}\right)} \Psi(s, t) .
\end{aligned}
$$

It is now obvious from Theorem 1 that

$$
\phi_{P^{\prime}, t}=\Psi(s, t)
$$

for $t \in \mathfrak{w}_{s}\left(\mathfrak{h}_{\mathbb{R}} \mid \mathfrak{a}^{\prime}\right)$ and the statement of the lemma follows immediately.
We define the space ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ as in [1(e), § 19].
Lemma 5. Fix $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$ and let f denote the restriction of $\phi_{P, s}$ on M. Then if prk $P=\operatorname{dim} \mathfrak{b}_{R}, f \in^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$.

Let ${ }^{*} P={ }^{*} M^{*} A^{*} N$ be a psgp of M with prk * $P \geqq 1$. Then by [1(e), Lemma 25.1], it is enough to verify that $f_{* P}=0$. Let $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ be the psgp of G corresponding to ${ }^{*} P\left[1(\mathrm{e})\right.$, Lemma 6.1] so that $\left(P^{\prime}, A^{\prime}\right)<(P, A)$. Then

$$
\text { prk } P^{\prime}=\operatorname{prk} * P+\operatorname{prk} P>\operatorname{dim} \mathfrak{G}_{R}
$$

and therefore $\mathfrak{w}\left(\mathfrak{h}_{\mathbb{R}} \mid \mathfrak{a}^{\prime}\right)$ is empty. Fix a representative $k \in K$ for s and put $\psi=\left(\phi_{P, s}\right)^{s}$, $Q=\left(P^{\prime} \cap M_{1}\right)^{k}$. Then Q is a psgp of $M_{1}=M A$ and it follows from the proof of Lemma 4 that $\psi_{Q}=0$. Since [$1(\mathrm{e})$, Lemma 21.1]

$$
f_{* P}=\left(\psi_{Q}\right)^{k^{-1}}
$$

on ${ }^{*} M^{*} A$, we conclude that $f_{* P}=0$.

§ 8. Functions of Type $I I(\lambda)$

Now, instead of keeping v fixed, we shall allow it to vary in \mathfrak{F}. Note that $\mathfrak{h}_{\mathbb{R}}$, being a subspace of \mathfrak{g}, has a Euclidean norm. Hence, by duality, the same holds for \mathfrak{F}. Put

$$
|(v, x)|=(1+|v|)(1+\sigma(x))
$$

for $(v, x) \in \mathfrak{F} \times G$. Let $\mathfrak{D}=\mathfrak{D}\left(\mathfrak{F}_{c}\right)$ denote the algebra of polynomial differential operators on \mathfrak{F} (or \mathfrak{F}_{c}) $[1(\mathrm{c}), \S 3]$. Put $\mathfrak{F}_{\mathfrak{b}}=\mathfrak{D} \otimes \mathfrak{G}^{(2)}[1(\mathrm{e}), \S 15]$. Let ϕ be a C^{∞} function from $\tilde{\mathscr{y}} \times G$ to V. For $D \in \mathscr{G}, \mathbf{s} \in \mathscr{S}(V)$ and $r \geqq 0$, put

$$
\mathrm{s}_{\mathrm{D}, r}(\phi)=\sup _{\mathcal{F} \times G}|D \phi|_{\mathbf{s}} \Xi^{-1}|(v, x)|^{-r}
$$

in the notation of $[1(\mathrm{e}), \S 15]$. If F is a finite subset of $\tilde{\mathfrak{G}}$, we set

$$
\mathbf{s}_{F, r}(\phi)=\sum_{D \in F} \mathbf{s}_{D, r}(\phi) .
$$

A function $\phi: \mathfrak{F} \times G \rightarrow V$ will be said to be of type $I I(\lambda)$ if the following conditions hold.

1) ϕ is of class C^{∞}.
2) For any $v \in \mathfrak{F}$, the function $\phi_{v}=\phi(v)$ is a τ-spherical function on G and

$$
z \phi_{v}=\gamma_{g / f}\left(z: \lambda+(-1)^{1 / 2} v\right) \phi_{v} \quad(z \in \mathcal{Z}) .
$$

3) For any $D \in \tilde{\mathscr{F}}$ and $\mathbf{s} \in \mathscr{\mathscr { G }}(V)$, we can choose a number $r \geqq 0$ such that $\mathbf{s}_{\mathrm{D}, \mathrm{r}}(\phi)<\infty$.

Fix a function ϕ of type $I I(\lambda)$ and let us use the notation of $\S 5$. Then ϕ_{i} and $\psi_{i, 5}\left(\zeta \mathscr{\zeta} \in \mathcal{Z}_{1}\right)$ are now functions on $\mathfrak{F} \times M_{1}$. Put

$$
|(v, x, X)|=(1+|v|)(1+\sigma(x))(1+\|X\|)
$$

for $(v, x, X) \in \mathscr{F} \times G \times \mathfrak{g}$.
Lemma 1. Fix $\zeta \in \mathcal{Z}_{1}, v_{1}, v_{2} \in \mathfrak{M}_{1}, p \in S\left(\mathscr{F}_{c}\right)$ and $\mathbf{s} \in \mathscr{P}(V)$. Then we can choose c, $r \geqq 0$ such that

$$
\left|\psi_{i, \zeta}\left(v ; \partial(p): v_{1} ; m \exp H ; v_{2}\right)\right|_{\mathbf{s}} \leqq c \Xi_{M}(m)|(v, m, H)|^{r} e^{-\beta_{P}(H)}
$$

for $m \in M_{1}^{+}, H \in C l a^{+}, v \in \mathfrak{F}$ and $1 \leqq i \leqq q$.
The proof is the same as for Lemma 6.1.
It follows without difficulty from the above estimates that $\phi_{i \infty}$, regarded as functions on $\mathfrak{F} \times M_{1}$, are of class C^{∞}. In fact we have the following analogue of Lemma 6.2.

Lemma 2.1) $\phi_{i \infty}(v: m ; \zeta)=\gamma_{1}\left(\zeta: s_{i} \boldsymbol{\Lambda}_{v}\right) \phi_{i \infty}(v: m)\left(\zeta \in \mathcal{Z}_{1}\right)$.
Given $v_{1}, v_{2} \in \mathfrak{M}_{1}, p \in S\left(\mathfrak{F}_{c}\right)$ and $\mathbf{s} \in \mathscr{S}(V)$, we can choose $c, r \geqq 0$ such that
2) $\left|\phi_{i \infty}\left(v ; \partial(p): v_{1}: m ; v_{2}\right)\right|_{s} \leqq c \Xi_{M}(m)|(v, m)|^{r}$.

Finally
3) $\left|\phi_{i}\left(v: v_{1}: m \exp T H ; v_{2}\right)-\phi_{i \infty}\left(v: v_{1}: m \exp T H ; v_{2}\right)\right|_{s}$

$$
\leqq e^{-T \delta \beta_{P}(H)}\left\{\mid \phi_{i}\left(v: v_{1}: m ;\left.v_{2}\right|_{\mathbf{s}}+\int_{0}^{\infty}\left|\psi_{i, H}\left(v: v_{1}: m \exp t H ; v_{2}\right)\right|_{\mathbf{s}^{2}} e^{t \beta_{P(H} / 2} d t\right\}\right.
$$

for $H \in \mathfrak{a}^{+}, T \geqq 0$.
Here $i \in Q, v \in \mathfrak{F}, m \in M_{1}$ and the right side in 3) is to be replaced by zero in case $P=G$.

We have only to comment on the proof of 2). Put

$$
\begin{aligned}
& \phi_{i}^{o}(v: m: H)=\phi_{i}(v: m \exp H) e^{-s_{1} A_{v}(H)}, \\
& \psi_{i, \zeta}^{o}(v: m: H)=\psi_{i, 5}(v: m \exp H) e^{-s_{i} A_{v}(H)} \quad\left(\zeta \in \mathfrak{Z}_{1}\right),
\end{aligned}
$$

for $v \in \mathfrak{F}, m \in M_{1}$ and $H \in \mathfrak{a}$. Then

$$
\phi_{i}^{o}(v: m: T H)=\phi_{i}(v: m)+\int_{0}^{T} \psi_{i, H}^{o}(v: m: t H) d t \quad(T \in \mathbf{R})
$$

from Lemma 5.3. Now if $i \in Q^{o}$, it follows from Lemma 1 that

$$
\begin{aligned}
\phi_{i \infty}\left(v ; \partial(p): v_{1} ; m ; v_{2}\right)= & \phi_{i}\left(v ; \partial(p): v_{1} ; m ; v_{2}\right) \\
& +\int_{0}^{\infty} \psi_{i, H}^{o}\left(v ; \partial(p): v_{1} ; m ; v_{2}: t H\right) d t
\end{aligned}
$$

for $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $p \in S\left(\mathfrak{F}_{c}\right)$. Now fix p. Then it is obvious that

$$
\partial(p) \circ e^{-s_{1} \Lambda_{v}(H)}=e^{-s_{i} \lambda_{v}(H)} \partial\left(p_{H}\right) \quad(H \in \mathfrak{a})
$$

where $H \mapsto p_{H}$ is a polynomial mapping of \mathfrak{a} in $S\left(\mathscr{F}_{\mathrm{c}}\right)$. Hence 2) is an easy consequence of Lemma 1 and standard arguments [1(d), p. 69]. (We recall that by Lemma 6.2 $\phi_{i \infty}=0$ unless $i \in Q^{0}$.)

Put $\phi_{P}(v)=\left(\phi_{v}\right)_{P}(v \in \mathscr{F})$ and $\phi_{P, s}(v)=\left(\phi_{v}\right)_{P, s}$ for $v \in \mathscr{F}^{\prime}(\lambda)$ and $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$.
Lemma 3. Suppose $v \in \mathscr{F}^{\prime}(\lambda)$. Then

$$
\phi_{P}(v)=\sum_{i \in Q^{0}} \varpi_{01}\left(s_{i} \Lambda_{v}\right)^{-1} \phi_{i \infty}(v)=\sum_{s \in \mathbb{w}\left(b_{R} \mid a\right)} \phi_{P, s}(v) .
$$

This is obvious from the results of $\S 7$.

\S 9. Functions of Type $I^{\prime}(\lambda)$

Let \mathscr{P} be the set of all psgps of G. We keep to the notation of $\S 8$.
Let ϕ be a function from $\mathfrak{F} \times G$ to V. We say that ϕ is of type $I I^{\prime}(\lambda)$, if it is of type $I I(\lambda)$ and the following additional condition holds. Given $P=M A N$ in \mathscr{P} and $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$, the function $\left(\phi_{P, S}\right)^{s}$ on $\mathcal{F}^{\prime}(\lambda) \times(M A)^{s}$ extends (uniquely) to a function of type $I I(\lambda)$ on $\mathfrak{F} \times(M A)^{s}$.

Lemma 1. Suppose ϕ is of type $I I^{\prime}(\lambda)$ on $\mathfrak{F} \times G$. Then for any $P=$ MAN in \mathscr{P} and $s \in \mathfrak{w}\left(\mathfrak{h}_{\mathfrak{R}} \mid \mathfrak{a}\right),\left(\phi_{P . S}\right)^{s}$ is of type $I I^{\prime}(\lambda)$ on $\mathfrak{F} \times(M A)^{s}$.

This is an immediate consequence of Lemma 7.4.
Theorem 1. Suppose ϕ is a function of type $I I(\lambda)$ on $\mathfrak{F} \times G$. Define

$$
\psi(v: x)=m\left(\lambda+(-1)^{1 / 2} v\right) \phi(v: x) \quad(v \in \mathfrak{F}, x \in G) .
$$

Then ψ is of type $I I^{\prime}(\lambda)$.
This is an immediate consequence of Lemmas 7.3 and 8.2.

§ 10. Continuity of ϕ_{P}

Fix a function ϕ of type $I(\lambda)$ on $\mathscr{F} \times G$ and a psgp $P=$ MAN of G. We intend to show that ϕ_{P} is a continuous function on $\mathfrak{F} \times M A$. So we may assume that $P \neq G$.

We use the notation of $\S 3$. Let U^{*} be the space dual to U and $\left(u_{1}^{*}, \ldots, u_{q}^{*}\right)$ the base for U^{*} dual to $\left(u_{1}, \ldots, u_{q}\right)$. For any $v \in \mathcal{F}$, we have defined in $\S 3$ a representation Γ_{v} of J_{1} on U. The corresponding (right-)representation Γ_{v}^{*} on U^{*} is given by

$$
\left\langle u^{*} \Gamma_{v}^{*}(p), u\right\rangle=\left\langle u^{*}, \Gamma_{v}(p) u\right\rangle \quad\left(p \in J_{1}, u \in U, u^{*} \in U^{*}\right) .
$$

Define γ_{1} as in $\S 4$ and put $\eta_{i}=\gamma_{1}^{-1}\left(u_{i}\right) \in \mathfrak{Z}_{1}(1 \leqq i \leqq q)$.
We regard U^{*} as a Hilbert space with $\left(u_{1}^{*}, \ldots, u_{q}^{*}\right)$ as an orthonormal base. Put $\mathbf{V}=V \otimes U^{*}$. Then by letting K act trivially on U^{*}, we get a double representation τ of K on \mathbf{V}. Put

$$
\Gamma_{v}(\zeta)=1 \otimes \Gamma_{v}^{*}\left(\gamma_{1}(\zeta)\right) \quad\left(\zeta \in \mathcal{Z}_{1}\right)
$$

Then Γ_{v} is a right-representation of \mathcal{Z}_{1} on \mathbf{V} which commutes with τ.

We now proceed in the same way as in [1(e), §22]. If $s \in \mathscr{P}(V)$ and

$$
\mathbf{v}=\sum_{1 \leqq i \leqq q} v_{i} \otimes u_{i}^{*} \quad\left(v_{i} \in V\right)
$$

we put

$$
\mathbf{s}(\mathbf{v})=|\mathbf{v}|_{\mathbf{s}}=\left(\sum_{i}\left|v_{i}\right|_{\mathbf{s}}^{2}\right)^{1 / 2}
$$

Let $\|T\|$ denote the Hilbert-Schmidt norm of a linear transformation T on U^{*}.
(We write T on the right.) Then it is easy to verify that

$$
\mathbf{s}(\mathbf{v} \cdot(1 \otimes T)) \leqq \mathbf{s}(\mathbf{v})\|T\| \quad(\mathbf{s} \in \mathscr{S}(V), \mathbf{v} \in \mathbf{V})
$$

Now define a C^{∞} function Φ from $\mathscr{F} \times M_{1}$ to V by

$$
\Phi(v: m)=d(m) \sum_{1 \leqq i \leqq q} \phi\left(v: m ; \eta_{i}^{\prime}\right) \otimes u_{i}^{*} \quad\left(v \in \mathcal{F}, m \in M_{1}\right)
$$

Here $M_{1}=M A, d(m)=d_{P}(m)\left(m \in M_{1}\right)$ and $v^{\prime}=d^{-1} v \circ d$ for $v \in \mathfrak{M}_{1}$ as in $\S 4$. Fix $\zeta \in \mathcal{Z}_{1}$ and consider $\Phi(v: m ; \zeta)$. Put $p=\gamma_{1}(\zeta) \in J_{1}$. Then

$$
p u_{i}=\Gamma_{v}(p) u_{i}+\sum_{1 \leqq j \leqq q} v_{i j}(p: v) u_{j} \quad(1 \leqq i \leqq q)
$$

where

$$
v_{i j}(p: v)=\operatorname{tr}_{J_{1} / J}\left\{u^{j}\left(p u_{i}-\Gamma_{v}(p) u_{i}\right)\right\} \in J_{A_{v}}
$$

from the definition of $\Gamma_{v}(p)$. Define γ_{0} and μ as in $\S 4$ and put

$$
z_{i j}(\zeta: v)=\gamma_{o}^{-1}\left(v_{i j}(p: v)\right) \in \mathcal{3}
$$

Then it is clear that

$$
\gamma\left(z_{i j}(\zeta: v): \lambda+(-1)^{1 / 2} v\right)=0
$$

and [1(d), p. 110]

$$
g_{i j}(\zeta: v)=z_{i j}(\zeta: v)-\mu\left(z_{i j}(\zeta: v)\right)^{\prime} \in \theta(\mathfrak{n}) \mathfrak{G} n .
$$

Put

$$
g_{i}(\zeta: v)=-\sum_{1 \leqq j \leqq q} g_{i j}(\zeta: v) \eta_{j}^{\prime}
$$

Then $g_{i}(\zeta: v)$ is linear in ζ and for fixed i and $\zeta, v \mapsto g_{i}(\zeta: v)$ is a polynomial mapping of \mathfrak{F} into $\theta(\mathrm{n}) \mathfrak{G} \mathrm{n}$ by Corollary 3 of Lemma 3.5.

Lemma 1. Fix $\zeta \in \mathcal{Z}_{1}$ and put

$$
\Psi_{\zeta}(v: m)=d(m) \sum_{1 \leqq i \leqq q} \phi\left(v: m ; g_{i}(\zeta: v)\right) \otimes u_{i}^{*} \quad\left(v \in \mathfrak{F}, m \in M_{1}\right)
$$

Then

$$
\Phi(v: m ; \zeta)=\Phi(v: m) \Gamma_{v}(\zeta)+\Psi_{\zeta}(v: m)
$$

for $v \in \mathfrak{F}$ and $m \in M_{1}$.

Let $p=\gamma_{1}(\zeta)$. Then

$$
\sum_{i} u_{i} \otimes u_{i}^{*} \Gamma_{v}^{*}(p)=\sum_{i} \Gamma_{v}(p) u_{i} \otimes u_{i}^{*}=\sum_{i} p u_{i} \otimes u_{i}^{*}-\sum_{i, j} v_{i j}(p: v) u_{j} \otimes u_{i}^{*}
$$

in $J_{1} \otimes U^{*}$. Therefore since $\gamma_{1}\left(\mu\left(z_{i j}(\zeta: v)\right)\right)=v_{i j}(p: v)$ and $z_{i j}(\zeta: v) \phi(v)=0$, we conclude that

$$
\Phi(v: m) \Gamma_{v}(\zeta)=d(m) \sum_{i} \phi\left(v: m ; \zeta^{\prime} \eta_{i}^{\prime}\right) \otimes u_{i}^{*}-d(m) \sum_{i} \phi\left(v: m ; g_{i}(\zeta: v)\right) \otimes u_{i}^{*}
$$

and this implies our assertion.
Lemma 2. Let $H \in \mathfrak{a}$. Then

$$
\Phi(v: m \exp T H) e^{-T \Gamma_{\nu}(H)}=\Phi(v: m)+\int_{0}^{T} \Psi_{H}(v: m \exp t H) e^{-t \Gamma_{v}(H)} d t
$$

for $v \in \mathscr{F}, m \in M_{1}$ and $T \in \mathbf{R}$.
Since $\mathfrak{a} \subset \mathfrak{3}_{1}$, this is an immediate consequence of Lemma 1.
Put

$$
E_{i}(v)=\Gamma_{v}^{*}\left({ }_{i} e(v)\right) \quad(v \in \mathscr{F}, i \in Q)
$$

in the notation of Lemma 3.4. Then it is clear that E_{i} is a C^{∞} function from \mathfrak{F} to End U^{*} and

$$
\sum_{i \in{ }^{\circ} Q} E_{i}(v)=1 .
$$

Moreover it is easy to verify from Corollary 2 of Lemma 3.5 that

$$
E_{i}(v) E_{j}(v)=\delta_{i j} E_{j}(v) \quad\left(i, j \in^{o} Q\right)
$$

Put $\mathbf{E}_{i}(v)=1 \otimes E_{i}(v)$. Since J_{1} is an abelian algebra, it is obvious that $\mathbf{E}_{i}(v)$ commutes with $\boldsymbol{\Gamma}_{v}(\zeta)\left(\zeta \in \mathcal{Z}_{1}\right)$ and the operations of K on V. Put

$$
\Phi_{i}(v)=\Phi(v) \mathbf{E}_{i}(v) \quad(v \in \mathfrak{F})
$$

Then the following result is immediate.
Lemma 3. Let $H \in a$. Then
$\Phi_{i}(v: m \exp T H) e^{-T \Gamma_{v}(H)}=\Phi_{i}(v: m)+\int_{0}^{T} \Psi_{H}(v: m \exp t H) \mathbf{E}_{i}(v) e^{-t \boldsymbol{\Gamma}_{v}(\boldsymbol{H})} d t$
for $v \in \mathcal{F}, m \in M_{1}, T \in \mathbf{R}$ and $i \in Q$.
Let $\lambda_{i}(i \in Q)$ denote the restriction of $s_{i} \lambda^{y}$ on a as in $\S 6$.
Lemma 4. Put
$\Gamma_{i}(v: H)=E_{i}(v) e^{\Gamma *(H)-\lambda_{i}(H)}$
for $i \in Q, v \in \mathfrak{F}, H \in \mathfrak{a}$. Then we can choose $c_{0}, r_{0} \geqq 0$ such that
$\left\|\Gamma_{i}(v: H)\right\| \leqq c_{0}(1+\|H\|)^{r_{0}}(1+|v|)^{r_{0}} \quad(i \in Q, H \in \mathfrak{a}, v \in \mathfrak{F})$.
Put
$F_{i}(v: H)=E_{i}(v)\left(\Gamma_{v}^{*}(H)-\lambda_{i}(H)\right)$
and fix $H \in \mathfrak{a}$. We claim that all eigenvalues of $F_{i}(v: H)$ are purely imaginary. Since $F_{i}(v: H)$ is a continuous function of $v \in \mathfrak{F}$, it would be enough to verify this for $v \in \mathscr{F}^{\prime}(\lambda)$. But this follows from Corollary 1 of Lemma 3.5 since

$$
\Gamma_{v}(H) e_{j}(v)=s_{j} \Lambda_{v}(H) e_{j}(v) \quad(1 \leqq j \leqq q)
$$

Now

$$
\Gamma_{i}(v: H)=E_{i}(v) e^{F_{i}(v: H)}
$$

Since

$$
\nu \mapsto \varpi_{s_{i}, \lambda}\left(s_{i} A_{v}\right) E_{i}(\nu)
$$

is a polynomial mapping (Lemma 3.4) and

$$
\left|\varpi_{s_{i}, \lambda}\left(s_{i} \Lambda_{\nu}\right)\right| \geqq\left|\varpi_{\lambda}(\lambda)\right|>0
$$

(Lemma 3.3), the required result follows from [1(a), Lemma 60].
Lemma 5. Fix $\zeta \in \mathfrak{Z}_{1}, v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $\mathbf{s} \in \mathscr{S}(V)$. Then we can choose $c, r \geqq 0$ such that

$$
\left|\Psi_{\zeta}\left(v: v_{1} ; m \exp H ; v_{2}\right)\right|_{\mathbf{s}} \leqq c \Xi_{M}(m)|(v, m, H)|^{r} e^{-\beta_{p}(H)}
$$

for $m \in M_{1}^{+}, H \in C l \mathfrak{a}^{+}$and $v \in \mathfrak{F}$.
We recall that $v \mapsto g_{j}(\zeta: v)(1 \leqq j \leqq q)$ are polynomial mappings of \mathfrak{F} into $\theta(\mathrm{n})(5 \mathrm{n}$. Therefore our assertion follows without difficulty from Lemma 5.2.

