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Wave-Packets in the Schwartz Space
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To Jean-Pierre Serre

§ 1. Introduction

The theory of the constant term, which has been developed in [1(e)] will now be
applied to construct wave-packets in the Schwartz space of a reductive group G.
Keeping to the notation of [1(e)], let A be the split component of a §-stable Cartan
subgroup of G. Fix a psgp P, = MAN, with the split component 4 and let = be a
unitary double representation of K on a finite-dimensional Hilbert space V.
Then L= "6(M, 1,,) also has finite dimension [1(e), Theorem 27.3]. Put F=a*
and consider the Eisenstein integral

¢.=E(P:y:v)  (ved)

for a given iy e L. We compute the constant term ¢, p, of ¢, alonga psgp P, e #(A4)
(Theorem 18.1). The expression for ¢, p involves certain endomorphisms
Cp,p, (s:V) (sew(a)) of L. We shall see later that these c-functions can be extended
to meromorphic functions of v on the whole complex space &, .

Let ' be the set of all regularelements in §. Fix ae CX(F') and put

b= [ a(v)p,dv
&

where dv is the Euclidean measure on §. Then ¢,€%(G, 1) (Theorem 13.1). Now
fix P,e 2(A) and me M A and consider the distribution

oa— §g’ (m)

on &' It turns out that this distribution is actually a function which can be written
quite simply in terms of the ¢-functions (Theorem 19.2).

Theorems 13.1, 13.2 and 18.1 contain the main results of this paper. They may
be regarded as generalizations of the corresponding results on spherical functions
obtained in [1(a, b)]. In fact here we have combined the methods of [1(a, b)]
with those of [1(d)]} and our success depends in an essential way on the systematic
use of the weak inequality.
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As far as possible, we shall keep to the notation of [1({e}] and therefore any
undefined symbols should be given the same meaning as in [1(e}].

Most of the work presented here was done some years ago and I have given
lectures on it on various occasions.

§ 2. Recapitulation of Some Algebraic Results

Let (P, A)>>(R,, A,) be two p-pairs in G such that (B, Ay) is minimal. Then P=
MAN, By=M, A, N,. Extend a, to a Cartan subalgebra b, of g. Then b is 6-stable
and ay=ho N p. Put W, =W(g/h,) and let W] be the subgroup of those elements of
W, which leave a pointwise fixed. Put S=& (b, ) =S5, .) and let J and J; denote
the algebras of invariants of W, and W, respectively in S. Let s,,s,,...,5, (3=
[W,: W, ]) be a complete system of representatives for W, ~. W, so that

WO= U Vl/ls,'.

15isq
Select homogeneous elements u; =1, u,, ..., u, in J; such that [1(a), Lemma 8]

le z jui.

15i¢q
Fix a system of positive roots for (g, ;) and put
Wo=Wyyys Ty =Ty To1 =Dy,
where m; =m+a. Then wy,=w,, w,. Define w'e C(J;) by
try,, ww)=061 (1=i, j<q)

and put t/=w,, . Then [1(a), Lemma 12] t/eJ,.
Every element of S may be regarded as a polynomial function on bj.. For
peJ, and Aeh},, define

fA= Z Ti(A)uia

15isq

Vp:y=tr,, ; {(p—~p(D)f,u'} (1=j=q).

Then it is clear that v/(p: A)e J and, for p fixed, A+ v/ (p: A) is a polynomial mapping
of ¥, into J. Let S, denote the set of all pe$ such that p(4)=0. Put J,=JnS,.
Then it is obvious that J, = J, (se W).

Identify b, with its dual by means of the bilinear form B. We call an element
ueJ; harmonic if d(p)u=0 for all peJ n §; in the notation of [1(c), § 3]. Then it is
easy to conclude from [1(c), Lemma 4] that u, ..., u, may be so chosen as to span
the space U of all harmonic elements in J;. Moreover J, = U +J, J, where the sum
is direct [1(a), p. 256]. The following lemma enables us to diagonalize the action
of JyonJ /J, J,~U.
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Lemma 1. Fix peJ,, Aebd, and put A,=s5,4{(1Li<q). Then
1) v(p:A)edy,
2) (p—pANfa= ) Y(p:A)uy,

1£]54q

3) Z e{sy)m, (Ak)fAk =wo(A)

1=2k=sq

A
A

Jor 1Si<q. Here ¢(s)= +1 is defined as usual by oy =¢(s)m, (se W,).
We know from [1(a), Lemma 15] that
(P—pANf4€ST4nJy=J4d.