Define Q^{+}, Q^{o} and Q^{-}as in $\S 6$. Then (see $\left.\S 6\right)$ we can choose $\delta\left(0<\delta \leqq \frac{1}{2}\right)$ such that

$$
\lambda_{i}(H) \leqq-\delta \beta_{P}(H)
$$

for all $i \in Q^{-}$and $H \in \mathfrak{a}^{+}$.
Fix $i \in Q^{o}, v_{1}, v_{2} \in \mathfrak{M}_{1}, \mathbf{s} \in \mathscr{S}(V)$ and $H \in \mathfrak{a}^{+}$. Then it follows from Lemmas 4 and 5 that the integral

$$
\int_{0}^{\infty}\left|\Psi_{H}\left(v: v_{1} ; m \exp t H ; v_{2}\right)\right|_{s}\left\|\Gamma_{i}(v:-t H)\right\| d t
$$

converges uniformly as v and m vary within compact subsets of \mathfrak{F} and M_{1} respectively. Put

$$
\Phi_{i \infty}(v: m)=\lim _{t \rightarrow+\infty} \Phi_{i}(v: m \exp t H) e^{-t \Gamma_{v}(H)} \quad\left(v \in \mathfrak{F}, m \in M_{1}\right)
$$

Then, from Lemma 3, this limit exists and we prove as in [1(e), §22] that it is independent of $H \in \mathfrak{a}^{+}$. Moreover $\Phi_{i \infty}$ is a continuous function from $\mathfrak{F} \times M_{1}$ to \mathbf{V} which is differentiable in $m \in M_{1}$. In fact

$$
\Phi_{i \infty}\left(v: v_{1}: m ; v_{2}\right)=\lim _{t \rightarrow+\infty} \Phi_{i}\left(v: v_{1}: m \exp t H ; v_{2}\right) e^{-t \Gamma_{v}(H)}
$$

for $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $H \in \mathfrak{a}^{+}$.
Define $\Phi_{i \infty}=0$ for $i \in Q^{+} \cup Q^{-}$.

Lemma 6. Fix $i \in Q$. Then

$$
\Phi_{i \infty}(v: m ; \zeta)=\Phi_{i \infty}(v: m) \Gamma_{v}(\zeta) \quad\left(\zeta \in \mathcal{Z}_{1}\right)
$$

and

$$
\begin{aligned}
& \left|\Phi_{i}\left(v: v_{1}: m \exp T H ; v_{2}\right)-\Phi_{i \infty}\left(v: v_{1}: m \exp T H ; v_{2}\right)\right|_{\mathbf{s}} \\
& \leqq \\
& \quad e^{-\delta T \beta_{\mathbf{P}}(H)}\left\{\left|\Phi\left(v: v_{1} ; m ; v_{2}\right)\right|_{\mathbf{s}}\left\|\Gamma_{i}(v: T H)\right\|\right. \\
& \quad+\int_{0}^{\infty}\left|\Psi_{H}\left(v: v_{1}: m \exp t H ; v_{2}\right)\right|_{\mathbf{s}} \| \Gamma_{i}\left(v:(T-t) H \| e^{i \beta_{\mathbf{P}}(H) / 2} d t\right\}
\end{aligned}
$$

for $v_{1}, v_{2} \in \mathfrak{M}_{1}, m \in M_{1}, H \in \mathfrak{a}^{+}, v \in \mathcal{F}, \mathbf{s} \in \mathscr{F}(V)$ and $T \geqq 0$.
This is proved in the same way as [1(e), Theorem 22.1].
Put ${ }^{\circ} Q^{o}={ }^{o} Q \cap Q^{o}$. Since

$$
\sum_{i \in \in^{\circ} Q} E_{i}(v)=1
$$

we get the following corollary.
Corollary.

$$
\begin{aligned}
& \left|\Phi\left(v: v_{1}: m \exp T H ; v_{2}\right)-\sum_{i \in \in^{\circ} Q^{o}} \Phi_{i \infty}\left(v: v_{1}: m \exp T H ; v_{2}\right)\right|_{\mathbf{s}} \\
& \quad \leqq e^{-\delta T \beta_{P}(H)} \sum_{i \in{ }^{\circ} Q}\left\{\left|\Phi\left(v: v_{1} ; m ; v_{2}\right)\right|_{\mathbf{s}}\left\|\Gamma_{i}(v: T H)\right\|\right. \\
& \quad+\int_{0}^{\infty}\left|\Psi_{H}\left(v: v_{1}: m \exp t H ; v_{2}\right)\right|_{\mathbf{s}} \| \Gamma_{i}\left(v:(T-t) H \| e^{t \beta_{P}(H) / 2} d t\right\} .
\end{aligned}
$$

Define functions $\psi_{i}(i \in Q)$ from $\mathscr{F} \times M_{1}$ to V by the formula

$$
\sum_{i \in \in^{o} Q^{o}} \Phi_{i \infty}=\sum_{i \in Q} \psi_{i} \otimes u_{i}^{*}
$$

Since $u_{1}=1$, it is clear from the above results and the definition of ϕ_{P} [1(e), Theorem 21.1] that $\psi_{1}=\phi_{P}$. The following result is now obvious from Lemma 6.

Lemma 7. Fix $v_{1}, v_{2} \in \mathfrak{M}_{1}$. Then the function $(v, m) \mapsto \phi_{P}\left(v: v_{1}: m ; v_{2}\right)$ is continuous on $\mathscr{F} \times M_{1}$. Moreover for each $\mathbf{s} \in \mathscr{P}(V)$, we can choose $c, r \geqq 0$ such that

$$
\left|\phi_{P}\left(v: v_{1}: m ; v_{2}\right)\right|_{s} \leqq c \Xi_{M}(m)|(v, m)|^{r}
$$

for $v \in \mathscr{F}$ and $m \in M_{1}$.
Corollary. Suppose ϕ is of type $I I^{\prime}(\lambda)$. Then
$\phi_{P}=\sum_{s \in \mathfrak{w}\left(\mathrm{~b}_{R} \mid \mathrm{a}\right)} \phi_{P, s}$
on $\mathfrak{F} \times M_{1}$.
By Lemma 8.3 the equality holds on $\mathfrak{F}^{\prime}(\lambda) \times M_{1}$. But since both sides are continuous, it must hold on $\mathfrak{F} \times M_{1}$.

We recall that $P \neq G$. Fix a compact subset Ω of \mathfrak{a}^{+}and choose $\varepsilon_{0}>0$ such that $\beta_{P}(H) \geqq 2 \varepsilon_{0}$ for all $H \in \Omega$. Put $\varepsilon=\delta \varepsilon_{0}$. Then the following result is an easy consequence of the corollary of Lemma 6.

Lemma 8. Given $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $\mathbf{s} \in \mathscr{S}(V)$, we can choose $c, r \geqq 0$ such that

$$
\begin{aligned}
& \left|d_{P}(m \exp T H) \phi\left(v: v_{1}^{\prime}: m \exp T H ; v_{2}^{\prime}\right)-\phi_{P}\left(v: v_{1}: m \exp T H ; v_{2}\right)\right|_{\mathrm{s}} \\
& \quad \leqq c e^{-\varepsilon T} \Xi_{M}(m)|(v, m)|^{r}
\end{aligned}
$$

for $v \in \mathfrak{F}, m \in M_{1}^{+}, H \in \Omega$ and $T \geqq 0$.

\S 11. A Criterion for a Function to be of Type $I^{\prime}(\lambda)$

We assume in this section that τ is a unitary [1(e), §20]. Let $\mathscr{P}\left(\mathfrak{h}_{R}\right)$ denote the set of all psgps $P=M A N$ of G such that $\mathfrak{a}=\mathfrak{h}_{\mathbf{R}}$. Clearly M is independent of $P \in \mathscr{P}\left(\mathfrak{h}_{R}\right)$.

Let ϕ be a function on $\mathfrak{F} \times G$ of type $I I(\lambda)$. Put $\mathfrak{a}=\mathfrak{h}_{R}$ and fix $P \in \mathscr{P}(\mathfrak{a}), s \in \mathfrak{w}(\mathfrak{a})$ and $\nu \in \mathscr{F}^{\prime}(\lambda)(P=M A N)$. Then the function $m \longmapsto \phi_{P, s}(\nu: m)(m \in M)$ lies in ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ (Lemma 7.5). We observe that ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$, being a closed subspace of $\mathscr{C}\left(M, \tau_{M}\right)$ [$1(\mathrm{e}), \S 18]$, is a locally convex space.

Lemma 1. Let ϕ be a function on $\mathfrak{F} \times G$ of type $I I(\lambda)$ and $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ a psgp of G. Then $\phi_{P^{\prime}}(v) \sim 0(v \in \mathfrak{F})$ unless \mathfrak{a}^{\prime} is a conjugate to \mathfrak{a} under K.

Fix $a^{\prime} \in A^{\prime}, f \in^{\circ} \mathscr{C}\left(M^{\prime}, \tau_{M}\right)$ and assume that \mathfrak{a}^{\prime} is not conjugate to under K. Then it follows from [1(e), Theorem 29.1] that

$$
\int_{M^{\prime}}\left(f\left(m^{\prime}\right), \phi_{P^{\prime}}\left(v: m^{\prime} a^{\prime}\right)\right) d m^{\prime}=0
$$

for $v \in \mathfrak{F}^{\prime}(\lambda)$. On the other hand, it is obvious from Lemma 10.7 that the left side is a continuous function of $v \in \mathscr{F}$. Hence $\phi_{P^{\prime}}(v) \sim 0$ for all $v \in \mathscr{F}$.

Corollary. Fix $v \in \mathscr{F}$ and suppose $\phi_{P}(v)=0$ for all $P \in \mathscr{P}(\mathfrak{a})$. Then $\phi(v)=0$.
This is an immediate consequence of [1(e), Lemma 25.2] and the above result.

Theorem 1. Let ϕ be as above and S a collection of continuous seminorms on ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$. We assume that $f \in{ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ and $\mathbf{s}(f)=0$ for all $\mathbf{s} \in S$, implies that $f=0$. Then, in order that ϕ be of type $I I^{\prime}(\lambda)$, it is necessary and sufficient that the following condition holds. For $P \in \mathscr{P}(\mathfrak{a})$ and $s \in \mathfrak{w}(\mathfrak{a})$, let $f_{P, s}(v)$ denote the restriction of $\phi_{P, s}(v)$ on $M\left(v \in \mathscr{F}^{\prime}(\lambda)\right)$. Then $\mathbf{s}\left(f_{P, s}(v)\right)$ should remain locally bounded on \mathfrak{F} for every $P \in \mathscr{P}(\mathfrak{a})$, $s \in \mathfrak{w}(\mathfrak{a})$ and $\mathbf{s} \in S$.

For example we can take S to consist of the single element s given by

$$
\mathbf{s}(f)=\|f\|_{M} \quad\left(f \in^{\circ} \mathscr{C}\left(M, \tau_{M}\right)\right)
$$

where

$$
\|f\|_{M}^{2}=\int_{M}|f(m)|^{2} d m
$$

We first need a simple result.

Lemma 2. Let $H_{0} \neq 0$ be a point in \mathfrak{a} and ϕ a function of type $I I(\lambda)$ on $\mathfrak{F} \times G$ such that $\phi(v)=0$ whenever $v\left(H_{0}\right)=0(v \in \mathfrak{F})$. Then the function

$$
\psi(v: x)=v\left(H_{0}\right)^{-1} \phi(v: x) \quad(v \in \mathscr{F}, x \in G)
$$

is also of type $I I(\lambda)$.
This follows from Lemma 22.1.
Now we come to the proof of Theorem 1 . If ϕ is of type $I^{\prime}(\lambda)$, then for fixed $P \in \mathscr{P}(\mathfrak{a})$ and $s \in \mathfrak{w}(\mathfrak{a}), f_{P, s}$ defines a C^{∞} mapping from \mathfrak{F} to ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ (see Lemma 12.1 below). Hence our condition is certainly necessary. So it remains to verify that it is sufficient.

Put

$$
\psi(v: x)=\varpi\left(\lambda+(-1)^{1 / 2} v\right) \phi(v: x) \quad(v \in \mathfrak{F}, x \in G)
$$

Then by Theorem $9.1, \psi$ is of type $I^{\prime}(\lambda)$. Let p be the set of all positive roots of $(\mathfrak{g}, \mathfrak{h}), p(\lambda)$ the subset of those $\alpha \in p$ for which $\lambda\left(H_{\alpha}\right) \neq 0$ and $p^{\prime}(\lambda)$ the complement of $p(\lambda)$ in p. Put

$$
\varpi_{\lambda}=\prod_{\alpha \in p(\lambda)} H_{\alpha}, \quad \varpi_{\lambda}^{\prime}=\prod_{\alpha \in p^{\prime}(\lambda)} H_{\alpha} .
$$

Then $\varpi=\varpi_{\lambda} \cdot \varpi_{\lambda}^{\prime}$ and

$$
\left|\varpi_{\lambda}\left(\lambda+(-1)^{1 / 2} v\right)\right| \geqq\left|\varpi_{\lambda}(\lambda)\right|>0 \quad(v \in \mathscr{F})
$$

Hence it follows without difficulty that

$$
\begin{aligned}
\psi^{\prime}(v: x) & =\varpi_{\lambda}\left(\lambda+(-1)^{1 / 2} v\right)^{-1} \psi(v: x) \\
& =\varpi_{\lambda}^{\prime}\left(\lambda+(-1)^{1 / 2} v\right) \phi(v: x)
\end{aligned}
$$

is a function of type $I^{\prime}(\lambda)$. Since λ is a regular element in $(-1)^{1 / 2} \mathfrak{h}_{i}^{*}$ (see $\S 3$), it is clear that we can choose elements $H_{i} \neq 0(1 \leqq i \leqq r)$ in \mathfrak{a} and a complex number $c \neq 0$ such that

$$
\varpi_{\lambda}^{\prime}\left(\lambda+(-1)^{1 / 2} v\right)=c \prod_{1 \leqq i \leqq r} v\left(H_{i}\right) \quad(v \in \mathscr{F})
$$

Hence it is enough to prove the following result.
Lemma 3. Put

$$
Q(v)=\prod_{1 \leqq i \leqq r} v\left(H_{i}\right) \quad(v \in \mathfrak{F})
$$

where $H_{i} \neq 0$ are elements in \mathfrak{a}. Suppose ϕ satisfies the condition of Theorem 1 and

$$
\psi(v: x)=Q(v) \phi(v: x) \quad(v \in \mathfrak{F}, x \in G)
$$

is a function of type $I I^{\prime}(\lambda)$. Then ϕ is also of type $I I^{\prime}(\lambda)$.
By induction we are reduced to the case $r=1$. Fix a $\operatorname{psgp} P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ and $t \in \mathfrak{w}\left(\mathfrak{a} \mid \mathfrak{a}^{\prime}\right)$. Then

$$
\psi_{P^{\prime}, t}(v)=v\left(H_{1}\right) \phi_{P^{\prime}, t}(v) \quad\left(v \in \mathcal{F}^{\prime}(\lambda)\right)
$$

We have to verify that $\left(\phi_{P^{\prime}, t}\right)^{t}$ is of type $I I(\lambda)$. Since ψ is of type $I I^{\prime}(\lambda)$, we know from Lemma 9.1 that $\left(\psi_{P^{\prime}, t}\right)^{t}$ is also of type $I I^{\prime}(\lambda)$. Hence in view of Lemma 2, it would be enough to verify that $\psi_{P^{\prime}, t}(v)=0$ whenever $v\left(H_{1}\right)=0$.

Now fix $P \in \mathscr{P}(\mathfrak{a})$ and $s \in \mathfrak{m}(\mathfrak{a})$. Then

$$
\psi_{P, s}(v)=v\left(H_{1}\right) \phi_{P, s}(v) \quad\left(v \in \mathscr{F}^{\prime}(\lambda)\right)
$$

Let $g(v)$ denote the restriction of $\psi_{P, s}(v)$ on M. Then we conclude from Lemma 12.1 below that $v \mapsto g(v)$ is a continuous mapping from \mathfrak{F} into ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$.

Fix a point $v_{0} \in \mathscr{F}$ such that $v_{0}\left(H_{1}\right)=0$. Let v be a variable point in $\mathscr{F}^{\prime}(\lambda)$ which tends to v_{0}. Then if $s \in S$,

$$
\mathbf{s}\left(g\left(v_{0}\right)\right)=\lim _{v} \mathbf{s}(g(v))=\lim _{v}\left|v\left(H_{1}\right)\right| \mathbf{s}\left(f_{P, s}(v)\right)=0
$$

by our assumption on ϕ. Hence $g\left(v_{0}\right)=0$ and this implies (Corollary of Theorem 7.1) that $\psi_{P, s}\left(v_{0}\right)=0$. But then we conclude from Lemma 7.4 and the corollary of Lemma 1 that $\psi_{P^{\prime}, t}\left(v_{0}\right)=0$.

This proves Lemma 3 and therefore also Theorem 1.

§ 12. An Auxiliary Result

Let $G=M A$ be the Langlands decomposition of G and assume $\mathfrak{a}=\mathfrak{h}_{R}$. Let ϕ be a function of type $I I(\lambda)$ on $\mathscr{F} \times G$ and ψ its restriction on $\mathscr{F} \times M$. Then we know from Lemma 7.5 that $\psi(v) \in^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$ for $v \in \mathfrak{F}$. (We note that $\mathfrak{F}^{\prime}(\lambda)=\mathfrak{F}$ and $\mathfrak{m}(\mathfrak{a})=\{1\}$ in this case.)

Lemma 1. $v \mapsto \psi(v)$ is a C^{∞} mapping of \mathfrak{F} into ${ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)$.
This is an immediate consequence of the following lemma.
Lemma 2. Suppose $\mathfrak{h}_{R}=\{0\}$. Fix $g_{1}, g_{2} \in \mathfrak{G}$ and $r_{0} \geqq 0$. Then we can choose a finite subset F of $\mathfrak{b}^{(2)}$ with the following property. Given $r \geqq 0$ and $\mathbf{s} \in \mathscr{S}(V)$, we can choose a number $c>0$ such that

$$
\mid \phi\left(g_{1}: x ; g_{2}\right) \|_{\mathbf{s}} \Xi(x)^{-1}(1+\sigma(x))^{r_{0}} \leqq c \mathbf{s}_{F, r}(\phi) \quad(x \in G)
$$

for all functions ϕ on G of type $I I(\lambda)$.
Let $P=M A N$ be a psgp of $G(P \neq G)$. Since $\mathfrak{h}_{R}=\{0\}, \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)=\emptyset$ and $\mathfrak{F}^{\prime}(\lambda)=$ $\mathfrak{F}=\{0\}$. Therefore $\phi_{P}=0$ by Lemma 8.3. Moreover

$$
z \phi=\gamma(z: \lambda) \phi \quad(z \in \mathfrak{Z})
$$

Therefore Lemma 23.4 of [1(e)] is applicable. Fix a minimal p-pair $\left(P_{0}, A_{0}\right)$ in G. Then $G=K \cdot C l A_{0}^{+} \cdot K$ and there are only a finite number of p-pairs $(P, A) \succ\left(P_{0}, A_{0}\right)$. Our assertion is an easy consequence of these facts.

§ 13. Statement of the Two Main Theorems

We keep to the notation of § 8. For $D \in \tilde{\mathfrak{E}}, \mathbf{s} \in \mathscr{P}(V)$ and $r \geqq 0$, define

$$
{ }^{o} \mathbf{s}_{D, r}(f)=\sup _{\mathfrak{F} \times G} \mid D f l_{\mathfrak{s}} \Xi^{-1}(1+\sigma)^{-r} \quad\left(f \in C^{\infty}(\tilde{F} \times G, V)\right) .
$$

Similarly if F is any finite subset of $\tilde{\mathfrak{G}}$, we write

$$
{ }^{{ }^{s} \mathbf{s}_{F, r}(f)=\sum_{D \in F}{ }^{o} \mathbf{s}_{D, r}(f) .}
$$

A function $\phi: \mathscr{F} \times G \rightarrow V$ will be said to be of type $I(\lambda)$ if:

1) ϕ is of type $I(\lambda)$.

Moreover we say that ϕ is of type $I^{\prime}(\lambda)$ if it is both of type $I(\lambda)$ and type $I I^{\prime}(\lambda)$.
Let $\mathscr{E}\left(I^{\prime}(\lambda)\right)$ denote the space of all functions of type $I^{\prime}(\lambda)$ and $d v$ the Euclidean measure on \mathfrak{F}.

Theorem 1. For $\phi \in \mathscr{E}\left(I^{\prime}(\lambda)\right)$, define

$$
j_{\phi}(x)=\int_{\tilde{F}} \phi(v: x) d v \quad(x \in G) .
$$

Then $j_{\phi} \in \mathscr{C}(G, \tau)$. Fix $g_{1}, g_{2} \in \mathfrak{G}$ and $r_{0} \geqq 0$. Then we can choose a finite subset F of $\tilde{\mathfrak{G}}$ with the following property. Given $r \geqq 0$ and $\mathbf{s} \in \mathscr{Y}(V)$, there exists a number $c>0$ such that

$$
\left|j_{\phi}\left(g_{1} ; x ; g_{2}\right)\right|_{s} \leqq c^{o} \mathbf{s}_{F, r}(\phi) \Xi(x)(1+\sigma(x))^{-r_{0}} \quad(x \in G)
$$

for all $\phi \in \mathscr{E}\left(I^{\prime}(\lambda)\right)$.
Define the Schwartz space $\mathscr{C}(\mathfrak{F})$ as usual.
Corollary. Fix a function ϕ on $\mathscr{F} \times G$ of type $I I^{\prime}(\lambda)$ and define

$$
\phi_{\alpha}(x)=\int_{\frac{\mathfrak{F}}{}} \alpha(v) \phi(v: x) d v \quad(x \in G)
$$

for $\alpha \in \mathscr{C}(\mathfrak{F})$. Then $\alpha \mapsto \phi_{\alpha}$ is a continuous mapping of $\mathscr{C}(\mathfrak{F})$ into $\mathscr{C}(G, \tau)$ and

$$
\phi_{\alpha}\left(g_{1}: x ; g_{2}\right)=\int_{\underset{F}{ }} \alpha(v) \phi\left(v: g_{1}: x ; g_{2}\right) d v \quad(x \in G)
$$

for $\mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathfrak{G}$ and $\alpha \in \mathscr{C}(\mathfrak{F})$.
This is an immediate consequence of Theorem 1.
Fix ϕ as in the above corollary. Then if $P=M A N$ is a psgp of G and $\alpha \in \mathscr{C}(\mathfrak{F})$, it follows from Lemma 9.1 and the corollary of Lemma 10.7 that the function

$$
\phi_{P, \alpha}(m)=\int_{\mathfrak{z}} \alpha(v) \phi_{P}(v: m) d v \quad(m \in M A)
$$

lies in $\mathscr{C}\left(M A, \tau_{M}\right)$. Extend it to a function on G by setting

$$
\phi_{P, \alpha}(k m n)=\tau(k) \phi_{P, \alpha}(m) \quad(k \in K, m \in M A, n \in N) .
$$

Put $\bar{P}=\theta(P), \bar{N}=\theta(N), \rho=\rho_{P}, H(x)=H_{P}(x)(x \in G)$ and define $\phi_{\alpha}^{(P)}$ as in $[1(\mathrm{e})$, Lemma 16.1].

Theorem 2. Let $d \bar{n}$ denote the Haar measure on \bar{N}. Then

$$
\phi_{\alpha}^{(\mathbb{P})}(m)=d_{P}(m) \int_{\bar{N}} \phi_{\alpha}(\bar{n} m) d \bar{n}=\int_{\bar{N}} e^{-\rho(\boldsymbol{H}(\bar{n}))} \phi_{P, \alpha}(\bar{n} m) d \bar{n}
$$

for $m \in M A$ and $\alpha \in \mathscr{C}(\mathscr{F})$.
This is a generalization of [1(b), Theorem 4, p. 610]. (It is part of the assertion of the theorem that the above integrals are well defined.)

In view of the corollary of Lemma 10.7, the following result is obvious.
Corollary. $\phi_{\alpha}^{(P)}=0$ unless $\mathfrak{a}^{k} \subset \mathfrak{h}_{R}$ for some $k \in K$.
The above two theorems contain the main results of this paper. The significance of Theorem 2 may be explained as follows. Extend d_{P} and $\phi_{P}(v)$ to functions on G as in $[1(\mathrm{e}), \S 24]$. Then Theorem 2 asserts that

$$
\begin{aligned}
& \int_{\mathcal{N}} d_{P}(\bar{n})^{-1} d \bar{n} \int_{\mathcal{F}} \alpha(v) d_{P}(\bar{n} m) \phi(v: \bar{n} m) d v \\
& \quad=\int_{\mathcal{N}} d_{P}(\bar{n})^{-1} d \bar{n} \int_{\overparen{F}} \alpha(v) \phi_{P}(v: \bar{n} m) d v \quad(m \in M A)
\end{aligned}
$$

for $\alpha \in \mathscr{C}(\mathscr{F})$. This shows that the integral on the left remains unchanged when we replace $d_{P} \phi(v)$ by its asymptotic value $\phi_{P}(v)$ [1(e), Lemma 24.1].

§ 14. Some Preparation

Put $\mathfrak{D}=\mathfrak{D}\left(\mathscr{F}_{c}\right), \mathscr{E}^{\prime}=\mathscr{E}\left(I^{\prime}(\lambda)\right)$ and let $\mathscr{E}=\mathscr{E}(I(\lambda))$ denote the space of all functions on $\mathscr{F} \times G$ of type $I(\lambda)$. It is obviously enough to prove the statement of Theorem 13.1 for $s \in \mathscr{S}^{a}(V)$ [1 (e), § 22].

Let \mathbf{R}_{+}denote the set of all real numbers $r \geqq 0$. In order to avoid tedious repetitions, we agree to the following conventions. The variables r, \mathbf{s} and v shall range freely over $\mathbf{R}_{+}, \mathscr{S}^{o}(V)$ and \mathfrak{F} respectively unless explicitly mentioned otherwise. Let Y be any set and f, g two functions from $\mathbf{R}_{+} \times \mathscr{S}^{\circ}(V) \times \mathscr{F} \times Y$ to $\mathbf{R}_{+} \cup\{\infty\}$. Then we write

$$
f(r, \mathbf{s}, v, y)<g(r, \mathbf{s}, v, y) \quad(y \in Y)
$$

if for any given r and \mathbf{s} we can choose a real number $c(r, s)>0$ such that

$$
f(r, \mathbf{s}, v, y) \leqq c(r, \mathbf{s}) g(r, \mathbf{s}, v, y)
$$

for all $v \in \mathscr{F}$ and $y \in Y$. Finally the letter F will always stand for a finite set. Thus $F \subset Y$ means that F is a finite subset of Y.

We now use the notation of $\S 5$ and fix numbers $c_{0}, d_{0} \geqq 0$ such that

$$
d_{P}(m) \Xi(m) \leqq c_{0} \Xi_{M}(m)(1+\sigma(m))^{d_{0}} \quad\left(m \in M_{1}^{+}\right)
$$

Lemma 1. Fix $\zeta \in \mathcal{Z}_{1}, v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $D \in \mathfrak{D}$. Then we can choose $F \subset \tilde{\mathfrak{E}}$ such that $\left|\psi_{i, 5}\left(v ; D: v_{1} ; m ; v_{2}\right)\right|_{s} \leqq^{o} \mathbf{S}_{F, r}(\phi) \Xi_{M}(m)|(m, H)|^{d_{0}+\boldsymbol{r}} e^{-\boldsymbol{\beta}_{\boldsymbol{P}}(H)}$
for $\phi \in \mathscr{E}, m \in M_{1}^{+}, H \in C l \alpha^{+}$and $1 \leqq i \leqq q$.
Here $\psi_{i, \zeta}$ is the function defined in $\S 5$ corresponding to ϕ. This lemma is proved in the same way as [1(e), Lemma 22.3].

Lemma 2. Given $D \in \mathfrak{D}$ and $v_{1}, v_{2} \in \mathfrak{M}_{1}$, we can choose $F \subset \tilde{\mathfrak{G}}$ such that

$$
\left|\phi_{i \infty 0}\left(v ; D: v_{1} ; m ; v_{2}\right)\right|_{s}<^{o} \mathbf{s}_{F, r}(\phi) \Xi_{M}(m)(1+\sigma(m))^{d_{0}+r} \quad\left(i \in Q^{o}\right)
$$

for $m \in M_{1}$ and $\phi \in \mathscr{E}$.
We use the notation of the proof of Lemma 8.2. Fix $H \in \mathfrak{a}^{+}$. Then

$$
\begin{aligned}
& \phi_{i \infty}\left(v ; D: v_{1}: m ; v_{2}\right) \\
& \quad=\phi_{i}\left(v ; D: v_{1}: m ; v_{2}\right)+\int_{0}^{\infty} \psi_{i, H}^{o}\left(v ; D: v_{1}: m ; v_{2}: t H\right) d t
\end{aligned}
$$

and our assertion follows without difficulty.
Now suppose $\phi \in \mathscr{E}^{\prime}$. Then for any $\mathbf{s} \in \mathfrak{m}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right), \phi_{P, s}$ extends to a C^{∞} function on $\mathfrak{F} \times M_{1}$.

Lemma 3. Given $D \in \mathfrak{D}$ and $v_{1}, v_{2} \in \mathfrak{M}_{1}$, we can choose $F \subset \tilde{\mathfrak{F}}$ such that

$$
\left|\phi_{P, s}\left(v ; D: v_{1} ; m ; v_{2}\right)\right|_{\mathbf{s}}<^{o} \mathbf{s}_{F, r}(\phi) \Xi_{M}(m)(1+\sigma(m))^{d_{0}+r}
$$

for $m \in M_{1}, \phi \in \mathscr{E}^{\prime}$ and $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$.
In view of Lemmas 3.3 and 7.3, this is an immediate consequence of Lemmas 2 and 22.2.

Corollary. If $\phi \in \mathscr{E}^{\prime}$, then for any $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right),\left(\phi_{P, s}\right)^{s}$ is a function of type $I^{\prime}(\lambda)$ on $\mathfrak{F} \times M_{1}^{s}$.

This follows from Lemmas 3 and 9.1.
Now let us use the notation of Lemma 10.5.
Lemma 4. Fix $\zeta \in \mathfrak{Z}_{1}, v_{1}, v_{2} \in \mathfrak{M}$ and $r_{1} \geqq 0$. Then we can choose $F \subset \tilde{\mathfrak{F}}$ such that

$$
\left|\Psi_{\zeta}\left(v: v_{1}: m \exp H ; v_{2}\right)\right|_{\mathbf{s}}(1+|v|)^{r_{1}} \leqq{ }^{0} \mathbf{s}_{F, r}(\phi) \Xi_{M}(m)|(m, H)|^{d_{0}+\boldsymbol{r}} e^{-\beta_{P}(\boldsymbol{H})}
$$

for $m \in M_{1}^{+}, H \in C l \mathfrak{a}^{+}, \phi \in \mathscr{E}$.
As before this follows from Lemma 5.2.
Now assume that $P \neq G$. Fix a compact set Ω in \mathfrak{a}^{+}and choose $\varepsilon_{0}>0$ such that $\beta_{P}(H) \geqq 2 \varepsilon_{0}$ for all $H \in \Omega$. Select $\delta\left(0<\delta \leqq \frac{1}{2}\right)$ as in $\S 10$ and put $\varepsilon=\delta \varepsilon_{0}$.

Lemma 5. Given $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $r_{1} \geqq 0$, we can choose $F \subset \tilde{\mathfrak{G}}$ such that

$$
\begin{aligned}
& \mid d_{P}(m \exp T H) \phi\left(v: v_{1}^{\prime}: m \exp T H ; v_{2}^{\prime}\right)-\phi_{P}\left(v: v_{1}: m \exp T H ; v_{2}\right) \|_{\mathbf{s}}(1+|v|)^{r_{1}} \\
& \quad \prec^{o} \mathbf{s}_{F, r}(\phi) \Xi_{M}(m)(1+\sigma(m))^{d_{0}+\boldsymbol{r}} e^{-\varepsilon \boldsymbol{T}}
\end{aligned}
$$

for $m \in M_{1}^{+}, H \in \Omega, T \geqq 0$ and $\phi \in \mathscr{E}$.

This is proved in the same way as Lemma 10.8.
Now fix $r_{1} \geqq 0$ such that

$$
\int_{\mathfrak{F}}(1+|v|)^{-r_{1}} d v<\infty .
$$

If $\phi \in \mathscr{E}^{\prime}$, we know (Corollary of Lemma 10.7) that

$$
\phi_{P}=\sum_{s \in w_{\left(b_{R} \mid a\right)}} \phi_{P, s}
$$

Put $j(\phi: x)=j_{\phi}(x)(x \in G)$ and

$$
j\left(\phi_{P, s}: m\right)=\int_{\mathfrak{F}} \phi_{P, s}(v: m) d v \quad\left(m \in M_{1}\right)
$$

for $s \in \mathfrak{w}\left(\mathfrak{b}_{R} \mid \mathfrak{a}\right)$ and $\phi \in \mathscr{E}^{\prime}$.

Corollary.

$$
\begin{aligned}
& \left|d_{P}(m \exp T H) j\left(\phi: v_{1}^{\prime}: m \exp T H ; v_{2}^{\prime}\right)-\sum_{s \in w\left(\mathfrak{h}_{F} \mid \alpha\right)} j\left(\phi_{P, s}: v_{1}: m \exp T H ; v_{2}\right)\right|_{\mathbf{s}} \\
& \quad<{ }^{o} \mathbf{S}_{F, r}(\phi) \Xi_{M}(m)(1+\sigma(m))^{d_{0}+r} e^{-\varepsilon T}
\end{aligned}
$$

for $m \in M_{1}^{+}, H \in \Omega, T \geqq 0$ and $\phi \in \mathscr{E}^{\prime}$.
This follows immediately from Lemma 5.

§ 15. Proof of Theorem 13.1

We now come to the proof of Theorem 13.1. It is clearly enough to prove the second part of the theorem.

We proceed by induction on $\operatorname{dim} G$. First assume that prk $G>0$ and let $G=M A$ be the Langlands decomposition of G. Then $\mathfrak{h}_{R}=\mathfrak{m} \cap \mathfrak{h}_{R}+\mathfrak{a}$ where the sum is direct. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be the subspace consisting of all $v \in \mathfrak{F}$ which vanish identically on $\boldsymbol{m} \cap \mathfrak{h}_{R}$ and a respectively. Then $\mathfrak{F}=\mathfrak{F}_{1}+\mathscr{F}_{2}$ where the sum is direct. We note that $\mathfrak{D}_{i}=\mathfrak{D}\left(\mathscr{F}_{i c}\right) \subset \mathfrak{D}=\mathfrak{D}\left(\mathfrak{F}_{c}\right)\left[1(\mathrm{c})\right.$, p. 540]. Let $d v_{i}$ denote the Euclidean measure on \mathfrak{F}_{i} so normalized that $d \nu=d v_{1} d v_{2}\left(v=v_{1}+v_{2}, v_{i} \in \mathfrak{F}_{i}, i=1,2\right)$. Since $\mathfrak{a} \subset \mathcal{Z}$, it follows from our assumptions that

$$
\phi\left(v_{1}+v_{2}: m a\right)=\phi\left(v_{1}+v_{2}: m\right) e^{(-1)^{1 / 2} v_{1}(\log a)} \quad(m \in M, a \in A)
$$

for $\phi \in \mathscr{E}^{\prime}$ and $v_{i} \in \mathfrak{F}_{i}$. Fix $v_{1}, v_{2} \in \mathfrak{M}$ and $u \in \mathfrak{A}$. Then

$$
j_{\phi}\left(v_{1}: m a ; v_{2} u\right)=\int \phi\left(v_{1}+v_{2}: v_{1} ; m ; v_{2}\right) u\left((-1)^{1 / 2} v_{1}\right) e^{(-1)^{1 / 2} v_{1}(\log a)} d v_{1} d v_{2}
$$

(We regard u as a polynomial function on $\mathscr{F}_{1 c}$ in the right side.) Now fix $r_{0} \geqq 0$. Then we can choose $p \in S\left(\mathscr{F}_{1 c}\right)$ such that

$$
p\left((-1)^{1 / 2} H\right) \geqq(1+\|H\|)^{r_{0}} \quad(H \in \mathfrak{a})
$$

Also we can select a polynomial function p_{1} on \mathfrak{F}_{1} such that $p_{1} \geqq 1$ on \mathfrak{F}_{1} and

$$
\int_{\tilde{z}_{1}} p_{1}^{-1} d v_{1}<\infty .
$$

Hence it is obvious that there exists an element $D_{1} \in \mathfrak{D}_{1}$ such that

$$
\left|j_{\phi}\left(v_{1} ; m a ; v_{2} u\right)\right|_{\mathbf{s}}(1+\sigma(a))^{r_{0}} \leqq \sup _{v_{1} \in \tilde{\mathscr{F}}_{1}}\left|\int_{\tilde{F}_{2}} \phi\left(v_{1}+v_{2} ; D_{1}: v_{1} ; m ; v_{2}\right) d v_{2}\right|_{\mathbf{s}}
$$

for $m \in M, a \in A$ and $\phi \in \mathscr{E}^{\prime}$.
On the other hand $\operatorname{dim} M<\operatorname{dim} G$ and so the induction hypothesis is applicable to M. Let \mathscr{E}_{M}^{\prime} be the space of all functions ψ on $\mathfrak{F}_{2} \times M$ of type $I^{\prime}(\lambda)$. Then we can choose a finite subset F_{2} of $\mathfrak{M} \boldsymbol{X}=\mathfrak{D}_{2} \otimes \mathfrak{M}^{(2)}$ such that

$$
\left|\int_{F_{2}} \psi\left(v_{2}: v_{1}: m ; v_{2}\right) d v_{2}\right|_{\mathbf{s}}<^{o} \mathbf{S}_{F_{2, r}}(\psi) \Xi(m)(1+\sigma(m))^{-r_{0}}
$$

for $m \in M$ and $\psi \in \mathscr{E}_{M}^{\prime}$.
We regard \mathfrak{M} as a subalgebra of $\tilde{\mathfrak{5}}=\mathfrak{D} \otimes \mathfrak{G}^{(2)}$. Let F denote the subset of $\tilde{\mathfrak{F}}$ consisting of all elements of the form $D_{2} D_{1}\left(D_{2} \in F_{2}\right)$. Fix $\phi \in \mathscr{E}^{\prime}, v_{1} \in \mathfrak{F}_{1}$ and put

$$
\psi\left(v_{2}: m\right)=\phi\left(v_{1}+v_{2} ; D_{1}: m\right) \quad\left(v_{2} \in \mathfrak{F}_{2}, m \in M\right)
$$

Then $\psi \in \mathscr{E}_{M}^{\prime}$ and so we conclude from the above result that

$$
\left|j_{\Phi}\left(v_{1} ; m a ; v_{2} u\right)\right|_{\mathbf{s}}<^{\circ} \mathbf{s}_{F, r}(\phi) \Xi(m)(1+\sigma(m))^{-r_{0}}(1+\sigma(a))^{-r_{0}}
$$

for $m \in M, a \in A$ and $\phi \in \mathscr{E}^{\prime}$. This obviously implies Theorem 13.1 in this case.
So now suppose prk $G=0$. The case $G=K$ being trivial, we may assume that G is not compact. Fix a minimal p-pair $\left(P_{0}, A_{0}\right)$ in G and let S^{+}be the set of all $H \in C l \mathfrak{a}_{0}^{+}$with $\|H\|=1$. Fix $H_{0} \in S^{+}$and let F_{0} be the set of all simple roots of $\left(P_{0}, A_{0}\right)$ which vanish at H_{0}. Put $(P, A)=\left(P_{0}, A_{0}\right)_{F_{0}}$. Then $H_{0} \in \mathfrak{a}^{+}$. Fix a compact neighborhood Ω_{0} of H_{0} in S^{+}such that

$$
\alpha(H) \geqq \alpha\left(H_{0}\right) / 2 \quad\left(H \in \Omega_{0}\right)
$$

for every root α of $\left(P_{0}, A_{0}\right)$. Put $\varepsilon_{0}=\beta_{P}\left(H_{0}\right) / 4$ and $\varepsilon=\delta \varepsilon_{0}$ where δ is defined as in $\S 10$. Since

$$
\exp t H=m_{t} \exp \left(t H_{0} / 2\right) \quad\left(H \in \Omega_{0}, t \geqq 0\right),
$$

where $m_{t}=\exp t\left(H-\frac{1}{2} H_{0}\right) \in C l A_{0}^{+} \subset M_{1}^{+}$, we get the following result from the corollary of Lemma 14.5.

Lemma 1. Given $v_{1}, v_{2} \in \mathfrak{M}_{1}$, we can choose $F \subset \tilde{\mathfrak{F}}$. such that

$$
\begin{aligned}
& \left|d_{P}(\exp t H) j\left(\phi: v_{1}^{\prime}: \exp t H ; v_{2}^{\prime}\right)-\sum_{\operatorname{s\in w}^{\left(\mathbf{G}_{\mathbf{R}} \mid a\right)}} j\left(\phi_{\boldsymbol{P}, \mathrm{s}}: v_{1}: \exp t H ; v_{2}\right)\right|_{\mathbf{s}} \\
& \quad \prec^{o} \mathbf{S}_{\boldsymbol{F}, r}(\phi) \Xi_{M}(\exp t H)(1+t)^{d_{0}+\boldsymbol{r}} e^{-\varepsilon t}
\end{aligned}
$$

for $H \in \Omega_{0}, t \geqq 0$ and $\phi \in \mathscr{E}^{\prime}$.
On the other hand since prk $G=0$ and $H_{0} \neq 0$, it is clear that $\operatorname{dim} M_{1}<\operatorname{dim} G$. Moreover for $s \in \mathfrak{w}\left(\mathfrak{h}_{R} \mid \mathfrak{a}\right)$ and $\phi \in \mathscr{E}^{\prime},\left(\phi_{P, s}\right)^{s}$ is a function of type $I^{\prime}(\lambda)$ on $\mathscr{F} \times M_{1}^{s}$ (Corollary of Lemma 14.3). Hence if we take into account Lemma 14.3 and apply the induction hypothesis to M_{1}^{s}, we get the following result immediately.

Lemma 2. Fix $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $r_{0} \geqq 0$. Then we can choose $F \subset(\tilde{\mathfrak{G}}$ such that
$\left|j\left(\phi_{P, s}: v_{1}: m ; v_{2}\right)\right|_{s}<^{o} \mathbf{s}_{F, r}(\phi) \Xi_{M}(m)(1+\sigma(m))^{-r_{0}}$
for $s \in \mathfrak{w}\left(\mathfrak{h}_{\mathbb{R}} \mid \mathfrak{a}\right), m \in M_{1}$ and $\phi \in \mathscr{E}^{\prime}$.
Combining this with Lemma 1 and standard inequalities relating Ξ and Ξ_{M}, we get the following result.

Lemma 3. Given $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $r_{0} \geqq 0$, we can choose $F \subset \tilde{\mathscr{F}}$ such that
$\left|j\left(\phi: v_{1} ; \exp t H ; v_{2}\right)\right|_{\mathbf{s}}<^{0} \mathbf{S}_{F, r}(\phi) \Xi(\exp t H)(1+t)^{-r_{0}}$
for $H \in \Omega_{0}, t \geqq 0$ and $\phi \in \mathscr{E}^{\prime}$.
On the other hand the following result is an immediate consequence of Lemma 5.2.