Hence the first two statements are obvious. Both sides of 3) being polynomial in A,
it is sufficient to consider the case when @y(A4)=+0. Then the rational function v’/
is defined at A, and

; e(s) o, (Ak)f/lk =wy(A) Z “i(/lk)”i .

ik
But since
Y (i =tr,, U =4},
k
we conclude that

z ui(/lk)ui= 1
i,k

and this proves 3).

§ 3. Further Algebraic Results

Let b be a #-stable Cartan subalgebra of g. Then h=1h; + by as usual [1(e), § 8].
If Ae(b)¥, ve(hr)¥, we extend them to linear functions on b, by defining A=0 on
br and v=0 on };. In this way h* becomes the direct sum of (h;)¥ and (hg)*.

An element Je(b,)¥ is called singular if A(H,)=0 for some imaginary root « of
(g, b). Otherwise we call it regular. Put §=5h} and

w=wg/b= l_IoHa
where o runs over all positive roots of (g, h) (under some fixed order). Fix a regular
element Ae(—1)V2h¥ and let §.(1) denote the set of all ve §, such that

@ (A+(—1)2v)%0.

Put § ()= &.(A). Then § (1) is an open and dense subset of §.
Now we use the notation of § 2. Fix k,e K such that §¥ a,. Let 3 denote the
centralizer of b in g. Then b* and b, are two Cartan subalgebras of 3. Hence we

can choose y,eG, such that y, centralizes % and h?=bh,. where y=y,Ad(k,).
Put A,=(A+(—1)}"2vy for ve&,. (Here we have identified b, with its dual by
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means of the restriction of the bilinear form B on b,.) Then if ve §.(A), it is clear
that @, (A,)=0 and therefore the rational functions ' are defined at A, .

Fix an element Aeb¥, and let W, (A) be the subgroup of all se W, which leave
A fixed. Let p, be the set of all positive roots of (g, hy) and p,(A4) the set of those
aep, for which A(H,)=+0. Put

Wy, 4= n H,.

ae po(4)

Let J(A) be the algebra of all invariants of Wy(A)in S.

Lemma 1. Let v be an element in C(S) such that trg ;(uv)eJ for all ueS. Then
Wo, 45504 (V)ES.

Put v’ =trg; 4 v. Then if ue J(A), it is clear that
U'J(A)/J(U(u)=trs/_,(l)u)e.].

Hence we conclude from [1(a), Lemma 12] that @, ,v'eS.

Now put
U= Z Cui
1Zizq

and o, ;=w, 4, where A=sA” (se W,). Define a rational mapping e, (s€ W) of
&. into U by

e(M= ) wisAd)u; (veF.(2).

15j=q

Since /e C(J,), it is clear that e, ,=¢, (te W,).
Put Wy (s, )= Wy(s4’).

Lemma 2. Fix se€ W,. Then the mapping
Vi ta's, A(SAv) Z ets(v)

teWols, A)

is a polynomial mapping of &, into U.
Let ueS and put u'=trg; u. Then «'eJ; and it is obvious that
trg (Wu)=tr;,,Wu)ed (1£j<q).

Hence we conclude from Lemma 1 that
@o, 4 sy WES

where A =s1". Since C(J(A4)) is the fixed field of W, (A)= W, (s, A) in C(S), it follows
that

trs/J(A) uJ= Z (uj)t .
teWols, )
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Hence the mapping
v (54 Y, Y wtsA)u

teWols, A) j

= ws, i (S Av) Z €5 (V) (V € g,c (A))

teWols, 4)

extends to a polynomial mapping of &, into U.
Let p(A) be the set of all positive roots o of (g, b) such that 1(H,)#0. Put

Lemma 3. Fix se W, and ve . Then
|, 1 (s A)| Z |, 3 (s PN =[@,(A)| >0.

This is obvious from the definitions.
Now put ¢;=¢;, and

ie:[vvlmw()(sb/l)]”l Z els, (1§3§q}
teWois,. A)
Let Q denote the set {1,2,...,q}. It is clear that ,e= e if 5;4”=5;4 (i,j€Q).
Choose a maximal subset °Q of Q such that s;A”+5; 4" for i+j in °Q.

Lemma 4. Fix ieQ.Then ;e is a rational mapping of &, into U which is every-
where defined on §. Moreover the mapping

v, 1 (54)e0)  (veF.()

extends to a polynomial mapping from §, into U. Finally
Z €= 1.
ieeQ
The first two statements follow from Lemmas 2 and 3. Moreover since tr;, ;
=84, it is clear that

Z e,-=1.

15isq
The third statement is an immediate consequence of this fact.
Put
vij(pv)=try ; {p—p(si4) we,(v)}  (veF.(A) 154, j<9q)
for pe J;. Then v;(p:v)eJ.

Lemma 5. Fix ve § (1) and pe J, . Then
1) vi(p:v)edy,,

2) (p—p(si4,) e ()= Z Vi),
) Y oal)=t, EE

15k%q

for 154, jZq.
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This follows immediately from Lemma 2.1.

We know from [1(a), p. 256] that J, = U + J, J, for ueb¥, the sum being direct.
Hence for any ve §,, we can define a representation I of J, on U as follows. For
peJ;, [(p) is the linear transformation on U given by

L(p)u=pumod J J,,  (uel).

Corollary 1. Fix ve §,(2). Then
L(p)e;(v)=p(s; A,) e;(v), I;(ei(v))ej(v)zéijej(v)
for peJ; and 1514, j<q. Moreover

U= Z Ce;(v).

12i5q

This follows from Lemma 5 if we note that [1(a), p. 259]
ei(vis; A=Y u{s; A)u(s;4,)=6;;.
k

Corollary 2. I, (pe;(v))=p(s; A,) [ {e;(v)) and
L{ev)e; () =8I (e;{(v)
for 1 £i, j=q and ve §.(4).
This is obvious from Corollary 1 above.
Corollary 3. For any pe J,, vi—I,(p) is a polynomial mapping of §. into End U.
Put pi=tr, ,(pu;uw))eJ. It would be enough to verify that
R(p)ui=g,?§(/1v)u; (ved).
By Corollary 1 above, the left side is a rational function of v. Hence it would be
sufficient to prove this for ve §.(1). Fix ve §.(4). Then
Lpyu;=I,(pu)1 :g L(pu)ev)
=;p(sk A)u(s, A,)e,(v)  from Corollary 1,
=ksz(skAv)u,-(skAv)u"(skAv)uj.

But [1(a), p. 258]
Z (P“iuj)s'; l =t1‘,l,,(pu,-uj)=p{

k

and therefore the required statement is obvious.

Corollary 4. Let peJ,. Then
[T (L) -psA)}=0 (e

15i5q
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If ve §.(4), then ¢;(v) (1=i<v) is a base for U and so our statement is obvious
from Corollary 1. The rest follows from Corollary 3.

Corollary 5. Fix ieQ. Then
[T GE-psid) Lie@)=0

teWol(s,, 4)
for ve§.

This is proved in the same way by taking Lemma 4 into account.

§ 4. Application to Differential Operators

We keep to the notation of §§ 2, 3. Put yo=17,4, and y, =7, 4, (see [1(e), §111)
where m; =m+a as in §2. Also define M, =IMA and JF; =3, U. (As usual J,,
is the center of 9.) Finally put

() =1 (o 4,)E 31

250 =75 W Q)5 A)e3 (1=, j<q)
for (3, and ve, in the notation of Lemma2.1. (Here A,=(A+(—1)"2vy
asin § 3.) Then for fixed i, j and {, v+—#,(v) and vi— z;;({: v) are polynomial mappings
of &, into 3, and 3 respectively.

Put y=7y,5 and u=7y,,, so that yo=7y,0p [1(e), §11].