Lemma 4. Fix $D \in \mathfrak{D}, g_{i} \in \mathfrak{G}(1 \leqq i \leqq 4)$ such that $g_{1} \in \mathfrak{G n}$ and $g_{4} \in \theta(\mathfrak{n})(\mathfrak{G}$. Then we can choose $F \subset \tilde{\tilde{F}}$ such that

$$
\sum_{i=1,3}\left|\phi\left(v ; D: g_{i} ; \exp t H ; g_{i+1}\right)\right|_{\mathbf{s}} \leqq^{0} \mathbf{S}_{F, r}(\phi) \Xi(\exp t H)(1+t)^{r} e^{-2 \varepsilon_{0} t}
$$

for $\phi \in \mathscr{E}, H \in \Omega_{0}$ and $t \geqq 0$.
Now fix a polynomial function p on \mathfrak{F} such that $p \geqq 1$ on \mathfrak{F} and

$$
\int_{\mathfrak{F}} p^{-1} d v<\infty .
$$

Then taking $D=p$ in the above lemma, we get the following corollary.
Corollary. Let $\mathrm{g}_{\mathrm{i}}(1 \leqq i \leqq 4)$ be as above. Then we can choose $F \subset \tilde{\mathfrak{b}}$ such that
$\sum_{i=1,3}\left|j\left(\phi: g_{i} ; \exp t H ; g_{i+1}\right)\right|_{\mathbf{s}} \leq \mathbf{s}_{F, r}(\phi) \Xi(\exp t H)(1+t)^{r} e^{-2 \varepsilon_{0} t}$
for $\phi \in \mathscr{E}, H \in \Omega_{0}$ and $t \geqq 0$.
Now fix $g_{1}, g_{2} \in \mathfrak{G}$. Since $G=K \cdot C l A_{0}^{+} \cdot K, S^{+}$is compact and
$j_{\phi}\left(g_{1} ; k_{1}^{-1} a k_{2} ; g_{2}\right)=\tau\left(k_{1}^{-1}\right) j_{\phi}\left(g_{1}^{k_{1}} ; a ; g_{2}^{k_{2}}\right) \tau\left(k_{2}\right)$
($k_{1}, k_{2} \in K, a \in A_{0}, \phi \in \mathscr{E}^{\prime}$), in order to prove Theorem 13.1, it would be enough to verify the following lemma.

Lemma 5. Fix $g_{1}, g_{2} \in \mathfrak{G}$ and $H_{0} \in S^{+}$. Then we can choose a neighborhood Ω_{0} of H_{0} in S^{+}satisfying the following condition. Given $r_{0} \geqq 0$, there exists $F \subset(\mathbb{F}$ such that
$\left|j\left(\phi: h_{1} ; \exp t H ; g_{2}\right)\right|_{\mathbf{s}} \prec^{0} \mathbf{s}_{\boldsymbol{F}, r}(\phi) \Xi(\exp t H)(1+t)^{-r_{0}}$
for $\phi \in \mathscr{E}^{\prime}, H \in \Omega_{0}$ and $t \geqq 0$.
Since
$\mathfrak{G}=\mathfrak{M} \mathfrak{M}_{1} \mathfrak{M}=\theta(\mathfrak{M}) \mathfrak{M}_{1} \boldsymbol{\Omega}$
and τ is differentiable, we may without loss of generality assume that $g_{1} \in \mathfrak{M}_{\mathbf{1}} \mathfrak{N}$ and $g_{2} \in \theta(\mathfrak{N}) \mathfrak{M}_{1}$. Then we can choose $v_{i} \in \mathfrak{M}_{1}(i=1,2)$ such that

$$
g_{1}-v_{1} \in \mathfrak{G n}, \quad g_{2}-v_{2} \in \theta(\mathfrak{n})(\mathfrak{G} .
$$

Our assertion now follows immediately from Lemma 3 and the corollary of Lemma 4.

This completes the proof of Theorem 13.1.

§ 16. Proof of Theorem 13.2

We shall now begin preparation for the proof of Theorem 13.2. Fix a function ϕ on $\mathfrak{F} \times G$ of type $I I^{\prime}(\lambda)$. We use the notation of $\S 10$ and assume, as we may, that $P \neq G$. We also agree to the convention that the variables v, \bar{n} and m shall range freely over \mathfrak{F}, \bar{N} and M_{1} respectively unless explicitly stated otherwise. Put

$$
\Phi(v: \bar{n}: m)=d_{P}(m) \sum_{1 \leqq i \leqq q} \phi\left(v: \bar{n} m ; \eta_{i}^{\prime}\right) \otimes u_{i}^{*}
$$

and consider the obvious pairing $[1(\mathrm{e}), \S 21]$ of $V \otimes U^{*}, U$ into V given by

$$
\left\langle v \otimes u^{*}, u\right\rangle=\left\langle u^{*}, u\right\rangle v \quad\left(v \in V, u^{*} \in U^{*}, u \in U\right) .
$$

For any $\mathbf{b} \in \mathscr{C}(\mathfrak{F}, U)=\mathscr{C}(\mathfrak{F}) \otimes U$, define

$$
\Phi(\mathbf{b}: \bar{n}: m)=\int_{\mathfrak{F}}\langle\Phi(v: \bar{n}: m), \mathbf{b}(v)\rangle d v
$$

and put

$$
F_{\mathbf{b}}(m)=F(\mathbf{b}: m)=\int_{N} \Phi(\mathbf{b}: \bar{n}: m) d \bar{n} .
$$

It follows from the corollary of Theorem 13.1 and $[1(e), \S 16]$ that this integral is well defined and in fact we have the following result.

Lemma 1. $\mathbf{b} \rightarrow F_{\mathbf{b}}$ is a continuous mapping of $\mathscr{C}(\mathcal{F}, U)$ into $\mathscr{C}\left(M_{1}, \tau_{M}\right)$.
For $\zeta \in \mathcal{Z}_{1}$, define $g_{i}(\zeta: v)(1 \leqq i \leqq q)$ as in $\S 10$ and put
$\Psi_{\zeta}^{\prime}(v: \bar{n}: m)=d_{P}(m) \sum_{i \leqq i \leqq q} \phi\left(v: \bar{n} m ; g_{i}(\zeta: v)\right) \otimes u_{i}^{*}$.
Lemma 2. Let $\zeta \in \mathcal{S}_{1}$. Then
$\Phi(v: \bar{n}: m ; \zeta)=\Phi(v: \bar{n}: m) \Gamma_{v}(\zeta)+\Psi_{\zeta}(v: \bar{n}: m)$.
This is proved in the same way as Lemma 10.1.
Now put
$\Psi_{\zeta}(\mathbf{b}: \bar{n}: m)=\int\left\langle\Psi_{\zeta}(v: \bar{n}: m), \mathbf{b}(v)\right\rangle d v$
for $\zeta \in \mathcal{Z}_{1}$ and $\mathbf{b} \in \mathscr{C}(\mathscr{F}, U)$.
Lemma 3. Let $\zeta \in \mathcal{Z}_{1}$ and $\mathbf{b} \in \mathscr{C}(\mathfrak{F}, U)$. Then
$\int_{\mathcal{N}} \Psi_{\zeta}(\mathbf{b}: \bar{n}: m) d \bar{n}=0$.

We know (see $\S 10$) that $v \mapsto g_{i}(\zeta: v)$ is a polynomial mapping of \mathscr{F} into $\bar{\pi}(\boldsymbol{G}$. Therefore (Corollary of Theorem 13.1) the above integral is defined and it would be enough to verify the following result.

Lemma 4. Fix $X \in \bar{n}, g \in \mathscr{F}$ and $b \in \mathscr{C}(\mathscr{F})$. Then

$$
\begin{aligned}
& \int_{\mathcal{N}} d \bar{n} \int_{\mathfrak{F}} b(v) \phi(v: \bar{n} m ; X g) d v=0 . \\
& \text { Put } \\
& \psi(x)=\int_{\mathfrak{F}} b(v) \phi(v: x ; g) d v \quad(x \in G) .
\end{aligned}
$$

Then $\psi \in \mathscr{C}(G, V)$ (Corollary of Theorem 13.1). Let

$$
f(x)=\int_{N} \psi(\bar{n} x) d \bar{n} \quad(x \in G)
$$

Then $[1(\mathrm{e}), \S 16] f \in C^{\infty}(G, V)$ and

$$
f(x ; X)=\int_{\tilde{N}} \psi(\bar{n} x ; X) d \bar{n} .
$$

Therefore since $f(\bar{n} x)=f(x)$ and $X^{m} \in \bar{n}$, we conclude that

$$
f(m ; X)=f\left(X^{m} ; m\right)=0
$$

This proves the lemma.
For any $\mathbf{b} \in \mathscr{C}(\mathscr{F}, U)$ and $\zeta \in \mathfrak{Z}_{1}$, let $\Gamma(\zeta) \mathbf{b}$ denote the function $v \mapsto \Gamma_{v}\left(\gamma_{1}(\zeta)\right) \mathbf{b}(v)$ from \mathfrak{F} to U in the notation of $\S 10$. It is clear from Corollary 3 of Lemma 3.5 that for a fixed $\zeta, \mathbf{b} \mapsto \Gamma(\zeta) b$ is a continuous endomorphism of $\mathscr{C}(\mathcal{F}, U)$.

Lemma 5. Let $\mathbf{b} \in \mathscr{C}(\mathfrak{F}, U)$ and $\zeta \in \mathfrak{Z}_{1}$. Then
$F(\mathbf{b}: m ; \zeta)=F(\Gamma(\zeta) \mathbf{b}: m)$.
This is an immediate consequence of Lemmas 2 and 3.
Define ${ }^{\circ} Q$ and $e\left(i \in^{\circ} Q\right)$ as in Lemma 3.4 and put
${ }_{i} \mathbf{b}(v)=\Gamma_{v}\left({ }_{i} e(v)\right) \mathbf{b}(v)$
for $\mathbf{b} \in \mathscr{C}(\mathscr{F}, U)$. Then it is clear from Lemmas 3.3, 3.4 and Corollary 3 of Lemma 3.5 that $\mathbf{b} \mapsto_{i} \mathbf{b}$ is a continuous endomorphism of $\mathscr{C}(\mathscr{F}, U)$ and

$$
b=\sum_{i \in^{\circ} Q} i_{i} \mathbf{b} .
$$

Put ${ }^{\circ} Q^{o}={ }^{\circ} Q \cap Q^{\circ}$ as in $\S 10$ and define

$$
\begin{aligned}
e^{o}(v) & =\sum_{i \in{ }^{\circ} Q^{\circ}} e(v), \\
\mathbf{b}^{o} & =\sum_{i \in \circ}{ }_{i} \mathbf{b} \quad(\mathbf{b} \in \mathscr{C}(\tilde{y}, U)) .
\end{aligned}
$$

Lemma 6. Let $\mathbf{b} \in \mathscr{C}(\mathscr{F}, U)$ and $i \in^{\circ} Q$. Then $F(\mathbf{b}: m)=0$ unless $i \in^{\circ} Q^{o}$. Hence $F(\mathbf{b}: m)=F\left(\mathbf{b}^{\boldsymbol{b}}: m\right)$.

Put
$F(\mathbf{b}: m: \mu)=\int_{\mathbf{a}} F(\mathbf{b}: m \exp H) e^{-(-1)^{1 / 2} \mu(\boldsymbol{H})} d H$
for $\mathbf{b} \in \mathscr{C}(\mathscr{F}, U)$ and $\mu \in \mathfrak{a}^{*}$. (Here $d H$ denotes the Euclidean measure on \mathfrak{a} and \mathfrak{a}^{*} the dual of \mathfrak{a}.) It follows from Lemma 1 that for (m, μ) fixed,

$$
\mathbf{b} \rightarrow F(\mathbf{b}: m: \mu)
$$

is a continuous mapping of $\mathscr{C}(\mathscr{F}, U)$ into V. Moreover we conclude from Lemma 5 that

$$
F(\Gamma(H) \mathbf{b}: m: \mu)=(-1)^{1 / 2} \mu(H) F(\mathbf{b}: m: \mu)
$$

for $H \in \mathfrak{a}$.
Now fix $m_{0} \in M_{1}, \mu \in \mathfrak{a}^{*}, i \in{ }^{o} Q$ and put

$$
T(\mathbf{b})=F\left({ }_{i} \mathbf{b}: m_{0}: \mu\right) \quad(\mathbf{b} \in \mathscr{C}(\mathscr{F}, U))
$$

Since $\operatorname{dim} U<\infty, T$ may be regarded as a tempered distribution on \mathcal{F} with values in $V \otimes U^{*}$ (i.e. a continuous linear mapping of $\mathscr{C}(\mathscr{F})$ into $V \otimes U^{*}$).

Lemma 7. Fix $H \in \mathfrak{a}, \mathbf{b} \in \mathscr{C}(\mathfrak{F}, U)$ and put

$$
\mathbf{b}^{\prime}(v)=\prod_{t \in W_{0}\left(s_{i}, \lambda\right)}\left\{(-1)^{1 / 2} \mu(H)-t s_{i} \Lambda_{v}(H)\right\} \cdot{ }_{i} \mathbf{b}(v)
$$

in the notation of §3. Then $T\left(\mathbf{b}^{\prime}\right)=0$.
It follows from what we have seen above that

$$
T(\Gamma(H) \mathbf{b})=(-1)^{1 / 2} \mu(H) T(\mathbf{b}) \quad(H \in \mathfrak{a}, \mathbf{b} \in \mathscr{C}(\mathcal{F}, U))
$$

Hence our assertion is an immediate consequence of Corollary 5 of Lemma 3.5.
Now suppose $T \neq 0$. Then if $v_{0} \in \operatorname{Supp} T\left(v_{0} \in \mathcal{F}\right)$, it follows from Lemma 7 that

$$
\prod_{t \in W_{0}\left(s_{i}, \lambda\right)}\left\{(-1)^{1 / 2} \mu(H)-t s_{i} A_{v_{0}}(H)\right\}=0
$$

for all $H \in \mathfrak{a}$. Since $\mathfrak{R} t s_{i} A_{v_{0}}(H)=s_{i} \lambda^{y}(H)$, this implies that $i \in^{\circ} Q^{o}$. Therefore if $i \not \ddagger^{o} Q^{o}$, we conclude that $F(\mathbf{i} \mathbf{b}: m: \mu)=0$ for all $m \in M_{1}$ and $\mu \in \mathfrak{a}^{*}$. The statement of Lemma 6 now follows immediately by Fourier transform.

Now introduce the structure of a Hilbert space on U so that $\left(u_{1}, \ldots, u_{q}\right)$ becomes an orthonormal base. Moreover for any $E \in$ End U, let $\|E\|$ denote the Hilbert-Schmidt norm of E.

Lemma 8. Put
$E(H: v)=e^{\Gamma_{v}(H)} \Gamma_{v}\left(e^{o}(v)\right) \quad(H \in \mathfrak{a})$.
Then for a given $D \in \mathfrak{D}\left(\mathfrak{F}_{c}\right)$, we can choose $c, r \geqq 0$ such that

$$
\|E(H: v ; D)\| \leqq c(1+|v|)^{r}(1+\|H\|)^{r}
$$

for all $H \in \mathfrak{a}$.
Set

$$
p(v)=\prod_{i \in{ }^{\circ} Q^{o}} w_{s_{i}, \lambda}\left(s_{i} \Lambda_{v}\right)
$$

in the notation of $\S 3$. Then p is a polynomial function on \mathfrak{F} and by Lemma 3.3,

$$
|p(v)| \geqq\left|\varpi_{\lambda}(\lambda)\right|^{q_{0}}>0
$$

where q_{0} is the number of elements in ${ }^{o} Q^{o}$. Put $E^{o}(v)=\Gamma_{v}\left(e^{o}(v)\right)$. Then for a fixed $H \in \mathfrak{a}, v \mapsto \Gamma_{v}(H)$ and $v \mapsto p(v) E^{o}(v)$ are polynomial mappings of \mathfrak{F} into End U (see § 3). Moreover

$$
E(H: v)=e^{\Gamma_{v}(H) E^{\circ}(v)} \cdot E^{o}(v)
$$

and all eigenvalues of $\Gamma_{v}(H) E^{o}(v)$ are pure imaginary (Corollaries 2 and 5 of Lemma 3.5). Hence our assertion follows without difficulty from [1(a), Lemma 60].

Now fix $H_{0} \in \mathfrak{a}, \mathbf{a} \in \mathscr{C}(\mathscr{F}, U)$ and for any $t \in \mathbf{R}$, put

$$
\mathbf{a}_{t}(v)=E\left(-t H_{0}: v\right) \mathbf{a}(v)
$$

Then it follows from Lemma 8 that $t \mapsto \mathbf{a}_{t}$ is a C^{∞} function from \mathbf{R} to $\mathscr{C}(\mathscr{F}, U)$.
Lemma 9. Fix $m \in M_{1}$ and $\mu \in \mathfrak{a}^{*}$. Then

$$
F(\mathbf{a}: m: \mu)=F\left(\mathbf{a}^{o}: m: \mu\right)=e^{(-1)^{1 / 2} t \mu\left(H_{0}\right)} F\left(\mathbf{a}_{t}: m: \mu\right)
$$

for $t \in \mathbf{R}$.
Put

$$
T(\mathbf{b})=F(\mathbf{b}: m: \mu) \quad(\mathbf{b} \in \mathscr{C}(\mathscr{F}, U))
$$

Then, as we have seen above, T is a continuous linear mapping of $\mathscr{C}(\mathfrak{F}, U)$ into V and

$$
T(\Gamma(H) \mathbf{b})=(-1)^{1 / 2} \mu(H) T(\mathbf{b}) \quad(H \in \mathfrak{a})
$$

Now let

$$
f(t)=T\left(\mathbf{a}_{t}\right) \quad(t \in \mathbf{R})
$$

It follows from the definition of \mathbf{a}_{t} that

$$
d \mathbf{a}_{t} / d t=-\Gamma\left(H_{0}\right) \mathbf{a}_{t}
$$

and therefore

$$
d f / d t=-(-1)^{1 / 2} \mu\left(H_{0}\right) f
$$

This implies that

$$
f(t)=e^{-(-1)^{1 / 2} t \mu\left(H_{0}\right)} f(0)
$$

which is equivalent to the required result, if we take Lemma 6 into account.
Now assume that $H_{0} \in \mathfrak{a}^{+}$. Then it is clear from Lemma 2 that
$d \Phi\left(\mathbf{a}_{t}: \bar{n}: m \exp t H_{0}\right) / d t$

$$
\begin{aligned}
& =-\Phi\left(\Gamma\left(H_{0}\right) \mathbf{a}_{t}: \bar{n}: m \exp t H_{0}\right)+\Phi\left(\mathbf{a}_{t}: \bar{n}: m \exp t H_{0} ; H_{0}\right) \\
& =\Psi_{H_{0}}\left(\mathbf{a}_{t}: \bar{n}: m \exp t H_{0}\right) \quad(t \in \mathbf{R})
\end{aligned}
$$

Put $\Psi=\Psi_{H_{0}}$ and for any $b \in \mathscr{C}(\mathcal{F}, U)$ and $\alpha \in C_{c}^{\infty}(\bar{N})$, define
$\Phi\left(\mathbf{b}: \alpha: \bar{n}_{0}: m\right)=\int_{N} \alpha(\bar{n}) \Phi\left(\mathbf{b}: \bar{n}_{0} \bar{n}: m\right) d \bar{n}$,
$\Psi\left(\mathbf{b}: \alpha: \bar{n}_{0}: m\right)=\int_{\mathcal{N}} \alpha(\bar{n}) \Psi\left(\mathbf{b}: \bar{n}_{0} n: m\right) d \bar{n}$
for $\bar{n}_{0} \in \bar{N}$. Then the following result is obvious.

Lemma 10. $d \Phi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right) / d t=\Psi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right)$ for $\alpha \in C_{c}^{\infty}(\bar{N})$ and $t \in \mathbf{R}$.

Let us now put

$$
\phi_{b}(\bar{n}: x)=\phi_{b}(\bar{n} x) \quad(x \in G)
$$

for $b \in \mathscr{C}(\mathscr{F})$, and define

$$
\phi_{b}\left(\alpha: \bar{n}_{0}: x\right)=\int_{N} \alpha(\bar{n}) \phi_{b}\left(\bar{n}_{0} \bar{n}: x\right) d \bar{n} \quad\left(\bar{n}_{0} \in \bar{N}, x \in G\right)
$$

for $\alpha \in C_{c}^{\infty}(\bar{N})$. Then if $X \in \overline{\mathfrak{n}}$ and $g \in(\mathfrak{G}$, it is clear that

$$
\phi_{b}(\bar{n} m ; X g)=\phi_{b}\left(\bar{n} ; X^{m}: m ; g\right) .
$$

Since $X^{m} \in \overline{\mathrm{n}}$, it follows that

$$
\phi_{b}(\alpha: \bar{n}: m ; X g)=-\phi_{b}\left(X^{m} \alpha: \bar{n}: m ; g\right)
$$

Put $\beta_{P}\left(H_{0}\right)=2 \varepsilon$ so that $\varepsilon>0$.
Lemma 11. Fix $m_{0} \in M_{1}, \alpha \in C_{c}^{\infty}(\bar{N}), X \in \overline{\mathrm{n}}, g \in\left(5, \mathbf{s} \in \mathscr{S}(V)\right.$ and $r_{0} \geqq 0$. Then we can choose a continuous seminorm \mathbf{t} on $\mathscr{C}(\mathscr{F})$ such that

$$
\left|\phi_{b}\left(\alpha: \bar{n}: m_{t}: X g\right)\right|_{\mathbf{s}} \leqq \mathbf{t}(b) e^{-2 \varepsilon t} \int_{\omega} \Xi_{r_{0}}\left(\bar{n} \bar{n}_{0} m_{\imath}\right) d \bar{n}_{0}
$$

for $t \geqq 0$ and $b \in \mathscr{C}(\mathfrak{F})$. Here $m_{t}=m_{0} \exp t H_{0}$,

$$
\Xi_{r_{0}}(x)=\Xi(x)(1+\sigma(x))^{-r_{0}} \quad(x \in G)
$$

and $\omega=\operatorname{Supp} \alpha$.
This follows from the corollary of Theorem 13.1 and the above remarks.
Corollary. We can choose $c \geqq 0$ such that

$$
\left|\Psi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m_{t}\right)\right|_{\mathbf{s}} \leqq c e^{-\varepsilon t} d_{P}\left(m_{t}\right) \int_{\omega} \Xi_{r_{0}}\left(\bar{n} \bar{n}_{0} m_{t}\right) d \bar{n}_{0}
$$

for $t \geqq 0$.
This follows from the corollary of Theorem 13.1 and the above remarks.
Now fix $\alpha \in C_{c}^{\infty}(\bar{N})$. Then it follows from the above corollary and $[1(\mathrm{e}), \S 10]$ that

$$
\int_{0}^{\infty}\left|\Psi\left(\mathbf{a}_{i}: \alpha: \bar{n}: m \exp t H_{0}\right)\right| \mathbf{s} d t<\infty
$$

for $\mathbf{s} \in \mathscr{S}(V)$. Put

$$
\Phi_{\infty}(\mathbf{a}: \alpha: \bar{n}: m)=\Phi\left(\mathbf{a}^{o}: \alpha: \bar{n}: m\right)+\int_{0}^{\infty} \Psi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right) d t
$$

Then it follows from Lemma 10 that

$$
\Phi_{\infty}(\mathbf{a}: \alpha: \bar{n}: m)=\lim _{t \rightarrow+\infty} \Phi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right)
$$

Lemma 12. Fix $\alpha \in C_{c}^{\infty}(\bar{N})$ such that $\int_{\bar{N}} \alpha(\bar{n}) d \bar{n}=1$. Then
$F(\mathbf{a}: m)=\int_{N} \Phi_{\infty}(\mathbf{a}: \alpha: \bar{n}: m) d \bar{n}$.