Lemma 1. Define w;=7{ '(u)e3,. Then

1) p(z;(Cv):A+(~1)"2v)=0,

2) I =y lisiA)m)= Y pu(zy(C)w;

1524

f‘OV C€319 VE%C and 1§131§q

This follows from 1) and 2) of Lemma 2.1.
Put d(m)=dp(m) [1(e), §21] for me M, =MA and define v'=d "' vod (veI,)
as usual [1(d), § 45]. Let

gllv)=— ) {z;(lty)—py(C:)}w,  (1=i<q)

15j2q
for (€3, and ve§,.
Corollary. g;,({:v)ef(n)®n and
Omi(v) =y, (C:SiAv)ni(v)/:Z zi(Cvwitg(lv)  (1=i9q)

for {e 3, and ve§.. Moreover for i and { fixed, vi— g;({:v) is a polynomial mapping
of &, into 6(n)G n.
This is obvious from the above lemma if we recall [1(d), p. 110] that

z—u@)edM®n  (zel3).
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§ 5. The Basic Differential Equations

Let V be a complete, locally convex, Hausdorff space and 7 a differentiable double
representation of K on V [1(e), § 19]. Fix ve §, and let ¢ be an element in C* (G, 1)
[1(e), § 197 such that

z¢p=y(z:A+(=1)"2v)¢ (zeJ).

Put
¢i(m)=dp(m)$p(m; n,(v))  (meM,).
Lemma 1. Let me M, . Then
wo(A)dp(m)p(m)=}, e(s)my (s;4,)P:(m)

15isq

and
@i(m; O=7({:5:4,) pi(m)+dp(m)Pp (m; g:((:v))  (1=5i=q)
for (€3, .

This follows from the corollary of Lemma 4.1.
Let o be a root of (B, Ay). Fix X en, such that [H, X]=a(H)X for all Hea,.

Lemma 2. Let g,,2,6® and he Ay. Then
P(gyih; 0(X)g,)=e %M (g, 0(X);h; g,)

and
(2 Xih; g))=e "M (g,:h; X gy).

This is obvious.
Define

‘//i,g(m)=dp(m)¢(m§ g(l:v) (=iLq, meM,)

for (e 3,. It is clear that y; , depends linearly on {. Since ac 3,, the following
result is an immediate consequence of Lemma 1.

Lemma 3. r
¢i(mexp THye ™ =g (m)+ [, y(mexpt Hye ™ Pdt  (1=5i<q)
0
for meM,, Hea and TeR.

§ 6. Asymptotic Behavior of Eigenfunctions

For ve{, let o/(G,1, 4, v)=24/(, v)=.o7(v) denote the space of all ¢pe./(G,1)
[1{(e), § 21] such that

z¢=y(z:A+(-1)"?v)d (zeJ).

Fixve &, pc.of (v) and let us use the notation of § 5. Our object is to study the asymp-
totic behavior of ¢;. Put M;" =K, - Cl{A{)- K, as in [1(e), §22] where K, =
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Ky =K n M. The following lemma is proved in the same way as [1(¢), Lemma
22.1].

Lemma 1. Fix {€3,, v, v,€M, and se F(V). Then we can choose numbers
¢, r20 such that

W, (0, sm exp H; v,)l S cEpg(m) |(m, H)f e 2
for me M{ and He Cla™.

Here the notation is the same as in [1(e), Lemma 22.3].

Let 4; (ieQ) denote the restriction of 5;4” on a. We decompose @ into three
disjoint sets @+, Q° and Q™ as follows. An element ieQ lies in Q% if 4;,(H)>0
for some Hea™, ieQ°if 4,=0 and ieQ~ if 2,(H)<O0 for all Hea*. Define

¢ioo(m)=TETm¢i(m exp TH)e™ ™4 (me M)

for ieQ° and Hea™. One proves as in [1(e), § 22] that this limit exists and is inde-
pendent of the choice of H. Moreover ¢; e/ (M,, 1) Define ¢,,=0 for
ieQtuQ-.

Choose a number & (0<5<4) such that

A(H)< —6 Bp(H)

forallieQ~ and Hea™. We have seen in [1(e), § 22] that this is possible.

Lemma 2. Let icQ. Then ¢;,, =0 unless icQ°. Moreover ¢; €./ (M, 1) and
(diw=054)0i0,  ((€3).
Finally
i (v, mexp TH; v;) — ¢; o (v cmexp TH; v,
§e_T6ﬂP(H){|¢i(Ulim§ vy)ls + f Wi p(vymexp tH; v,); etﬂP(H)/z}
0
Jor vy, 0,eM,, meM,, Hea™, T=0 and sec #(V). (In case P=G, the right side

should be replaced by zero.)

This is proved in the same way as [1(e), Theorem 22.1].

Lemma 3. Fix i (1£i£q) and suppose ve & (1). Then ¢; ,, =0 unless sy L ac .

Suppose ¢; , +0. Clearly b, is a f-stable Cartan subalgebra of ,. Hence
by [1(e), Lemma 29.3] we can choose se W(m, /b,) such that

si(A—(=D2yP=50s,(A+(~ 12 vy,
Choose xe G, such that xy~!=s; on bh,. Then

(A= (=12 W =s0(A+(= D)2 y)*
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and x-b,=b,, since y-h.=h,, (see §3). Fix Hyea*. Then we conclude from
[1(e), Lemma 33.1] that

acXx- szsibfz'—‘SiblI‘eO-

This proves the lemma.

§ 7. The Functions ¢,

Let P=MAN be a psgp of G. Given keK, let s denote the restriction of Ad(k)
on a. Then s determines the coset k K,, completely. Hence if H is any subgroup of
G which is normalized by K,,, we can define H°=H*=kHk~'. In particular
Ps=M®4° N*. For any ¢e.o/(MA, 1), we define ¢*= e o (MAY, Tr:) by

P*m)y=t(k)p(m)tk™") (meMA).
It is easy to see that ¢* depends only on s. Similarly we define
F={=Adk){ (e3uW, a=d"(acd).

If h is a Cartan subalgebra on g, sometimes it will be convenient to write yg,
instead of y,.

Let P’=M’ A’ N’ be another psgp of G. Then we have [1(e), § 5] the finite set
w(a’|a) of linear injections of a into a’. For every sew(a’|a) we can choose ke K
such that Ad(k)=s on a [1(e), § 5]. Put w(a)=w(ala). Then w(a) is a group of
linear transformations in a.

Fix Aasin §6.

Theorem 1. Suppose veF (1) and ¢peA(G,1,4,v) in the notation of §6. Put
w=mw(bhgla). Then there exist unique functions ¢p € (M;,Ty) (s€ew) with the
following two properties.

1) ¢pm)= Y ép ,(m)  (meM),

SEW

2) ‘:¢P,s='YMsl/l,(Cs3'1+(* D'2v)¢p,  ((€3y, sew).
Here ¢p is the constant term of ¢ along P [1(e), § 21].
Corollary. ¢, (ma)=dp (m)e™ V"> 18 (meM,, ac A, sew).

Since a < J3,, the corollary is obvious from the second statement of the theorem.
First we prove the following lemma.

Lemma 1. Given sew(bg|a), there exists a unique index i (1Si<q) such that
sH=Ad(kg')s7*H for all Hea.

Choose a representative ke K for s. (This means that Ad(k)=s on a.) Then
(af*chipca,.

Hence we can choose te W, = W(qg/b,) such that Ad{kok)=t"! on a. Clearly the
coset Wt is uniquely determined by this condition. Hence there exists a unique i
such that W, t=W, s,. This s, satisfies our condition.
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Lemma 2. Let s and i be related as in Lemma 1. Then

s A)=yuip(C A+ (=12 (Ledy).

Choose y;€G, such that y;=s; on b, and define k as in the proof of Lemma 1.
Then it is clear that

my =y; Ad(kyk)e M,
where M, is the centralizer of a in G,. Now 5; A4, =(4+(—1)2vy"> and
yiy=m; Ad(kok)~'y.
Moreover Ad(kg ')y centralizes by (see § 3) and hr >sa=a*. Hence
my=Ad(kok)~' y Ad(k)e M.
Put
m=m, m,=y;y Ad(k)e M,,
so that y, y=m Ad(k~'). Since (§ 3)
i ¥ boc=y"" hoc=h.
it follows that m~'h,.=h*"". Therefore
1150 A) = Va0 (L3 (A4 (= 1) 2 v)P)
=Payp (A (= D20 ) =90 A+ (= 1V2).

We now come to the proof of Theorem 1. Since @y(A,)=+0, it is clear that
sA,#tA, for s+t in W,. Hence s; A, and s; 4, cannot be conjugate under W,
unless i=j. Put

1O=zp @ A+H(=D2y)  (sew,(e3)).