It follows from [1(e), §10] and the corollary of Lemma 11 that

$$
\int_{N} d \bar{n} \int_{0}^{\infty}\left|\Psi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right)\right|_{s} d t<\infty
$$

for $s \in \mathscr{P}(V)$. Therefore we conclude from the corollary of Theorem 13.1 that

$$
\int_{N}\left|\Phi_{\infty}(\mathbf{a}: \alpha: \bar{n}: m)\right|_{\mathbf{s}} d \bar{n}<\infty .
$$

On the other hand it is clear from Lemma 3 that

$$
\int_{N} \Psi\left(\mathbf{a}_{t}: \alpha: \bar{n}: m \exp t H_{0}\right) d \bar{n}=0 .
$$

Therefore by Fubini's theorem we obtain

$$
\begin{aligned}
\int_{N} \Phi_{\infty}(\mathbf{a}: \alpha: \bar{n}: m) d \bar{n} & =\int_{N} \Phi\left(\mathbf{a}^{o}: \alpha: \bar{n}: m\right) d \bar{n} \\
& =F\left(\mathbf{a}^{o}: m\right)=F(\mathbf{a}: m)
\end{aligned}
$$

from Lemma 6.
Now put

$$
\begin{aligned}
& \Phi^{o}(v: \bar{n}: m)=\Phi(v: \bar{n}: m) E^{o *}(v) \\
& \Psi^{o}(v: \bar{n}: m)=\Psi(v: \bar{n}: m) E^{o *}(v)
\end{aligned}
$$

where $E^{o *}(v)=1 \otimes \Gamma_{v}^{*}\left(e^{o}(v)\right)$. Then

$$
\begin{aligned}
\Phi\left(\mathbf{a}_{t}: \bar{n}: m \exp t H_{0}\right) & =\int_{F}\left\langle\Phi\left(v: \bar{n}: m \exp t H_{0}\right), \mathbf{a}_{t}(v)\right\rangle d v \\
& =\int_{F}\left\langle\Phi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \boldsymbol{r}_{v}\left(\boldsymbol{H}_{0}\right)}, \mathbf{a}(v)\right\rangle d v .
\end{aligned}
$$

Lemma 13. Fix $x \in G, X \in \overline{\mathrm{n}}, g \in(\mathfrak{G}$ and $\mathbf{s} \in \mathscr{S}(V)$. Then we can choose $c, r \geqq 0$ such that

$$
\left|\phi\left(v: x \exp t H_{0} ; X g\right)\right|_{s} \leqq c(1+|v|)^{r} e^{-2 \varepsilon t} \Xi\left(x \exp t H_{0}\right)(1+t)^{r}
$$

for $t \geqq 0$.
This follows immediately from the fact that

$$
\phi\left(v: x_{t} ; X g\right)=\phi\left(v: \operatorname{Ad}\left(x_{t}\right) X ; x_{t} ; g\right)
$$

where $x_{t}=x \exp t H_{0}$.
Corollary. Fix $\bar{n} \in \bar{N}, m \in M_{1}$ and $\mathbf{s} \in \mathscr{S}(V)$. Then we can choose $c, r \geqq 0$ such that $\left|\Psi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{\nu}\left(H_{0}\right)}\right|_{s} \leqq c e^{-\varepsilon t}(1+|v|)^{r}$ for $t \geqq 0$.

This is an immediate consequence of Lemmas 13 and 8.
On the other hand it follows from Lemma 2 that

$$
\begin{aligned}
\Phi^{o}(v & \left.: \bar{n}: m \exp T H_{0}\right) e^{-T \Gamma_{v}\left(H_{0}\right)} \\
& =\Phi^{o}(v: \bar{n}: m)+\int_{0}^{T} \Psi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{v}\left(H_{0}\right)} d t
\end{aligned}
$$

Moreover we conclude from the above corollary that

$$
\int_{0}^{\infty}\left|\Psi^{o}\left(\nu: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{\nu}\left(H_{0}\right)}\right|_{\mathbf{s}} d t<\infty
$$

for $\mathbf{s} \in \mathscr{Y}(V)$. Therefore if we put

$$
\Phi_{\infty}(v: \bar{n}: m)=\Phi^{o}(v: \bar{n}: m)+\int_{0}^{\infty} \Psi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \boldsymbol{T}_{v}\left(H_{0}\right)} d t,
$$

it follows that

$$
\begin{aligned}
& \left|\Phi_{\infty}(v: \bar{n}: m)-\Phi^{o}\left(v: \bar{n}: m \exp T H_{0}\right) e^{-T \Gamma_{v}\left(H_{0}\right)}\right|_{s} \\
& \quad \leqq \int_{T}^{\infty}\left|\Psi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{v}\left(H_{0}\right)}\right|_{\mathbf{s}} d t
\end{aligned}
$$

for $T \geqq 0$ and $\mathbf{s} \in \mathscr{\mathscr { S }}(V)$. Hence we get the following result from the corollary of Lemma 13.

Lemma 14. Fix $\bar{n} \in \bar{N}, m \in M$ and put
$\Phi_{\infty}(v: \bar{n}: m)=\lim _{t \rightarrow+\infty} \Phi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{v}\left(H_{0}\right)}$.
Then for any $\mathbf{s} \in \mathscr{P}(V)$, we can choose $c, r \geqq 0$ such that

$$
\left|\Phi_{\infty}(v: \bar{n}: m)-\Phi^{o}\left(v: \bar{n}: m \exp T H_{0}\right) e^{-T \Gamma_{v}\left(H_{0}\right)}\right|_{s} \leqq c e^{-\varepsilon T}(1+|v|)^{r}
$$

for $T \geqq 0$.
Now define

$$
\Phi_{\infty}(\mathbf{a}: \bar{n}: m)=\lim _{t \rightarrow+\infty} \Phi\left(\mathbf{a}_{t}: \bar{n}: m \exp t H_{0}\right) .
$$

It is clear that this limit exists and in fact

$$
\begin{aligned}
\Phi_{\infty}(\mathbf{a}: \bar{n}: m) & =\lim _{t \rightarrow+\infty} \int_{\overparen{J}}^{t++}\left\langle\Phi^{o}\left(v: \bar{n}: m \exp t H_{0}\right) e^{-t \Gamma_{v}\left(H_{0}\right)}, \mathbf{a}(v)\right\rangle d v \\
& =\int_{\bar{F}}\left\langle\Phi_{\infty}(v: \bar{n}: m), \mathbf{a}(v)\right\rangle d v .
\end{aligned}
$$

On the other hand, let us put

$$
\begin{aligned}
\Phi_{\infty}(v: m) & =\Phi_{\infty}(v: 1: m) \\
& =\lim _{t \rightarrow+\infty} \Phi\left(v: m \exp t H_{0}\right) E^{o *}(v) e^{-t \Gamma_{\nu}\left(H_{0}\right)} .
\end{aligned}
$$

Extend this to a function on $\mathfrak{F} \times G$ by setting

$$
\Phi_{\infty}(v: k m n)=\tau(k) \Phi_{\infty}(v: m) \quad\left(k \in K, m \in M_{1}, n \in N\right) .
$$

Lemma 15. $\Phi_{\infty}(v: \bar{n}: m)=e^{-\rho(H(\bar{n}))} \Phi_{\infty}(v: \bar{n} m)$.
It is obvious from Lemma 14 that for fixed \bar{n} and $m, \Phi(v: \bar{n}: m)$ is a continuous function of v. Therefore, in view of its definition, the same holds for $\Phi_{\infty}(v: \bar{n} m)$. Hence it would be enough to verify the above relation for $v \in \mathscr{F}^{\prime}(\lambda)$.

Fix $v \in \mathcal{F}^{\prime}(\lambda)$ and let $e_{i}^{*}(v)(1 \leqq i \leqq q)$ be the base of U^{*} dual to $e_{i}(v)(1 \leqq i \leqq q)$. Then

$$
\sum_{i} u_{i} \otimes u_{i}^{*}=\sum_{i} e_{i}(v) \otimes e_{i}^{*}(v) .
$$

Hence

$$
\begin{aligned}
\sum_{i} u_{i} \otimes u_{i}^{*} \Gamma_{v}^{*}\left(e^{o}(v)\right) e^{-t \Gamma_{v}^{*}\left(H_{0}\right)} & =\sum_{i} e^{-t \Gamma_{v}\left(H_{0}\right)} \Gamma_{v}\left(e^{o}(v)\right) e_{i}(v) \otimes e_{i}^{*}(v) \\
& =\sum_{i \in Q^{o}} e^{-t s_{i} A_{v}\left(H_{0}\right)} e_{i}(v) \otimes e_{i}^{*}(v)
\end{aligned}
$$

from Corollary 1 of Lemma 3.5. Hence

$$
\begin{aligned}
& \Phi^{o}\left(v: \bar{n}: m_{i}\right) e^{-t \Gamma_{v}\left(H_{0}\right)} \\
& \quad=d_{P}\left(m_{t}\right) \sum_{i \in Q^{o}} \varpi_{01}\left(s_{i} \Lambda_{v}\right)^{-1} e^{-t s_{i} \Lambda_{v}\left(H_{0}\right)} \phi\left(v: \bar{n} m_{t} ; \eta_{i}(v)^{\prime}\right) \otimes e_{i}^{*}(v),
\end{aligned}
$$

where $m_{t}=m \exp t H_{0}$ and $m_{01}, \eta_{i}(v)$ have the same meaning as in $\S 2$ and $\S 4$ respectively.

Now fix $i \in Q^{o}$. Then (see $\S 6$)

$$
\phi_{i \infty}(v: m)=\lim _{t \rightarrow+\infty} d_{P}\left(m_{t}\right) \phi\left(v: m_{t} ; \eta_{i}(v)^{\prime}\right) e^{-t s_{i} A_{v}\left(H_{0}\right)}
$$

and

$$
\phi_{i \infty}(v: m \exp H)=\phi_{i \infty}(v: m) e^{s_{i} \Lambda(H)} \quad(H \in \mathfrak{a})
$$

from Lemma 6.2. Therefore

$$
\lim _{t \rightarrow+\infty}\left\{d_{P}\left(m_{t}\right) \phi\left(v: m_{t} ; \eta_{i}(v)^{\prime}\right)-\phi_{i \infty}\left(v: m_{t}\right)\right\}=0
$$

and we conclude from [1(e), Lemmas 21.3 and 24.1] that

$$
\phi_{P}\left(v: m ; \eta_{i}(v)\right)=\phi_{i \infty}(v: m) .
$$

Extend $\phi_{i \infty}(v)$ to a function on G by setting

$$
\phi_{i \infty}(v: k m n)=\tau(k) \phi_{i \infty}(v: m) \quad\left(k \in K, m \in M_{1}, n \in N\right) .
$$

Then we conclude from [1(e), Lemma 24.1] that

$$
\lim _{t \rightarrow+\infty}\left\{d_{P}\left(x_{t}\right) \phi\left(v: x_{t} ; \eta_{i}(v)^{\prime}\right)-\phi_{i \infty}\left(v: x_{t}\right)\right\}=0
$$

Here x is a fixed element in G and $x_{t}=x \exp t H_{0}$. But this implies that

$$
\lim _{t \rightarrow+\infty} d_{P}\left(x_{t}\right) \phi\left(v: x_{t} ; \eta_{i}(v)^{\prime}\right) e^{-t s_{i} A_{v}\left(H_{0}\right)}=\phi_{i \infty}(v: x)
$$

and therefore

$$
\begin{aligned}
\Phi_{\infty}(v: \bar{n}: m) & =\lim _{t \rightarrow+\infty} \Phi^{o}\left(v: \bar{n}: m_{t}\right) e^{-t \Gamma_{v}\left(H_{0}\right)} \\
& =e^{-\rho(H(\bar{n}))} \sum_{i \in Q^{o}} \varpi_{01}\left(s_{i} \Lambda_{\nu}\right)^{-1} \phi_{i \infty}(v: \bar{n} m) \otimes e_{i}^{*}(v) .
\end{aligned}
$$

The assertion of the lemma is now obvious from the definition of $\Phi_{\infty}(v: m)$.
Lemma 16. $e_{j}^{*}(v)=\sum_{1 \leqq i \leqq q} u_{i}\left(s_{j} \Lambda_{v}\right) u_{i}^{*}(1 \leqq j \leqq q)$ for $v \in \mathfrak{F}_{c}^{\prime}(\lambda)$.
By Corollary 1 of Lemma 3.5

$$
\begin{aligned}
u_{i}=\Gamma_{v}\left(u_{i}\right) 1 & =\sum_{1 \leqq j \leqq q} \Gamma_{v}\left(u_{i}\right) e_{j}(v) \\
& =\sum_{j} u_{i}\left(s_{i} A_{v}\right) e_{j}(v)
\end{aligned}
$$

Therefore

$$
\sum_{i} u_{i} \otimes u_{i}^{*}=\sum_{i, j} u_{i}\left(s_{j} A_{v}\right) e_{j}(v) \otimes u_{i}^{*} .
$$

But since

$$
\sum_{i} u_{i} \otimes u_{i}^{*}=\sum_{j} e_{j}(v) \otimes e_{j}^{*}(v),
$$

our assertion is now obvious.
Corollary. Let $v \in \mathfrak{F}^{\prime}(\lambda)$. Then

$$
\Phi_{\infty}(v: m)=\sum_{i \in Q^{\circ}} \sum_{1 \leqq j \leqq q} \varpi_{01}\left(s_{i} \Lambda_{v}\right)^{-1} \phi_{i \infty}(v: m) \otimes u_{j}\left(s_{i} \Lambda_{v}\right) u_{j}^{*}
$$

This follows immediately from Lemma 16 and what we have seen above. Now put

$$
\Phi_{\infty}(\mathbf{a}: m)=\int_{\mathfrak{F}}\left\langle\Phi_{\infty}(v: m), \mathbf{a}(v)\right\rangle d v .
$$

Then it follows from Lemmas 7.3, 8.2 and the corollary of Theorem 13.1 that $\Phi_{\infty}(\mathbf{a}) \in \mathscr{C}\left(M_{1}, \tau_{M}\right)$. Hence we conclude from [1(e), Lemma 32.1] that

$$
\int_{N} e^{-\rho(\mathbf{H}(\bar{n})}\left|\Phi_{\infty}(\mathbf{a}: \bar{n} m)\right|_{\mathbf{s}} d \bar{n}<\infty \quad(\mathbf{s} \in \mathscr{P}(V)),
$$

provided $\Phi_{\infty}(\mathbf{a})$ is extended to a function on G in the usual way so that

$$
\Phi_{\infty}(\mathbf{a}: k m n)=\tau(k) \Phi_{\infty}(\mathbf{a}: m) \quad\left(k \in K, m \in M_{1}, n \in N\right) .
$$

Now put, as before,

$$
\Phi_{\infty}(\mathbf{a}: \bar{n}: m)=\int_{\mathfrak{F}}\left\langle\Phi_{\infty}(v: \bar{n}: m), \mathbf{a}(v)\right\rangle d v .
$$

Then it follows from Lemma 15 that

$$
\Phi_{\infty}(\mathbf{a}: \bar{n}: m)=e^{-\rho(H(\bar{n}))} \Phi_{\infty}(\mathbf{a}: \bar{n} m)
$$

and therefore from Lemma 12 that

$$
F(\mathbf{a}: m)=\int_{N} e^{-\rho(H(\bar{n}))} \Phi_{\infty}(\mathbf{a}: \bar{n} m) d \bar{n} .
$$

Substituting the definition of $F(\mathbf{a})$ we obtain the following result.
Lemma 17. Let $\mathbf{a} \in \mathscr{C}(\mathscr{F}, U)$. Then
$\int_{N} \Phi(\mathbf{a}: \bar{n}: m) d \bar{n}=\int_{N} e^{-\rho(\boldsymbol{H}(\bar{n})} \Phi_{\infty}(\mathbf{a}: \bar{n} m) d \bar{n}$.
In order to prove Theorem 13.2 we take $\mathbf{a}(v)=\alpha(v) u_{1}$. Then we claim that

$$
\left\langle\Phi_{\infty}(v: m), \mathbf{a}(v)\right\rangle=\alpha(v) \phi_{P}(v: m) .
$$

Since both sides are continuous in v, it is sufficient to verify this for $v \in \mathcal{F}^{\prime}(\lambda)$. But $u_{1}=1$ and so this is an immediate consequence of Lemma 7.3 and the corollary of Lemma 16. The statement of Theorem 13.2 is now obvious from Lemma 17.

§ 17. Application to Eisenstein Integrals

Let U be an open subset of \mathfrak{F}_{c}. A function $f: U \times G \rightarrow V$ will be said to be of type $H \times C^{\infty}$ if 1) it is of class C^{∞} on $U \times G$ and 2) for all $x \in G$ the function $v \rightarrow f(v: x)$ from U to V is holomorphic.

Fix a psgp $P_{1}=M A N_{1}$ in $\mathscr{P}\left(\mathfrak{h}_{R}\right)$. Then for any $\psi \in C^{\infty}\left(M, \tau_{M}\right)$, we consider the Eisenstein integral $E\left(P_{1}: \psi\right)$ [1(e), §9]. Clearly it is a function of type $H \times C^{\infty}$ on $\mathcal{F}_{c} \times G$.

Put

$$
\mathbf{s}_{\boldsymbol{\delta}}(\psi)=\sup _{\boldsymbol{M}}|\delta \psi|_{\mathbf{s}} \Xi_{\boldsymbol{M}}^{-1}
$$

for $\mathbf{s} \in \mathscr{F}(V), \delta \in \mathfrak{M}^{(2)}=\mathfrak{M} \otimes \mathfrak{M}$ and $\psi \in C^{\infty}(M, V)$. Moreover let

$$
\mathbf{s}_{\boldsymbol{F}}(\psi)=\sum_{\delta \in \boldsymbol{F}} \mathbf{s}_{\boldsymbol{\delta}}(\psi)
$$

for any finite subset F of $\mathfrak{M}^{(2)}$. If $v \in \mathfrak{F}_{c}$, define v_{R} and v_{I} in \mathfrak{F} by $v=v_{R}+(-1)^{1 / 2} v_{I}$. Then it is easy to see that we can choose $c_{0} \geqq 0$ such that

$$
\left|\mathfrak{R}(-1)^{1 / 2} v\left(H_{P_{1}}(x)\right)\right| \leqq c_{0}\left|v_{I}\right| \sigma(x) \quad\left(v \in \mathfrak{F}_{c}, x \in G\right)
$$

Extend the norm on \mathscr{F}_{c} by setting

$$
|v|^{2}=\left|v_{R}\right|^{2}+\left|v_{I}\right|^{2}
$$

and put

$$
|(v, x)|=(1+|v|)(1+\sigma(x)) \quad\left(v \in \mathscr{F}_{c}, x \in G\right)
$$

Lemma 1. Fix $g_{1}, g_{2} \in \mathfrak{G}$ and $D \in \mathfrak{D}\left(\mathscr{F}_{c}\right)$. Then we can choose $r \geqq 0$ and a finite subset F of $\mathfrak{M}^{(2)}$ with the following property. For any $\mathbf{s} \in \mathscr{P}(V)$, there exists a number $c>0$ such that

$$
\left|E\left(P_{1}: \psi: v ; D: g_{1} ; x ; g_{2}\right)\right|_{\mathbf{s}} \leqq c \mathbf{s}_{F}(\psi) \Xi(x)|(v, x)|^{r} \exp \left\{c_{0}\left|v_{I}\right| \sigma(x)\right\}
$$

for all $\psi \in C^{\infty}\left(M, \tau_{M}\right), v \in \mathscr{F}_{c}$ and $x \in G$.
It is enough to consider the case $D=1$. The general result would follow from this if we fix x, consider the complex polycylinder with center v and radius $(1+\sigma(x))^{-1}$ and apply the Cauchy integral formula.

We drop the subscript and write $P=P_{1}, N=N_{1}$. Put

$$
\psi_{v}(x)=\psi(x) \exp \left\{\left((-1)^{1 / 2} v-\rho\right)(H(x))\right\} \quad(x \in G)
$$

in the usual notation [1(e), §19] where $\rho=\rho_{P}$ and $H(x)=H_{P}(x)$. Then it is obvious that

$$
\left|E\left(P: \psi: v: g_{1} ; x ; g_{2}\right)\right|_{\mathbf{s}} \leqq \int_{K}\left|\psi_{v}\left(g_{1} ; x k ; g_{2}^{k}\right)\right|_{\mathbf{s}} d k
$$

for $\mathbf{s} \in \mathscr{S}^{o}(V)[1(\mathrm{e}), \S 22]$. But if $x=k \operatorname{man}(k \in K, m \in M, a \in A, n \in N)$, it is clear that

$$
\psi_{v}\left(g_{1} ; k \operatorname{man} ; g_{2}\right)=\tau(k) \psi_{v}\left(g_{1}^{k^{-1}} ; \operatorname{man} ; g_{2}\right) .
$$

Moreover

$$
\mathfrak{G}=\mathfrak{G} \mathfrak{n}+\mathfrak{A M} \mathfrak{M}_{1}=\mathfrak{G} \mathfrak{n}+\mathfrak{M}_{1} \Omega
$$

Therefore for given $g_{1}, g_{2} \in \mathfrak{G}$, we can choose $r \geqq 0$ and $u_{i}, v_{i} \in \mathfrak{M}(1 \leqq i \leqq p)$ such that

$$
\left|\psi_{v}\left(g_{1} ; k m a n ; g_{2}\right)\right|_{\mathbf{s}} \leqq \sum_{1 \leqq i \leqq p}\left|\psi\left(u_{i} m ; v_{i}\right)\right|_{\mathbf{s}}(1+|v|)^{r} e^{-\left(v_{1}+\rho\right)(\log a)}
$$

for all $v \in \mathfrak{F}_{c}, \mathbf{s} \in \mathscr{S}^{o}(V)$ and $(k, m, a, n) \in K \times M \times A \times N$. The required result now follows immediately from [1(e), Corollary of Lemma 30.1].