Then it follows from Lemma 2 that y %y, if s+t in w. The uniqueness of ¢ , is
now obvious. On the other hand if s and i are related by Lemma 1 and we set

Pp.s=Wo,(5:4.)7" Py,

it follows from Lemmas 5.1 and 6.2 that all the conditions of Theorem 1 are ful-
filled and this completes the proof.
We state the above result as a lemma for later reference.

Lemma 3. Suppose s and i are related as in Lemma 1. Then
¢P,s=1p01(si/1v)~1 ¢ioo .

Let (P, AY<(P, A) be another p-pair in G and put *P =P’ (M A). Then (*P, A")
is a p-pair in M, . For any sew(bg|a), let w,(hz|a’) be the set of all tew(hg|a’) such
that t=s5 on a. (We note that aca’))

Fix sew(bhg|a) and choose a representative ke K for s. Put

Y=(¢p S e (MAY, Tp).
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Then

Y =rmnC: A+ (=D'20)Y  ((e3).
and *P*=(*P)* is a psgp of M} with split component (4').

Lemma 4. For any tew,(hg|a’),

(¢P', t)t = (‘//*Pk, tok = l)tok o

Here to k~! denotes the mapping H+ t(Ad(k~) H) (H e(a)) of a’* into by.
We know [1(e), Lemma 21.1] that

(Pp.hp= (‘//*Pk)k e

Let wy(hg|a’®) denote the set of all ' ew(hgla’®) such that t'=Ad(m*) on a’* for
some me M,. Then it is easy to verify that r—z0k~! is a bijection of wy(hgla’) on
wo(hgla’®). Therefore by applying Theorem 1 to (M, ) in place of (G, ¢), we
conclude that

l//#Pk= Z lpnpk,tok~l.

tews(hrla’)
Now put Mi=M'A4’, 31 =3 W,
XM =Yorpep': A+(=1'2v)  (edy)
and
P (t)=Yupe o)
for tew,(hg|a’). Then
n¥@)=xm¥e) #e3p.
On the other hand ¢p =(¢php [1(e), Lemma 21.1]. Hence

¢P’ = Z (¢P, p-

sew(hr|a)

For every sew(hg|a), choose a representative k, in K and define

P, )=apeor-1)* " (temy(bgla)),
with Y =(¢p )’ and k=k,. Then, by the above result,
(¢P, s)’P = z 'P(Sa t)

tews(brla’)

and
NP )=xn ¥ ey

for sew(hrla) and tew,(hgla’). Hence

¢P’ = Z (¢P,s)*1’

sew(br|a)

= 3 Y P(s,0).

sew(hr|a) tews(brla’)
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It is now obvious from Theorem 1 that
¢P’,t: 'II(S’ t)

for tew (hg|a’) and the statement of the lemma follows immediately.
We define the space °¢(M, 1,,) as in [1(e), §19].

Lemma 5. Fix sew(Yg|a) and let f denote the restriction of ¢p, on M. Then if
prk P=dim bz, f€°C(M, 1))

Let*P=*M *A *N be a psgp of M with prk *P = 1. Then by [1(e), Lemma 25.1],
it is enough to verify that fip=0. Let P'=M’' A’ N’ be the psgp of G corresponding
to *P [1(e), Lemma 6.1] so that (P’, A)<(P, 4). Then

prk P'=prk *P+prk P>dim b,

and therefore w(bg|a’) is empty. Fix a representative ke K for s and put y =(¢p ),
Q=(P'nM,)*. Then Q is a psgp of M;=MA and it follows from the proof of
Lemma 4 that ,=0. Since [1(¢), Lemma 21.1]

Jop= (‘//Q)k B

on *M *A, we conclude that f.,=0.

§ 8. Functions of Type II(4)

Now, instead of keeping v fixed, we shall allow it to vary in §. Note that by, being

a subspace of g, has a Euclidean norm. Hence, by duality, the same holds for . Put
(v, x)[ =1 +]vI|(l +0a(x))

for (v, x)eFxG. Let D=D(§F,) denote the algebra of polynomial differential
operators on & (or &) [1(c), §3]. Put 6= G [1(e), §15]. Let ¢ be a C*
function from § x G to V. For De®,se & (V) and r =0, put

sp.($)=sup | Do, E~1 (v, x)| "
FxG
in the notation of [1(e), §15]. If F is a finite subset of ®, we set

sp, (@)= Z Sp,(@)-

DeF

A function ¢: F x G— V will be said to be of type I1(4) if the following con-
ditions hold.