Let $\psi \neq 0$ be an eigenfunction of 3_{M} in $\mathscr{C}\left(M, \tau_{M}\right)$. Then [1(e), Theorem 18.3] there exists a regular element $\lambda \in(-1)^{1 / 2} \mathfrak{h}_{1}^{*}$ such that

$$
\zeta \psi=\gamma_{\mathrm{m} / \zeta_{r}}(\zeta: \lambda) \psi \quad\left(\zeta \in \mathcal{Z}_{M}\right) .
$$

Put $\phi=E\left(P_{1}: \psi\right)$. Then it is obvious from Lemma 1 and [1(e), Lemma 19.1] that ϕ defines a function of type $I I(\lambda)$ (see $\S 8)$ on $\mathfrak{F} \times G$.

Let $P=M A N$ be another psgp in $\mathscr{P}\left(\mathfrak{b}_{R}\right)$. We shall now investigate the behavior of

$$
d_{P}(a) \phi(v: m a) \quad(m \in M, a \in A)
$$

as $a \longrightarrow \infty$. The case $P=G$ being trivial, we assume that $\mathfrak{a}=\mathfrak{b}_{R}$ does not lie in the center of \mathfrak{g}.

We now use the notation of § 5 and put

$$
|(v, x, H)|=|(v, x)|(1+\|H\|)
$$

for $v \in \mathfrak{F}_{\mathfrak{c}}, x \in G$ and $H \in \mathfrak{a}$. Note that $\mathfrak{a}=\mathfrak{b}_{\mathfrak{R}} \subset \mathfrak{a}_{0}$ and therefore we may assume that $k_{0}=1$ (see §3). Then y centralizes \mathfrak{a} and therefore $\Lambda_{v}=\lambda^{y}+(-1)^{1 / 2} v$.

Lemma 2. Fix $\zeta \in \mathfrak{Z}_{1}$ and $v_{1}, v_{2} \in \mathfrak{M}$. Then we can choose $r \geqq 0$ and for each $\mathbf{s} \in \mathscr{Y}(V)$ a number $c(\mathbf{s}) \geqq 0$ such that

$$
\begin{aligned}
& \left|\psi_{i, \zeta}\left(v: v_{1}: m \exp H ; v_{2}\right)\right|_{\mathbf{s}} \\
& \quad \leqq c(\mathbf{s}) \Xi_{M}(m)|(v, m, H)|^{r} e^{-\beta_{P}(H)} \exp \left\{c_{0}\left|v_{I}\right|(\sigma(m)+\|H\|)\right\}
\end{aligned}
$$

for $v \in \mathfrak{F}_{c}, m \in M_{1}^{+}, H \in C l \mathfrak{a}^{+}$and $1 \leqq i \leqq q$.
This is proved in the same way as Lemma 6.1.
Define $\lambda_{i}(i \in Q)$ and Q^{o} as in $\S 6$. Fix two positive numbers ε, δ and an element $H_{0} \in \mathfrak{a}^{+}$with $\left\|H_{0}\right\|=1$. Let $\mathscr{F}_{c}(\delta)$ denote the set of all $v \in \mathscr{\mathscr { F }}_{c}$ with $\left|v_{I}\right|<\delta$. By choosing ε, δ sufficiently small, we can assume that:

1) $\beta_{P}\left(H_{0}\right) \geqq 4 \varepsilon$,
2) $\left|\lambda_{i}\left(H_{0}\right)\right| \geqq 3 \varepsilon$ if $\lambda_{i}\left(H_{0}\right) \neq 0$,
3) $\left|s_{i} v_{I}\left(H_{0}\right)\right|+c_{0}\left|v_{I}\right| \leqq \varepsilon$
for $i \in Q$ and $v \in \mathfrak{F}_{c}(\delta)$. Put

$$
\psi_{i}^{o}(v: m: t)=\psi_{i, H_{0}}\left(v: m \exp t H_{0}\right) e^{-t s_{i} A_{v}\left(H_{0}\right)} .
$$

Fix $\mathbf{s} \in \mathscr{Y}(V)$ and $v \in \mathfrak{M}_{1}$. Then it follows from Lemma 2 that if $\lambda_{i}\left(H_{0}\right) \geqq 0$, the integral

$$
\left.\int_{0}^{\infty}\left|\psi_{i}^{o}(v: m ; v: t)\right|\right|_{\mathbf{s}} d t
$$

converges uniformly as (v, m) varies within a compact subset of $\mathfrak{F}_{c}(\delta) \times M_{1}$. Hence by Lemma 5.3, we can define
$\phi_{i \infty}(v: m)=\lim _{t \rightarrow+\infty} \phi_{i}\left(v: m \exp t H_{0}\right) e^{-t s_{i} \Lambda_{v}\left(H_{0}\right)}$
for $(v, m) \in \mathscr{F}_{c}(\delta) \times M_{1}$. Then $\phi_{i \infty}$ is a function of type $H \times C^{\infty}$.
Lemma 3. Fix i such that $\lambda_{i}\left(H_{0}\right) \geqq 0$. Then

$$
\phi_{i \infty}(v: m ; \zeta)=\gamma_{1}\left(\zeta: s_{i} A_{v}\right) \phi_{i \infty}(v: m) \quad\left(\zeta \in \mathcal{Z}_{1}\right)
$$

for $v \in \mathcal{F}_{c}(\delta)$ and $m \in M_{1}$. Moreover $\phi_{i \infty}=0$ unless $i \in Q^{o}$ and $s_{i}^{-1} a=a$.
If $\lambda_{i}\left(H_{0}\right)>0$, it is clear that
$\mathfrak{R} s_{i} \Lambda_{v}\left(H_{0}\right)-c_{0}\left|v_{I}\right|>0$
for $v \in \mathscr{F}_{c}(\delta)$ and therefore $\phi_{i \infty}=0$ from Lemma 1. So now assume that $\lambda_{i}\left(H_{0}\right)=0$. Then it follows easily from Lemmas 6.2 and 6.3 that our statement is true if $v \in \mathfrak{F}$. The rest is obvious by holomorphy.

Corollary. $\phi_{i \infty}(v: m \exp H)=\phi_{i \infty}(v: m) e^{s_{i} A_{v}(H)}$ for $m \in M_{1}, H \in \mathfrak{a}$ and $v \in \mathscr{F}_{c}(\delta)$.
This is obvious from Lemma 3.
Define $\phi_{i \infty}=0$ if $\lambda_{i}\left(H_{0}\right)<0$.
Lemma 4. Fix $v \in \mathscr{F}_{c}(\delta), m \in M_{1}$. Then
$\left|\phi_{i}\left(v: m \exp T H_{0}\right)-\phi_{i \infty}\left(v: m \exp T H_{0}\right)\right|_{\mathbf{s}}$

$$
\leqq e^{-2 \varepsilon T}\left\{\left|\phi_{i}(v: m)\right|_{s}+\int_{0}^{\infty}\left|\psi_{i, H_{0}}\left(v: m \exp t H_{0}\right)\right|_{s} e^{2 \varepsilon t} d t\right\}
$$

for $\mathbf{s} \in \mathscr{P}(V), T \geqq 0$ and $i \in Q$.
Put $m_{t}=m \exp t H_{0}(t \in \mathbf{R})$ and first suppose $\lambda_{i}\left(H_{0}\right) \geqq 0$. Then

$$
\phi_{i \infty}\left(v: m_{T}\right)=\phi_{i}\left(v: m_{T}\right)+\int_{T}^{\infty} \psi_{i, H_{0}}\left(v: m_{t}\right) e^{-(t-T) s_{i} A_{v}\left(H_{0}\right)} d t
$$

from Lemma 5.3. Moreover

$$
\mathfrak{R} s_{i} \Lambda_{v}\left(H_{0}\right)=\lambda_{i}\left(H_{0}\right)-s_{i} v_{I}\left(H_{0}\right) \geqq-\varepsilon .
$$

Hence

$$
\left|\phi_{i \infty}\left(v: m_{T}\right)-\phi_{i}\left(v: m_{T}\right)\right|_{s} \leqq \int_{T}^{\infty}\left|\psi_{i, H_{0}}\left(v: m_{t}\right)\right| e^{\varepsilon(t-T)} d t
$$

and this implies the required inequality.
Now suppose $\lambda_{i}\left(H_{0}\right)<0$. Then $\phi_{i \infty}=0$ and

$$
\phi_{i}\left(v: m_{T}\right)=\phi_{i}(v: m) e^{T s_{i} \Lambda_{v}\left(H_{0}\right)}+\int_{0}^{T} \psi_{i, H_{0}}\left(v: m_{t}\right) e^{(T-i) s_{i} A_{v}\left(H_{0}\right)} d t
$$

from Lemma 5.3. But

$$
\mathfrak{R} s_{i} A_{v}\left(H_{0}\right)=\lambda_{i}\left(H_{0}\right)-s_{i} v_{I}\left(H_{0}\right) \leqq-2 \varepsilon
$$

and therefore

$$
\left|\phi_{i}\left(v: m \exp T H_{0}\right)\right|_{\mathbf{s}} \leqq e^{-2 \varepsilon T}\left\{\left|\phi_{i}(v: m)\right|_{\mathbf{s}}+\int_{0}^{\infty}\left|\psi_{i, H_{0}}\left(v: m \exp t H_{0}\right)\right|_{\mathbf{s}} e^{2 \varepsilon t} d t\right\}
$$

This proves the lemma.
Let $\mathfrak{F}_{c}^{\prime}(\delta, \lambda)$ denote the set of all $v \in \mathfrak{F}_{c}(\delta)$ where $\varpi\left(\lambda+(-1)^{1 / 2} v\right) \neq 0$, so that (see §3)

$$
\mathfrak{F}_{c}^{\prime}(\delta, \lambda)=\mathfrak{F}_{c}(\delta) \cap \mathscr{F}_{c}^{\prime}(\lambda)
$$

For any $s \in \mathfrak{w}=\mathfrak{w}(\mathfrak{a})$, there exists a unique index $i \in Q$ such that $s=s_{i}^{-1}$ on \mathfrak{a} (Lemma 7.1). Define

$$
\phi_{P, s}(v: m)=\omega_{01}\left(s_{i} \Lambda_{v}\right)^{-1} \phi_{i \infty}(v: m)
$$

for $v \in \mathscr{F}_{c}^{\prime}(\delta, \lambda), m \in M_{1}$. Note that

$$
\begin{aligned}
s_{i} \Lambda_{v}(H)=A_{v}(s H) & =\lambda^{y}(s H)+(-1)^{1 / 2} v(s H) \\
& =(-1)^{1 / 2} v(s H) \quad(H \in \mathfrak{a})
\end{aligned}
$$

since y centralizes \mathfrak{a} and $\lambda=0$ on $\mathfrak{a}=\mathfrak{h}_{R}$. This shows that $i \in Q^{o}$. Therefore the following result is obvious from Lemmas 2 and 4, Corollary of Lemma 3 and Lemma 5.1.

Lemma 5. Let $v \in \mathscr{F}_{c}^{\prime}(\delta, \lambda), m \in M_{1}$ and $s \in \mathscr{S}(V)$. Then

$$
\lim _{t \rightarrow+\infty} e^{\varepsilon t}\left|d_{P}\left(m_{t}\right) \phi\left(v: m_{t}\right)-\sum_{s \in \mathfrak{w}} \phi_{P, s}(v: m) e^{(-1)^{1 / 2} t v\left(s H_{0}\right)}\right|_{\mathbf{s}}=0
$$

where $m_{t}=m \exp t H_{0}$.
Corollary. Fix $v \in \mathscr{F}_{c}^{\prime}(\delta, \lambda)$ and $s_{0} \in \mathfrak{w}$ and suppose $v_{I}\left(s_{0} H_{0}\right)<v_{I}\left(s H_{0}\right)$ for every $s \neq s_{0}$ in \mathfrak{w}. Then

$$
\lim _{t \rightarrow+\infty} d_{P}\left(m_{t}\right) \phi\left(v: m_{t}\right) e^{-(-1)^{1 / 2} t v\left(s_{0} H_{0}\right)}=\phi_{P, s_{0}}(v: m)
$$

for $m \in M_{1}$.
Since $\left|v_{I}\left(s_{0} H_{0}\right)\right| \leqq \varepsilon$, this follows from Lemma 5 if we observe that

$$
\mathfrak{R}(-1)^{1 / 2}\left\{v\left(s H_{0}\right)-v\left(s_{0} H_{0}\right)\right\}=v_{I}\left(s_{0} H_{0}\right)-v_{I}\left(s H_{0}\right)<0
$$

for $s \neq s_{0}$.

§ 18. The \boldsymbol{c}-Functions

Now assume that $\operatorname{dim} \tau<\infty$ and τ is unitary. Put

$$
L={ }^{\circ} \mathscr{C}\left(M, \tau_{M}\right)
$$

Then by [1(e), Theorem 27.9], $\operatorname{dim} L<\infty$. Let $|\cdot|$ denote the norm in the finitedimensional Hilbert space V. Put

$$
\|\psi\|^{2}=\int_{M}|\psi(m)|^{2} d m
$$

for $\psi \in L$. This defines the structure of a Hilbert space on L.

Let $\mathscr{E}_{2}(M)$ be the discrete series of M (i.e. the set of all equivalence classes of irreducible, square-integrable representations of M). For $\omega \in \mathscr{E}_{2}(M)$, put

$$
L(\omega)=L \cap\left(\mathfrak{H}_{\omega} \otimes V\right)
$$

where \mathfrak{G}_{ω} is the smallest closed subspace of $L_{2}(M)$ containing all the matrix coefficients of ω. Then

$$
L=\sum_{\omega} L(\omega)
$$

where the sum is orthogonal.
We keep to the notation of $\S 17$ and put $\mathfrak{a}=\mathfrak{h}_{R}$ and $\mathfrak{w}=\mathfrak{w}(\mathfrak{a})$. Fix $P \in \mathscr{P}(\mathfrak{a})$ and define

$$
\pi(v)=\prod_{1 \leqq i \leqq r}\left\langle\alpha_{i}, v\right\rangle^{m_{i}} \quad\left(v \in \mathscr{F}_{c}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are all the distinct roots of (P, A) and m_{i} the multiplicity of α_{i}. As usual $\left\langle\alpha_{1}, v\right\rangle=\alpha_{i}\left(H_{v}\right)$. Let \mathscr{F}_{c}^{\prime} be the set of all $v \in \mathfrak{F}_{c}$ where $\pi(v) \neq 0$. Clearly $\mathfrak{F}_{c}^{\prime}$ is independent of the choice of P in $\mathscr{P}(\mathbf{a})$. Put $\mathfrak{F}^{\prime}=\mathfrak{F} \cap \mathfrak{F}_{c}^{\prime}$ and $\mathfrak{F}_{c}^{\prime}(\delta)=\mathfrak{F}_{c}(\delta) \cap \mathfrak{F}_{c}^{\prime}$ for $\delta>0$.

Theorem 1. Fix $v \in \mathscr{F}^{\prime}$ and $P_{1}, P_{2} \in \mathscr{P}(\mathfrak{a})$. Then there exist unique elements $c_{P_{2} \mid P_{1}}(s: v) \in$ End $L(s \in \mathfrak{w})$ such that
$E_{P_{2}}\left(P_{1}: \psi: v: m a\right)=\sum_{s \in \mathfrak{w}}\left(c_{P_{2} \mid P_{1}}(s: v) \psi\right)(m) e^{(-1)^{1 / 2} s v(\log a)}$
for $\psi \in L, m \in M$ and $a \in A$. Moreover we can choose $\delta>0$ such that for every $s \in \mathfrak{w}$, $\pi(v) c_{P_{2} \mid P_{1}}(s: v)$ extends to a holomorphic function of v on $\mathscr{F}_{c}(\delta)$.

Fix $v \in \mathfrak{F}^{\prime}$. Then $s v \neq v$ for $s \neq 1$ in \mathbf{m} (Lemma 22.3). Hence the uniqueness is obvious. So now we have to prove existence. Fix $\omega \in \mathscr{E}_{2}(M)$ such that $L(\omega) \neq\{0\}$. It is enough to define $c_{P_{2} \mid P_{1}}(s: v)$ on $L(\omega)$. By [1(e), Theorem 18.3] there exists a regular element $\lambda \in(-1)^{1 / 2} \mathfrak{b}_{i}^{*}$ such that

$$
\zeta \psi=\gamma_{m / b r}(\zeta: \lambda) \psi \quad\left(\zeta \in 3_{M}\right)
$$

for all $\psi \in L(\omega)$. Now fix $\psi \in L(\omega)$ and put $\phi=E\left(P_{1}: \psi: v\right)$. It is easy to verify that $\mathfrak{F}^{\prime}(\lambda) \subset \mathfrak{F}^{\prime}$ and therefore by Theorem 7.1

$$
\phi_{P_{2}}=\sum_{s \in \mathfrak{w}} \phi_{P_{2}, s}
$$

Moreover by Lemma 7.5 the functions

$$
m \mapsto \phi_{P_{2}, s}(m) \quad(m \in M)
$$

are in L. Now define

$$
c_{P_{2} \mid P_{1}}\left(s^{-1}: v\right) \psi=\phi_{P_{2}, s} \quad(s \in \mathfrak{w})
$$

Then the first statement of the theorem follows from Theorem 7.1 and its corollary.
For any linear function μ on V and $m \in M$, put

$$
\mu_{m}(\psi)=\mu(\psi(m)) \quad(\psi \in L)
$$

Then μ_{m} is a linear function on L. For a given $\psi \in L$, the condition $\mu_{m}(\psi)=0$ for all μ and m, implies that $\psi=0$. Hence we can choose a base $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ for the space dual to L, consisting of linear functions of the form μ_{m}. Let $\left(\psi_{1}, \ldots, \psi_{n}\right)$ be the dual base for L. For each i, choose $m_{i} \in M$ and a linear function μ_{i} on V such that $\Lambda_{i}(\psi)=\mu_{i}\left(\psi\left(m_{i}\right)\right)$ for $\psi \in L$. Then

$$
\psi=\sum_{i} \Lambda_{i}(\psi) \psi_{i}=\sum_{i} \mu_{i}\left(\psi\left(m_{i}\right)\right) \psi_{i} \quad(\psi \in L) .
$$

Now fix ω and $\psi \in L(\omega)$ as above and put

$$
\psi_{s}(v)=\pi\left(\lambda+(-1)^{1 / 2} v\right) \phi_{P_{2}, s}(v)
$$

for $v \in \mathfrak{F}_{c}(\delta)$ in the notation of $\S 17$ where

$$
\phi(v)=E\left(P_{1}: \psi: v\right) .
$$

Then for a fixed $s \in \mathfrak{w}$, the function

$$
(v, m) \mapsto \psi_{s}(v: m)
$$

on $\mathscr{F}_{c}(\delta) \times M$ is of class $H \times C^{\infty}$. Moreover $\psi_{s}(v) \in L$ for $v \in \mathscr{F}^{\prime}$. Hence

$$
\psi_{s}(v: m)=\sum_{i} \mu_{i}\left(\psi_{s}\left(v: m_{i}\right)\right) \psi_{i}(m) \quad(m \in M)
$$

for $v \in \mathscr{F}^{\prime}$. Therefore by holomorphy this relation holds for all $v \in \mathscr{F}_{c}(\delta)$. This shows that $\psi_{s}(v) \in L$ and $v \rightarrow \psi_{s}(v)$ is a holomorphic mapping from $\mathfrak{F}_{c}(\delta)$ to L. The second statement of Theorem 1 is now obvious.

We observe that \mathfrak{w} operates on L. For if $s \in \mathfrak{w}$ and $\psi \in L$, then $s \psi=\psi^{s}$ (see $\S 7$) is also in L. Clearly the sets $\mathfrak{F}_{c}(\delta)$ and \mathfrak{F}^{\prime} are also stable under \mathfrak{m}.

Lemma 1. Let $P_{1}, P_{2} \in \mathscr{P}(\mathfrak{a})$ and $s, t \in \mathfrak{w}$. Then

$$
\begin{aligned}
& s c_{P_{2} \mid P_{1}}(t: v)=c_{P_{2}^{s} \mid P_{1}}(s t: v) \\
& c_{P_{2} \mid P_{1}}(t: v) s^{-1}=c_{P_{2} \mid P_{1}^{s}}\left(t s^{-1}: s v\right)
\end{aligned}
$$

for $v \in \mathscr{F}_{c}(\delta)$.
It is enough to prove this for v in \mathfrak{F}^{\prime}. Fix $\psi \in L, v \in \mathscr{F}^{\prime}$ and put $\phi=E\left(P_{1}: \psi: v\right)$. Then it follows from [1 (e), Lemma 21.1] that

$$
\left(\phi_{P_{2}}\right)^{s}=\phi_{P_{2}^{s}}
$$

and the first assertion is an immediate consequence of this fact.
Similarly the second statement is an easy consequence of the following lemma.
Lemma 2. Fix $P \in \mathscr{P}(\mathfrak{a})$ and $s \in \mathfrak{w}$. Then

$$
E(P: \psi: v)=E\left(\mathrm{P}^{s}: s \psi: s v\right)
$$

for $\psi \in L$ and $v \in \mathfrak{F}_{c}$.
For $f, g \in C^{\infty}(G, \tau)$ and $\alpha, \beta \in C^{\infty}\left(M, \tau_{M}\right)$, put

$$
\begin{aligned}
(f, g)_{G} & =\int_{G}(f(x), g(x)) d x \\
(\alpha, \beta)_{M} & =\int_{M}(\alpha(m), \beta(m)) d m
\end{aligned}
$$

provided the integrals are absolutely convergent. Moreover for $f \in C_{c}^{\infty}(G, \tau)$, define $f_{v}^{(P)} \in C_{c}^{\infty}\left(M, \tau_{M}\right)\left(v \in \mathfrak{F}_{c}\right)$ by

$$
f_{v}^{(P)}(m)=\int_{A} f^{(P)}(m a) e^{-(-1)^{1 / 2} v(\log a)} d a \quad(m \in M)
$$

in the notation of $[1(e), \S 16]$. Then it is clear that

$$
(E(P: \psi: v), f)_{G}=\left(\psi, f_{v}^{(P)}\right)_{M}
$$

for $\psi \in L$ and $v \in \mathfrak{F}$. Similarly

$$
\left(E\left(P^{s}: s \psi: s v\right), f\right)_{G}=\left(s \psi, f_{s v}^{\left(P^{s}\right)}\right)_{M}
$$

However it is easy to verify that

$$
f_{s v}^{\left(P^{s}\right)}=s\left(f_{v}^{(P)}\right)
$$

and therefore
$(E(P: \psi: v), f)_{G}=\left(E\left(P^{s}: s \psi: s v\right), f\right)_{G}$
for all $f \in C_{c}^{\infty}(G, \tau)$. The statement of Lemma 2 is now obvious.
Lemma 1 shows that it is sufficient to investigate the functions $c_{P_{2} \mid P_{1}}(1: v)$ for $P_{1}, P_{2} \in \mathscr{P}(\mathrm{a})$.