1) ¢ is of class C™.
2) For any ve, the function ¢,=¢(v) is a t-spherical function on G and

2, =Vgp(z: A+(—=1)2V) ¢,  (z€3).

3) For any De® and se#(V), we can choose a number »=0 such that
SD,r(¢)<OO'
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Fix a function ¢ of type II(1) and let us use the notation of § 5. Then ¢; and
v, . ((€3,) are now functions on & x M, . Put

(v, x, X)|=(1+|v))(1 +a(x))(1 + | X])
for (v, x, X)eFx G xg.

Lemma 1. Fix {e3,, v,, v,€M,, peS(F,) and se F (V). Then we can choose c,
r=0 such that

Wi (v; 0(p): vyimexp H; vy)l S ¢ Epg(m) |(v, m, H) e~ Pe®
formeM}, HeClat,veFand 15iZq.

The proof is the same as for Lemma 6.1.

It follows without difficulty from the above estimates that ¢, ., regarded as
functions on § x M, are of class C®. In fact we have the following analogue of
Lemma 6.2.

Lemma 2. 1) ¢;,(v:m; ) =7({: 5, 4,) §;,(v: m) ({€ 3y)-
Givenv,, v,€M,, peS(§ ) and se F(V), we can choose c,r 20 such that

2) 19in(v; 0(p): vy im; vy)|s S Epg(m) (v, )",
Finally
3) lpi(vivyimexpTH; vy) — @i (v: vy imexp TH; v,)ls

R
ge—ff%‘”’{wi(v: 0y vyl [ s (v v m exptH v,)], P2 dt}
0

for Hea*, TZ0.

Here icQ, ve §, me M, and the right side in 3) is to be replaced by zero in case
P=G.
We have only to comment on the proof of 2). Put

(vim:H)=,(v:mexp H) e 54
‘i’,g(":m:H):lﬁi,g(V:mCXPH)e_S‘AV(H) ey,
for ve &, me M, and Hea. Then
T
$?(v:m:TH)=d(v:m)+ [ i y(vim:tH)dt (TeR)
4]
from Lemma 5.3. Now if ie Q°, it follows from Lemma 1 that
Bio(v;0(p): vy im; 02)=Pi(v; (p): vy im; v,)
+ (Y2 u(v; 0(p): vy em; vy tH) dt
0
for v;, v,€IMM, and peS(F,). Now fix p. Then it is obvious that
B(p)o e~ M =g~ MM d(py)  (Hea)
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where Hr— py isa polynomial mapping of a in S(&,). Hence 2) is an easy consequence
of Lemma 1 and standard arguments [1(d), p. 69]. (We recall that by Lemma 6.2
;=0 unless ieQ°.)

Put ¢p(v)=(¢,)p (v€F) and ¢ (v)=(,)p ; for ve &F'(4) and sew(bg|a).

Lemma 3. Suppose ve §'(1). Then
op()= ) Toi(5:4,) 7 hi(M)= Y bp(0).

ieQ° sew(brla)

This is obvious from the results of § 7.

§ 9. Functions of Type II' (1)

Let 2 be the set of all psgps of G. We keep to the notation of § 8.

Let ¢ be a function from § x G to V. We say that ¢ is of type II'(), if it is of
type 11(4) and the following additional condition holds. Given P=MAN in 2
and sew(bhgla), the function (¢p ) on F (1) x(MA) extends (uniquely) to a
function of type I1(1) on & x (M A)".

Lemma 1. Suppose ¢ is of type II'(1) on § x G. Then for any P=MAN in P and
sew(bgla), (¢p o) is of type II'(A) on § x (M AY'.

This is an immediate consequence of Lemma 7.4.
Theorem 1. Suppose ¢ is a function of type 11(2) on § x G. Define
Yv:x)=w(A+(— 1)) d(vix) (veF, xeG).

Then s is of type II'(4).

This is an immediate consequence of Lemmas 7.3 and 8.2.