Lemma 3. Fix $P \in \mathscr{P}(\mathfrak{a}), \psi \in L, v \in \mathcal{F}$ and let $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ be a psgp of G. Then

$$
E_{P^{\prime}}(P: \psi: v) \sim 0
$$

unless A^{\prime} is conjugate to A under K.
We may assume, without loss of generality, that $\psi \in L(\omega)$ for some $\omega \in \mathscr{E}_{2}(M)$. Then our assertion follows from Lemmas 11.1. and 17.1.

§ 19. Some Integral Formulas

Fix $P \in \mathscr{P}(a)$ and let $\mathfrak{F}_{c}(P)$ denote the set of all $v \in \mathscr{F}_{c}$ such that $\left\langle\alpha, v_{I}\right\rangle>0$ for every root α of (P, A). Put $\rho=\rho_{P}$ and $H(x)=H_{P}(x)(x \in G)$. Every $x \in G$ can be written uniquely in the form $x=k m a n$ where $k \in K, m \in M \cap \exp p, a \in A, n \in N$. Put $k=\kappa(x)$ and $m=\mu(x)$. As usual let $\bar{P}=\theta(P)$ and $\bar{N}=\theta(N)$.

Theorem 1. $c_{\bar{P} \mid P}(1: v)$ and $c_{P \mid P}(1:-v)$ extend to holomorphic functions of v on $\mathfrak{F}_{c}(P)$ and they are given by the following integrals.

$$
\begin{gathered}
\left(c_{\bar{P} \mid P}(1: v) \psi\right)(m)=\int_{N} \tau(\kappa(\bar{n})) \psi(\mu(\bar{n}) m) e^{\left((-1)^{1 / 2} v-\rho\right)(H(\bar{n}))} d \bar{n}, \\
\left(c_{\bar{P} \mid P}(1:-v) \psi\right)(m)=\int_{N} \psi\left(m \mu(\bar{n})^{-1}\right) \tau(\kappa(\bar{n}))^{-1} e^{\left((-1)^{1 / 2} v-\rho\right)(H(\bar{n}))} d \bar{n} .
\end{gathered}
$$

Here $\psi \in L, v \in \mathscr{F}_{c}(P), m \in M$ and the Haar measure $d \bar{n}$ on \bar{N} is so normalized that

$$
\int_{\bar{N}} e^{-2 \rho(H(\bar{n}))} d \bar{n}=1 .
$$

We need some preparation. Observe that $G=K P$ and $\bar{N} P$ is an open dense subset of G whose complement is of Haar measure zero. Let $d_{l} p$ and $d_{r} p$ denote
the left- and right-invariant Haar measures respectively on P so that $d_{r} p=d_{l} p^{-1}$. Then $d_{r} p=\delta(p) d_{1} p$ where δ is a homomorphism of P into \mathbf{R}_{+}^{\times}. We can normalize the Haar measures $d x$ and $d \bar{n}$ on G and \bar{N} respectively in such a way that

$$
\int_{\boldsymbol{G}} f(x) d x=\int_{\boldsymbol{N} \times \boldsymbol{P}} f(\bar{n} p) d \bar{n} d_{r} p=\int_{\boldsymbol{K} \times \boldsymbol{P}} f(k p) d k d_{r} p
$$

for $f \in C_{c}(G)$. Put

$$
\bar{f}(\bar{x})=\int_{P} f(x p) d_{l} p \quad(x \in G)
$$

where $x \mapsto \bar{x}$ is the natural projection of G on $\bar{G}=G / P$. Note that

$$
\bar{G}=\bar{K}=K / K \cap P=K / K_{M}
$$

and put $\bar{f}(k)=\bar{f}(\bar{k})(k \in K)$. Then

$$
\int_{\boldsymbol{K}} \bar{f}(k) d k=\int f(k p) d k d_{l} p=\int f(k p) \delta(p)^{-1} d k d_{r} p
$$

Since $K \cap P$ lies in the kernel of δ, we can extend δ on G by defining $\delta(k p)=\delta(p)$ $(k \in K, p \in P)$. Then $\delta(y p)=\delta(y) \delta(p)$ for $y \in G, p \in P$ and therefore

$$
\begin{aligned}
\int_{K} \bar{f}(k) d k & =\int f(x) \delta(x)^{-1} d x=\int f(\bar{n} p) \delta(\bar{n} p)^{-1} d \bar{n} d_{r} p \\
& =\int f(\bar{n} p) \delta(\bar{n})^{-1} d \bar{n} d_{l} p .
\end{aligned}
$$

On the other hand $\bar{N} \cap P=\{1\}$ and so we may identify \bar{N} with its image under the projection of G on \bar{G}. Then the above relation becomes

$$
\int_{K} \bar{f}(k) d k=\int_{\bar{N}} \bar{f}(\bar{n}) \delta(\bar{n})^{-1} d \bar{n} .
$$

But since $f \mapsto \bar{f}$ is a surjective mapping of $C_{c}(G)$ on $C(G / P)$, we have obtained the following result.

Lemma 1. We can normalize the Haar measure d \bar{n} in such a way that

$$
\int_{K} \phi(k) d k=\int_{\mathcal{N}} \phi(\bar{n}) \delta(\bar{n})^{-1} d \bar{n}
$$

for all $\phi \in C(G / P)=C\left(K / K_{M}\right)$.
It is easy to verify that

$$
\delta(x)=e^{2 \rho(H(x))} \quad(x \in G) .
$$

Hence taking $\phi=1$ in the above lemma we get the following result.
Corollary. Under the above normalization of $d \bar{n}$ we have

$$
\int_{N} e^{-2 \rho(H(\bar{n}))} d \bar{n}=1 .
$$

Now we come to the proof of Theorem 1. It follows from [1(e), Corollary of Lemma 32.2] that the two integrals converge uniformly when v varies in a compact subset of $\mathscr{F}_{c}(P)$. Therefore (see the proof of Theorem 18.1), it would be enough to verify the two equations for $v \in \mathscr{F}_{c}(P) \cap \mathfrak{F}_{c}^{\prime}(\delta)$. We prove only the first since the proof of the second is quite similar.

Fix $\psi \in L, v \in \mathfrak{F}_{c}(P) \cap \mathscr{F}_{c}^{\prime}(\delta)$ and put
$\phi=E(P: \psi: v)$.
Then

$$
\phi(x)=\int \psi(x \kappa(\bar{n})) \tau(\kappa(\bar{n}))^{-1} \exp \left\{\left((-1)^{1 / 2} v-\rho\right)(H(x \kappa(\bar{n})))-2 \rho(H(\bar{n}))\right\} d \bar{n}
$$

for $x \in G$, from Lemma 1. Now

$$
\bar{n}=\kappa(\bar{n}) \mu(\bar{n}) \exp H(\bar{n}) \cdot n
$$

where $n \in N$. Hence if $m \in M_{1}=M A$,

$$
\begin{aligned}
\psi\left(m^{-1} \kappa(\bar{n})\right) & =\psi\left(m^{-1} \bar{n} \mu(\bar{n})^{-1}\right) \\
H\left(m^{-1} \kappa(\bar{n})\right) & =H\left(m^{-1} \bar{n}\right)-H(\bar{n})
\end{aligned}
$$

Take $x=m^{-1}$, replace \bar{n} by \bar{n}^{m} inside the integral and observe that

$$
d \bar{n}^{m}=e^{-2 \rho(H(m))} d \bar{n}
$$

Then we obtain

$$
e^{v+(H(m))} \phi\left(m^{-1}\right)=\int_{N} \psi\left(\bar{n} m^{-1} \mu\left(\bar{n}^{m}\right)^{-1}\right) \tau\left(\kappa\left(\bar{n}^{m}\right)\right)^{-1} e^{v-(H(\bar{n}))-v_{+}\left(\boldsymbol{H}\left(\bar{n}^{m}\right)\right)} d \bar{n}
$$

where $v_{-}=(-1)^{1 / 2} v-\rho$ and $v_{+}=(-1)^{1 / 2} v+\rho$. On the other hand, we can choose $c>0$ such that

$$
|\psi(m)| \leqq c \Xi_{M}(m)
$$

for all $m \in M_{1}$. Now let $m=m_{0}^{-1} a$ where $m_{0} \in M$ and $a \in A$. Keep m_{0} fixed and let $a_{\boldsymbol{P}} \infty$. Then

$$
H\left(\bar{n}^{m}\right)=H\left(m_{0}^{-1} \bar{n}^{a}\right)=H\left(m_{0}^{-1} \kappa\left(\bar{n}^{a}\right)\right)+H\left(\bar{n}^{a}\right)
$$

Hence $H\left(\bar{n}^{m}\right)-H\left(\bar{n}^{a}\right)$ remains bounded. Moreover

$$
\left|\psi\left(\bar{n} m^{-1} \mu\left(\bar{n}^{m}\right)^{-1}\right)\right|=\left|\psi\left(\mu(\bar{n}) m_{0} \mu\left(m_{0}^{-1} \bar{n}^{a} m_{0}\right)^{-1}\right)\right| .
$$

Now

$$
\bar{n}^{a} \in K\left(\bar{n}^{a}\right) \mu\left(\bar{n}^{a}\right) A N
$$

Hence

$$
m_{0}^{-1} \bar{n}^{a} m_{0} \in m_{0}^{-1} \kappa\left(\bar{n}^{a}\right) m_{0} \cdot \mu\left(\bar{n}^{a}\right)^{m_{0}^{-1}} \cdot A N
$$

and therefore

$$
\mu\left(m_{0}^{-1} \bar{n}^{a} m_{0}\right) \in K_{M} \cdot \mu\left(m_{0}^{-1} \kappa\left(\bar{n}^{a}\right) m_{0}\right) \mu\left(\bar{n}^{a}\right)^{m_{0}^{-1}}
$$

This shows that

$$
m_{0} \mu\left(m_{0}^{-1} \bar{n}^{a} m_{0}\right) m_{0}^{-1} \in C \mu\left(\bar{n}^{a}\right)
$$

where C is a compact subset of M. Hence

$$
\mu(\bar{n}) m_{0} \mu\left(m_{0}^{-1} \bar{n}^{a} m_{0}\right)^{-1} \in \mu(\bar{n}) \mu\left(\bar{n}^{a}\right)^{-1} C^{-1} m_{0}
$$

Therefore we can choose $c_{1}>0$ such that

$$
\left|\psi\left(\bar{n} m^{-1} \mu\left(\bar{n}^{m}\right)^{-1}\right)\right| \leqq c_{1} \Xi_{M}\left(\mu(\bar{n}) \mu\left(\bar{n}^{a}\right)^{-1}\right)
$$

for all $\bar{n} \in \bar{N}$ and $a \in A$. By Lemma 20.1, we can take the limit inside the integral and conclude that

$$
\begin{aligned}
\lim _{a \vec{P}^{\infty}} e^{\nu+(\log a)} \phi\left(m_{0} a^{-1}\right) & =\int_{N} \psi\left(\bar{n} m_{0}\right) e^{\nu-(H(\bar{n}))} d \bar{n} \\
& =\int_{N} \tau(\kappa(\bar{n})) \psi\left(\mu(\bar{n}) m_{0}\right) e^{\nu-(H(\bar{n}))} d \bar{n}
\end{aligned}
$$

The required result now follows from the corollary of Lemma 17.5.
We shall now derive some consequences of Theorem 1.
Lemma 2. Fix $\omega \in \mathscr{E}_{2}(M)$. Then $L(\omega)$ is stable under $c_{\bar{P} \mid P}(1: v)$ and $c_{P \mid P}(1: v)$.
Since $\mathscr{C}_{\omega}(M)$ is stable under both left and right translations of M, this is obvious from Theorem 1.

The following result was pointed out to me by Langlands.
Lemma 3. $\operatorname{det} c_{P \mid P}(1: v)$ is not identically zero.
Put

$$
c(t)=\int_{N} e^{-t \rho(H(\bar{n}))} d \bar{n} \quad(t \geqq 2)
$$

and

$$
\alpha_{l}(\bar{n})=c(t)^{-1} e^{-t \rho(H(\bar{n}))} \quad(\bar{n} \in \bar{N}) .
$$

The proof is based on the following simple fact.
Lemma 4. Let f be a continuous function on \bar{N} which is integrable with respect to $d \bar{n}$. Then

$$
\lim _{t \rightarrow+\infty} \int_{\bar{N}} \alpha_{t} f d \bar{n}=f(1)
$$

We shall prove this in § 21 .
Now fix $v \in \mathscr{F}_{c}(P)$ and put
$v_{t}=v+(-1)^{1 / 2} t \rho, \quad C(t)=c(t)^{-1} c_{P \mid P}\left(1:-v_{t}\right) \quad(t \geqq 2)$.
Then $v_{t} \in \mathscr{F}_{c}(P)$ and $C(t) \in$ End L. Fix $\psi \in L$. Then it follows from Theorem 1 that
$(C(t) \psi)(m)=\int \psi\left(m \mu(\bar{n})^{-1}\right) \tau(\kappa(\bar{n}))^{-1} e^{\left((-1)^{1 / 2} v-\rho\right)(H(\bar{n}))} \alpha_{t}(\bar{n}) d \bar{n}$.
Hence

$$
\lim _{t \rightarrow+\infty} C(t) \psi=\psi
$$

from Lemma 3. This proves that $C(t) \rightarrow 1$ and therefore $\operatorname{det} C(t) \rightarrow 1$. Hence $\operatorname{det} C(t) \neq 0$ for t sufficiently large.

Combining Theorem 1 with Theorem 13.2, we can now obtain the following result.

Theorem 2. Fix $\psi \in L, \alpha \in C_{c}^{\infty}\left(\mathfrak{F}^{\prime}\right), P_{1}, P_{2} \in \mathscr{P}(\mathfrak{a})$ and put

$$
\phi_{a}(x)=\int_{\mathfrak{F}} \alpha(v) E\left(P_{1}: \psi: v: x\right) d v \quad(x \in G) .
$$

Then $\phi_{\alpha} \in \mathscr{C}(G, \tau)$ and

$$
\phi_{\alpha}^{\left(\boldsymbol{P}_{2}\right)}(m a)=\gamma\left(P_{2}\right) \int_{\overparen{F}} e^{(-1)^{1 / 2} v(\log a)} \sum_{s \in \mathbf{w}} \alpha\left(s^{-1} v\right)\left(c_{\tilde{P}_{2} \mid P_{2}}(1: v) c_{P_{2} \mid P_{1}}\left(s: s^{-1} v\right) \psi\right)(m) d v
$$

for $m \in M, a \in A$. Here

$$
\gamma\left(P_{2}\right)=\int_{N_{2}} e^{-2 \rho(H(\bar{n}))} d \bar{n}
$$

the integrand having the same meaning as in Theorem 1 for $P=P_{2}$.
There is no loss of generality in assuming that $\psi \in L(\omega)$ for some $\omega \in \mathscr{E}_{2}(M)$. Put

$$
\phi(v: x)=E\left(P_{1}: \psi: v: x\right) \quad(v \in \mathcal{F}, x \in G) .
$$

Then it follows from Lemma 17.1 that ϕ is a function on $\mathfrak{F} \times G$ of type $I I(\lambda)$ for a suitable $\lambda \in(-1)^{1 / 2} \mathfrak{h}_{I}^{*}$ (see the proof of Theorem 18.1). Therefore since $\operatorname{Supp} \alpha \subset \mathfrak{F}^{\prime}$, it follows from Theorem 18.1 that the function

$$
(v, x) \mapsto \alpha(v) \phi(v: x)
$$

is of type $I^{\prime}(\lambda)(\S 13)$. Hence we conclude from Theorem 13.1 that $\phi_{\alpha} \in \mathscr{C}(G, \tau)$.
Now put $P=P_{2}$ and let us use the notation of Theorem 13.2. Since $\rho(H(\bar{n})) \geqq 0$, it is clear from this that

$$
\phi_{\alpha}^{(P)}(m)=\lim _{\varepsilon \rightarrow 0} \int_{N} e^{-(1+\varepsilon) \rho(\boldsymbol{H}(\bar{n}))} \phi_{P, \alpha}(\bar{n} m) d \bar{n} \quad\left(m \in M_{1}\right) .
$$

(Here $\varepsilon>0$.) But

$$
\phi_{P, \alpha}(\bar{n} m)=\int_{\ni} \alpha(v) \tau(\kappa(\bar{n})) E_{P}\left(P_{1}: \psi: v: \mu(\bar{n}) m \exp H(\bar{n})\right) d v .
$$

Fix $\varepsilon>0$ and put $v_{\varepsilon}=v+(-1)^{1 / 2} \varepsilon \rho$ for $v \in \mathscr{F}$. Then $v_{\varepsilon} \in \mathscr{F}_{c}(P)$ and we conclude from [1 (e), Corollary of Lemma 32.2] and Theorems 1 and 18.1 that

$$
\begin{aligned}
& \int_{\tilde{N}} e^{-(1+\varepsilon) \rho(H(\bar{n}))} \phi_{P, \alpha}(\bar{n} m a) d \bar{n} \\
& \quad=\gamma(P) \int_{\mathfrak{F}} \alpha(v) \sum_{s \in \mathbf{w}}\left(c_{\bar{P} \mid P}\left(1:(s v)_{\varepsilon}\right) c_{P \mid P_{1}}(s: v) \psi\right)(m) e^{(-1)^{1 / 2} s v(H(a))} d v
\end{aligned}
$$

for $m \in M$ and $a \in A$. But $c_{\bar{P} \mid P}(1: v)$ is holomorphic on $\mathfrak{F}_{c}^{\prime}(\delta)$. Therefore since Supp $\alpha \subset \mathfrak{F}^{\prime}$, we obtain by making $\varepsilon \rightarrow 0$ that

$$
\phi_{\alpha}^{(P)}(m a)=\sum_{s \in w} \gamma(P) \int_{\mathcal{F}} \alpha(v)\left(c_{\bar{P} \mid P}(1: s v) c_{P \mid P_{1}}(s: v) \psi\right)(m) e^{(-1)^{1 / 2} \operatorname{sv(H(a))}} d v
$$

and this is equivalent to the required result.

§ 20. A Result on Uniform Convergence

Let $P=M A N$ be a psgp of G. Define $\rho, H(x), \mu(x)(x \in G), A^{+}$and \bar{N} as usual.
Lemma 1. Fix $v \in \mathfrak{a}^{*}$ such that $\langle v, \alpha\rangle>0$ for every root α of (P, A) and put $v_{+}=v+\rho, v_{-}=v-\rho$. Then the integral

$$
\int_{\bar{N}} e^{-v+(H(\bar{n}))+v-\left(H\left(\bar{n}^{a}\right)\right)} \Xi_{M}\left(\mu(\bar{n}) \mu\left(\bar{n}^{a}\right)^{-1}\right) d \bar{n}
$$

converges uniformly for $a \in A^{+}$.
The present form of this lemma is due to Langlands [2, Lemma 3.12]. My original formulation was more complicated.

We first need an auxiliary result. Let $P_{0}=M_{0} A_{0} N_{0}$ be a minimal psgp of G contained in P and let us use the notation of $[1(e), \S 30]$.

Lemma 2. Let $x, y \in G$. Then

$$
\Xi\left(x y^{-1}\right)=\int_{N_{0}} e^{-\rho_{0}\left(H_{0}\left(x \bar{n}_{0}\right)+H_{0}\left(y \bar{n}_{0}\right)\right)} d \bar{n}_{0}
$$

where the Haar measure $d \bar{n}_{0}$ on \bar{N}_{0} is so normalized that

$$
\int_{\mathcal{N}_{0}} e^{-2 \rho_{0}\left(H_{0}\left(\bar{n}_{0}\right)\right)} d \bar{n}_{0}=1
$$

Let $\kappa_{0}(x)(x \in G)$ denote the component of x in K corresponding to the Iwasawa decomposition $G=K A_{0} N_{0}$. Put $k_{y}=\kappa_{0}(y k)(k \in K)$. Then $k \mapsto k_{y}$ is a diffeomorphism of K and [1(a), p. 281]

$$
e^{2 \rho_{0}\left(H_{0}(\nu k)\right)} d k_{y}=d k
$$

Now

$$
\Xi\left(x y^{-1}\right)=\int_{K} e^{-\rho_{0}\left(H_{0}\left(x y^{-1} k\right)\right)} d k
$$

Replacing k by k_{y} and observing that

$$
H_{0}\left(x y^{-1} k_{y}\right)=H_{0}(x k)-H_{0}(y k)
$$

we get

$$
\Xi\left(x y^{-1}\right)=\int_{K} e^{-\rho_{0}\left(H_{0}(x k)+H_{0}(y k)\right)} d k
$$

and the required result now follows from Lemma 19.1.
Let ${ }^{*} P={ }^{*} M^{*} A^{*} N$ be the minimal psgp of M corresponding to $P_{0}[1(\mathrm{e})$, Lemma 6.1] so that $* P=M \cap P_{0}$. Put ${ }^{*} \bar{N}=\theta\left({ }^{*} N\right)$. Then \bar{N} is a normal subgroup of \bar{N}^{0} and the mapping

$$
(\bar{n}, * \bar{n}) \mapsto \bar{n}_{0}=\bar{n} \cdot * \bar{n}
$$

defines a diffeomorphism of $\bar{N} \times * \bar{N}$ onto \bar{N}^{0}. Let $d \bar{n}$ and $d^{*} \bar{n}$ denote the corresponding Haar measures. Then $d \bar{n} \cdot d^{*} \bar{n}=c d \bar{n}_{0}$ where c is a positive constant.

Let us now use the notations of $[1(\mathrm{e}), \S 30]$.

Lemma 3. We can normalize $d \bar{n}$ and $d^{*} \bar{n}$ in such a way that
$\int_{\mathcal{N}} e^{-2 \rho(H(\bar{n}))} d \bar{n}=\int_{{ }_{N}} e^{-2^{*} \rho\left({ }^{*} \boldsymbol{H}\left(^{*} n\right)\right.} d{ }^{*} \bar{n}=1$.
Then $d \bar{n}_{0}=d \bar{n} d^{*} \bar{n}$ where $d \bar{n}_{0}$ is normalized as in Lemma 2.
The proof of the first part is the same as that of the corollary of Lemma 19.1. Since $d \bar{n} d^{*} \bar{n}=c d \bar{n}_{0}$, we have

$$
c=\int_{*} d *{ }_{N} \int_{\bar{N}} e^{-2 \rho_{0}\left(H_{0}(\bar{n} * \bar{n})\right)} d \bar{n} .
$$

Fix $* \bar{n} \in * \bar{N}$. Then $* \bar{n}=k a n\left(k \in K_{M}, a \in * A, n \in * N\right)$ and

$$
H_{0}\left(\bar{n}^{*} \bar{n}\right)=H_{0}(\bar{n} k)+\log a=H_{0}\left(k^{-1} \bar{n} k\right)+{ }^{*} H\left({ }^{*} \bar{n}\right) .
$$

But since K_{M} normalizes \bar{N}, we conclude that

$$
\int_{\mathcal{N}} e^{-2 \rho_{0}\left(H_{0}(\bar{n} * \bar{n})\right)} d \bar{n}=e^{-2^{*} \rho(* H(* \bar{n}))} \int_{\bar{N}} e^{-2 \rho_{0}\left(H_{0}(\bar{n})\right)} d \bar{n} .
$$

On the other hand

$$
H_{0}\left(\bar{n}^{*} k\right)=H(\bar{n})+{ }^{*} H\left(\mu(\bar{n})^{*} k\right)
$$

for ${ }^{*} k \in K_{M}$. Hence if $d^{*} k$ is the normalized Haar measure on K_{M}, we conclude from [1(a), Corollary p. 261] that

$$
\int_{K_{M}} e^{-2 \rho_{0}\left(H_{0}(\bar{n} * k)\right)} d * k=e^{-2 \rho(H(\bar{n}))} \int_{K_{M}} e^{-2^{*} \rho(* H(\mu(\bar{n}) * k))} d * k
$$

Therefore

$$
=e^{-2 \rho(H(\bar{n}))}
$$

$$
\begin{aligned}
\int_{\boldsymbol{N}} e^{-2 \rho_{0}\left(H_{0}(\bar{n})\right)} d \bar{n} & =\int_{\bar{N}} d \bar{n} \int_{K_{M}} e^{\left.-2 \rho_{0}\left(H_{0}{ }^{*} k-1 \bar{n}^{*} k\right)\right)} d * k \\
& =\int_{\tilde{N}} e^{-2 \rho(H(\bar{n}))} d \bar{n}=1
\end{aligned}
$$

and this proves that
$c=\int_{*} e^{-2^{*} \rho\left({ }^{*} H\left({ }^{*} \bar{n}\right)\right)} d^{*} \bar{n}=1$.
Corollary. $\Xi_{M}\left(m_{1} m_{2}^{-1}\right)=\int_{*} e^{-{ }^{*} \rho\left({ }^{*} H\left(m_{1} *^{*}\right)+{ }^{*} H\left(m_{2}{ }^{*} \bar{n}\right)\right)} d{ }^{*} \bar{n}$ for $m_{1}, m_{2} \in M$.
This follows by applying Lemma 2 to $(M, * P)$ in place of $\left(G, P_{0}\right)$.
Now we come to the proof of Lemma 1. Fix $0<\varepsilon \leqq 1$ such that

$$
\left\langle\rho_{0}-\varepsilon v, \alpha_{0}\right\rangle \geqq 0
$$

for every root α_{0} of $\left(P_{0}, A_{0}\right)$. Note that

$$
-v_{+}(H(\bar{n}))+v_{-}\left(H\left(\bar{n}^{a}\right)\right)=v\left(H\left(\bar{n}^{a}\right)-H(\bar{n})\right)-\rho\left(H\left(\bar{n}^{a}\right)+H(\bar{n})\right)
$$

and it follows from [1(e), Lemma 30.4] that we can choose $c \geqq 0$ such that

$$
v\left(H\left(\bar{n}^{a}\right)-H(\bar{n})\right) \leqq c
$$

for all $\bar{n} \in \hat{N}$ and $a \in A^{+}$. Put $v^{\prime}=\varepsilon v$. Then

$$
-v_{+}(H(\bar{n}))+v_{-}\left(H\left(\bar{n}^{a}\right)\right) \leqq(1-\varepsilon) c-v_{+}^{\prime}(H(\bar{n}))+v_{-}^{\prime}\left(H\left(\bar{n}^{a}\right)\right) .
$$

Hence it would be enough to prove Lemma 1 for εv instead of v.
So we may now assume that

$$
\left\langle\rho_{0}-v, \alpha_{0}\right\rangle \geqq 0
$$

for every root α_{0} of $\left(P_{0}, A_{0}\right)$. Let $\bar{n}_{0}=\bar{n} \cdot * \bar{n}$ where $\bar{n} \in \bar{N}$ and ${ }^{*} \bar{n} \in * \bar{N}$. Then

$$
\begin{aligned}
& H_{0}\left(\bar{n}_{0}\right)=H(\bar{n})+{ }^{*} H\left(\mu(\bar{n}) \cdot{ }^{*} \bar{n}\right), \\
& H_{0}\left(\bar{n}_{0}^{a}\right)=H\left(\bar{n}^{a}\right)+{ }^{*} H\left(\mu\left(\bar{n}^{a}\right) \cdot{ }^{*} \bar{n}\right) \quad(a \in A) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(v-\rho_{0}\right) & \left(H_{0}\left(\bar{n}_{0}^{a}\right)\right)-\left(v+\rho_{0}\right)\left(H_{0}\left(\bar{n}_{0}\right)\right) \\
= & v_{-}\left(H\left(\bar{n}^{a}\right)\right)-v_{+}(H(\bar{n})) \\
\quad & \quad *^{*} \rho(* H(\mu(\bar{n}) * \bar{n}))-* \rho\left(* H\left(\mu\left(\bar{n}^{a}\right) * \bar{n}\right)\right) .
\end{aligned}
$$

ω being a measurable subset of \bar{N}, put $\omega_{0}=\omega \cdot{ }^{*} \bar{N}$. Then integrating both sides, we get

$$
\begin{aligned}
& \int_{\omega_{0}} e^{\left(v-\rho_{0}\right)\left(H_{0}\left(\tilde{n}_{0}^{a}\right)\right)-\left(v+\rho_{0}\right)\left(H_{0}\left(\tilde{n}_{0}\right)\right)} d \bar{n}_{0} \\
& \quad=\int_{\omega} e^{v-\left(H\left(\bar{n}^{a}\right)\right)-v_{+}(H(\bar{n}))} \Xi_{M}\left(\mu(\bar{n}) \mu\left(\bar{n}^{a}\right)^{-1}\right) d \bar{n}=I_{\omega}(a) \quad \text { (say) }
\end{aligned}
$$

from the corollary of Lemma 3. On the other hand $M=K_{M} \cdot{ }^{*} A \cdot{ }^{*} N$ is an Iwasawa decomposition of M. Hence

$$
\bar{n}_{0}^{a}=\bar{n}^{a} \cdot * \bar{n}=\bar{n}^{a} \cdot * k \cdot * a \cdot * n
$$

where ${ }^{*} k \in K_{M},{ }^{*} a \in^{*} A,{ }^{*} n \in{ }^{*} N$. Since M normalizes \bar{N}, it is clear that

$$
H_{0}\left(\bar{n}_{0}^{a}\right)=H_{0}\left(\bar{n}^{\prime}\right)+H_{0}\left({ }^{*} a\right)
$$

where $\bar{n}^{\prime}={ }^{*} k^{-1} \cdot \bar{n}^{a} \cdot{ }^{*} k \in \bar{N}$. Hence we conclude from [1(a), Lemma 43] that

$$
\left.\left(\rho_{0}-v\right)\left(H_{0}\left(\bar{n}^{a}\right)\right) \geqq\left(\rho_{0}-v\right)\left(H_{0}\left({ }^{*} a\right)\right)={ }^{*} \rho\left({ }^{*} H^{*} \bar{n}\right)\right)
$$

Therefore

$$
\begin{aligned}
& \left(v-\rho_{0}\right)\left(H_{0}\left(\bar{n}_{0}^{a}\right)\right)-\left(v+\rho_{0}\right)\left(H_{0}\left(\bar{n}_{0}\right)\right) \\
& \quad \leqq-{ }^{*} \rho\left({ }^{*} H\left({ }^{*} \bar{n}\right)\right)-v_{+}(H(\bar{n}))-{ }^{*} \rho\left({ }^{*} H(\mu(\bar{n}) * \bar{n})\right) .
\end{aligned}
$$

Integrating both sides on ω_{0} and applying Lemma 3 and its corollary, we find that

$$
I_{\omega}(a) \leqq \int_{\omega} e^{-v_{+}(\boldsymbol{H}(\bar{n}))} \Xi_{M}(\mu(\bar{n})) d \bar{n} \quad(a \in A)
$$

Now choose $\varepsilon>0$ so small that $\langle v, \alpha\rangle \geqq \varepsilon\langle\rho, \alpha\rangle$ for every root α of (P, A). Then

$$
v^{+}(H(\bar{n})) \geqq(1+\varepsilon) \rho(H(\bar{n})) \quad(\bar{n} \in \bar{N})
$$

from [1 (e), Lemma 30.4]. On the other hand

$$
\int_{\bar{N}} e^{-(1+\varepsilon) \rho(H(\bar{n}))} \Xi_{M}(\mu(\bar{n})) d \bar{n}<\infty
$$

from [1(e), Corollary of Lemma 32.2]. Therefore the assertion of Lemma 1 is now obvious.

§ 21. Proof of Lemma 19.4

For $T \geqq 0$, let $\bar{N}(T)$ denote the set of all points $\bar{n} \in \bar{N}$ such that $\rho(H(\bar{n})) \leqq T$. Then $\bar{N}(T)$ is a compact set and $\bar{N}(0)=\{1\}$. Let $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ be the system of simple roots of (P, A). Then

$$
2 \rho=m_{1} \alpha_{1}+\cdots+m_{l} \alpha_{l}
$$

where m_{i} are positive integers. Put $m=m_{1}+\cdots+m_{l}$.
Lemma 1. There exists a number $c>0$ such that

$$
\int_{N(\varepsilon)} d \bar{n} \geqq c \varepsilon^{2 m}
$$

for $0<\varepsilon \leqq 1$.
Put

$$
\beta(a)=\inf _{1 \leqq i \leqq l} \alpha_{i}(\log a) / 2 \quad\left(a \in A^{+}\right)
$$

Then

$$
\rho\left(H\left(\bar{n}^{a}\right)\right) \leqq \log \left(1+e^{1-\beta(a)}\right)
$$

for $\bar{n} \in \bar{N}(1)$ and $a \in A^{+}$from [1(e), Lemma 30.2]. Fix $\varepsilon(0<\varepsilon \leqq 1)$ and choose $a \in A$ such that

$$
\alpha_{i}(\log a)=2(1-\log \varepsilon) \quad(1 \leqq i \leqq I)
$$

Then $a \in A^{+}$and

$$
1-\beta(a)=\log \varepsilon
$$

Hence

$$
\rho\left(H\left(\bar{n}^{a}\right)\right) \leqq \log (1+\varepsilon) \leqq \varepsilon
$$

for $\bar{n} \in \bar{N}(1)$. Therefore

$$
\int_{N(\varepsilon)} d \bar{n} \geqq \int_{(\bar{N}(1))^{a}} d \bar{n}=e^{-2 \rho(\log a)} c_{0}
$$

where

$$
c_{0}=\int_{\tilde{N}(1)} d \bar{n}>0
$$

But

$$
2 \rho(\log a)=m \alpha_{i}(\log a)=2 m(1-\log \varepsilon)
$$

Hence

$$
\int_{\tilde{N}(\varepsilon)} d \bar{n} \geqq c \varepsilon^{2 m}
$$

where $c=c_{0} e^{-2 m}>0$.

Now we come to the proof of Lemma 19.4. Fix $\varepsilon(0<\varepsilon \leqq 1)$ and let $\bar{N}_{r}(\varepsilon)$ denote the complement of $\bar{N}((r-1) \varepsilon)$ in $\bar{N}(r \varepsilon)(r \geqq 1)$. Then if $t \geqq 2$,

$$
\int_{\mathcal{N}_{r}(\varepsilon)} e^{-t \rho(H(\bar{n}))} d \bar{n} \geqq e^{-r \varepsilon t} \int_{\mathcal{N}_{r}(\varepsilon)} d \bar{n}=e^{-r \varepsilon t}(\mu(r \varepsilon)-\mu((r-1) \varepsilon))
$$

where

$$
\mu(T)=\int_{N(T)} d \bar{n} \quad(T \geqq 0)
$$

Therefore

$$
c(t)=\int_{\boldsymbol{N}} e^{-t \rho(\boldsymbol{H}(\bar{n}))} d \bar{n} \geqq \sum_{r \geqq 1} e^{-r \varepsilon t}(\mu(r \varepsilon)-\mu((r-1) \varepsilon)) .
$$

On the other hand

$$
\mu(T)=\int_{\tilde{N}(T)} d \bar{n} \leqq e^{2 T} \int_{\bar{N}} e^{-2 \rho(\boldsymbol{H}(\bar{n}))} d \bar{n}=c(2) e^{2 T}
$$

Hence if $t>2$,

$$
e^{-r \varepsilon t} \mu(r \varepsilon) \rightarrow 0
$$

as $r \rightarrow+\infty$. Therefore

$$
\begin{aligned}
c(t) & \geqq \sum_{r \geqq 1} \mu(r \varepsilon) e^{-r \varepsilon t}\left(1-e^{-\varepsilon t}\right) \\
& \geqq \mu(\varepsilon) e^{-\varepsilon t}\left(1-e^{-\varepsilon t}\right) .
\end{aligned}
$$

Now take $\varepsilon=t^{-1}$. Then it follows from Lemma 1 that

$$
c(t) \geqq \mu\left(t^{-1}\right) e^{-1}\left(1-e^{-1}\right) \geqq c_{0} t^{-2 m} \quad(t>2)
$$

where c_{0} is a positive constant independent of t.
Now let U be any open neighborhood of 1 in \bar{N}. We have to show that

$$
\int_{c} \alpha_{U}(\bar{n}) d \bar{n} \rightarrow 0
$$

as $t \rightarrow+\infty$. (As usual ${ }^{c} U$ denotes the complement of U.) Fix $\varepsilon(0<\varepsilon \leqq 1)$ such that $\bar{N}(\varepsilon) \subset U$. Then if $t>2$,

$$
\int_{c U} \alpha_{t}(\bar{n}) d \bar{n} \leqq \int_{c N(\varepsilon)} \alpha_{t}(\bar{n}) d \bar{n}=c(t)^{-1} \int_{c N(\varepsilon)} e^{-t \rho(H(\bar{n}))} d \bar{n} .
$$

But $c(t)^{-1} \leqq c_{0}^{-1} t^{2 m}$ and

$$
\int_{c \tilde{N}(\varepsilon)} e^{-t \rho(H(\bar{n}))} d t \leqq e^{-(t-2) \varepsilon} \int_{\cdot \bar{N}(\varepsilon)} e^{-2 \rho(H(\bar{n}))} d \bar{n}
$$

Therefore

$$
\leqq c(2) e^{-(t-2) \varepsilon}
$$

$$
\int_{c_{U}} \alpha_{t}(\bar{n}) d \bar{n} \leqq c_{1} t^{2 m} e^{-t \varepsilon} \rightarrow 0
$$

as $t \rightarrow+\infty$, where $c_{1}=c_{0}^{-1} c(2) e^{2 \varepsilon}$. This proves Lemma 19.4.

§ 22. Appendix

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ denote a variable point in $E=\mathbf{R}^{n}$. Put $D_{i}=\partial / \partial x_{i}$ and $D^{\alpha}=$ $D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}$ for a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We write $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$, $|x|=\max _{i}\left|x_{i}\right|$ and denote by M the set of all multi-indices.

Let V and $\mathscr{S}(V)$ be as before ($\$ 6$).
Lemma 1. Let f be an element in $C^{\infty}(E, V)$ such that $f=0$ on the hyperplane $x_{1}=0$. Then $f=x_{1} g$ where

$$
g(x)=\int_{0}^{1} f_{1}\left(x_{1} t, x_{2}, \ldots, x_{n}\right) d t
$$

and $f_{1}=D_{1} f$. Hence $g \in C^{\infty}(E, V)$ and

$$
\left|D^{\alpha} g(x)\right|_{\mathrm{s}} \leqq \sup _{|y| \leqq|x|}\left|D^{\alpha} f_{1}(y)\right|_{\mathrm{s}}
$$

for all $x \in E, \alpha \in M$ and $\mathbf{s} \in \mathscr{S}(V)$.
This is obvious.
Let $p \neq 0$ be the product of N real linear forms on E and E^{\prime} the set of all points $x \in E$ where $p(x) \neq 0$. A function f from E^{\prime} to V is said to be locally bounded (on E), if for every compact set ω in E and $\mathbf{s} \in \mathscr{S}(V),|f(x)|_{\mathbf{s}}$ remains bounded for $x \in \omega \cap E^{\prime}$.

For $\alpha \in M, r \geqq 0$ and $s \in \mathscr{P}(V)$, put

$$
\mathbf{s}_{\alpha, r}(f)=\sup _{E}(1+|x|)^{r}\left|D^{\alpha} f\right|_{\mathbf{s}} \quad\left(f \in C^{\infty}(E, V)\right)
$$

If F is a finite subset of M, put

$$
\mathbf{s}_{F, r}(f)=\sum_{\alpha \in F} s_{\alpha, r}(f)
$$

Let $\mathscr{C}(E, V)$ denote the set of all functions $f \in C^{\infty}(E, V)$ such that $\mathbf{s}_{\alpha, r}(f)<\infty$ for all $\alpha \in M$ and $r \geqq 0$.

Lemma 2. Fix $\alpha \in M$ and let F denote the set of all $\beta \in M$ such that $|\beta| \leqq|\alpha|+N$. Then for every $r \geqq 0$, we can choose a number $c_{r} \geqq 1$ with the following property. Suppose $f \in \mathscr{C}(E, V)$ and $p^{-1} f$ is locally bounded. Then $f=p g$ where $g \in \mathscr{C}(E, V)$ and

$$
\mathbf{s}_{\alpha, r}(g) \leqq c_{r} \mathbf{s}_{F, r}(f)
$$

for all $\mathbf{s} \in \mathscr{S}(V)$.
By an easy induction we are reduced to the case $N=1$. Hence we may assume that $p=x_{1}$. Then $f=x_{1} g$ in the notation of Lemma 1. Let E_{1} and E_{2} be the sets of points $x \in E$ where $\left|x_{1}\right| \leqq 1$ and $\left|x_{1}\right| \geqq 1$ respectively. Then if $x \in E_{1}$, we have

$$
1+|x| \leqq 2\left(1+\max _{i \geqq 2}\left|x_{i}\right|\right)
$$

and therefore

$$
(1+|x|)^{r}\left|D^{\alpha} g(x)\right|_{\mathbf{s}} \leqq 2^{r} \sup _{|y| \leqq|x|}\left|D^{\alpha} f_{1}(y)\right|(1+|y|)^{r}
$$

This means that

$$
\sup _{E_{1}}(1+|x|)^{r}\left|D^{\alpha} g(x)\right|_{\mathbf{s}} \leqq 2^{r} \mathbf{s}_{\beta, r}(f)
$$

where $\beta=\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right)$.
On the other hand $g=x_{1}^{-1} f$ on E_{2}. Since $\left|x_{1}\right| \geqq 1$, it follows directly by differentiation that

$$
\left|D^{\alpha} g(x)\right|_{\mathbf{s}} \leqq \alpha_{1}!\sum_{0 \leqq m \leqq \alpha_{1}}\left|D_{1}^{m} D^{\beta} f(x)\right|_{\mathbf{s}}
$$

on E_{2} where $\beta=\left(0, \alpha_{2}, \ldots, \alpha_{n}\right)$. Therefore since $E=E_{1} \cup E_{2}$ the required result is obvious.

Let us now use the notation of Theorem 18.1.
Lemma 3. Let H be an element in \mathfrak{a} such that $\alpha(H) \neq 0$ for every root α of (\mathfrak{g}, a). Then $s H \neq H$ for every $s \neq 1$ in \mathfrak{w}.

Extend \mathfrak{a} to a maximal abelian subspace \mathfrak{a}_{0} of \mathfrak{p} and put $\mathfrak{w}_{0}=\mathfrak{w}\left(\mathfrak{a}_{0}\right)$. Let Q be the set of all roots of $\left(\mathfrak{g}, \mathfrak{a}_{0}\right)$ which vanish at H. Then if $\beta \in Q$, it is clear that $\beta=0$ on a .

Let \mathfrak{w}_{1} be the stabilizer of H in \mathfrak{w}_{0}. Then \mathfrak{w}_{1} is the subgroup of \mathfrak{w}_{0} generated by the Weyl reflexions s_{β} for $\beta \in Q$. Hence every element of \mathfrak{w}_{1} leaves \mathfrak{a} fixed pointwise.

Now suppose $s H=H$ for some $s \in \mathfrak{w}$. We can choose $s_{0} \in \mathfrak{w}_{0}$ such that $s_{0}=s$ on \mathfrak{a}. But then $s_{0} \in \mathfrak{m}_{1}$ and hence $s_{0}=1$ on \mathfrak{a}. This proves that $s=1$.

References

1. Harish-Chandra: (a) Spherical functions on a semisimple Lie group I. Amer. J. Math. 80, 241-310 (1958)
(b) Spherical functions on a semisimple Lie group II. Amer. J. Math. 80, 553-613 (1958)
(c) Invariant differential operators and distributions on a semisimple Lie algebra. Amer. J. Math. 86, 534-564 (1964)
(d) Discrete series for semisimple Lie groups II. Acta Math. 116, 1-111 (1966)
(e) Harmonic analysis on real reductive groups I. J. Functional Analysis 19, 104-204 (1975)
2. Langlands, R. P.: On the classification of irreducible representations of real algebraic groups, 1973, preprint

Received July 28, 1975

Harish-Chandra
The Institute for Advanced Study
School of Mathematics
Princeton, N. J. 08540
USA