§ 10. Continuity of ¢,

Fix a function ¢ of type II(1) on § x G and a psgp P=MAN of G. We intend to
show that ¢, is a continuous function on § x M 4. So we may assume that P+ G.

We use the notation of § 3. Let U* be the space dual to U and (uf, ..., u}) the
base for U* dual to (u, ..., u,). For any ve §, we have defined in § 3 a representation
I, of J, on U. The corresponding (right-)representation I'* on U* is given by

u* LX) wp=<u* Lp)uy  (peJy,uelU,u*eUY).

Define y, as in §4 and put n;=y; *(u)e 3, (1Li<q).

We regard U* as a Hilbert space with (uf, ..., u}) as an orthonormal base.
Put V=V ® U*. Then by letting K act trivially on U*, we get a double represen-
tation 7 of K on V. Put

LO=1@* (@) (e

Then I is a right-representation of 3; on V which commutes with z.
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We now proceed in the same way as in [1(e), § 22]. If se (V) and
V= Z v®u¥  (veV),

15isq

we put

S(V)=IVIS=(; |vil2)! 2.
Let | T} denote the Hilbert-Schmidt norm of a linear transformation T on U*.
(We write T on the right.) Then it is easy to verify that

s(v-(ARTH=sM [T (seFL(V),veV).

Now define a C* function & from § x M, to V by

P(vimy=d(m) > Sd(v:m;n)@ur (veF meM,).

15izg
Here M, =MA, d(m)=dp(m)(meM,) and v'=d 'vod for veIR, as in §4. Fix
{e 3, and consider ¢(v:m;{). Put p=7y,())eJ;. Then

pu;=I(p) u;+ Z vy (12i29q)
where s
vi(pv) =ty (W (pu— TP u)} €J,,
from the definition of I(p). Define y, and g as in §4 and put
z(:v)=75 1 (v(p:v)e 3.
Then it is clear that
Pz () A+ (=1)V2v)=0
and [1(d), p. 110]
g {1V =2if L)~ p(zy (L) €0 G .
Put
g(liv)=~ 3 gl

15js¢g

Then g{({:v) is linear in { and for fixed i and {, vi—g;({:v) is a polynomial mapping
of & into A(n) ® n by Corollary 3 of Lemma 3.5.

Lemma 1. Fix {e 3, and put

Yvim=dm) ¥ p:img()@uf  (veF meM,).
Then rEts

P(v:m; )= P(v:m) L)+ ¥ (v:m)
forve® and me M, .
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Let p=7,({). Then
Z u; @ uf R*(p)=ZFv(p) “i@’l?‘r‘ZP“i@“?= “_Z vy(P:v) u; @uf
i i i LJ

in J; ® U*. Therefore since p,(u(z;;({:v))=v;(p:v) and z;({:v) p(v)=0, we con-
clude that

P(v:m) L) =d(m) Y p(v:m; ' n) @uf —d(m) . p(v:m; g L)@ uf

and this implies our assertion.
Lemma 2. Let Hea. Then
T
d(vimexpTH) e T =d(vim)+ [ Wy(v:mexptH)e "™ dy
Jorve§, meM, and TeR. °

Since ac 3, this is an immediate consequence of Lemma 1.
Put

E()=I*@e(v) (v€d.icQ)

in the notation of Lemma 3.4. Then it is clear that E; is a C* function from &
to End U* and

Y Efv=1.

ie°Q
Moreover it is easy to verify from Corollary 2 of Lemma 3.5 that
E() Ej(v)=0,E;(v) (i,je’Q).

Put E;(v)=1® E,(v). Since J; is an abelian algebra, it is obvious that E,(v) commutes
with I({) ({ € 3,) and the operations of K on V. Put

O,(V)=P(ME(v) (ved).
Then the following result is immediate.
Lemma 3. Let Hea. Then
&,(v:mexpTH) e  TI"D =@ (vim)+ gT‘I’H(v: mexptH)E,(v)e "I gy

Jorve§, meM,, TeR and ieQ.
Let A;(ie Q) denote the restriction of 5; A¥ on a as in § 6.

Lemma 4. Put
[(v: H)=E,(v) " @ - %D

for ieQ,ve§, Hea. Then we can choose ¢y, 1,20 such that
I1:(v: Dl sco(L+[HIY(L+ vy (ieQ, Hea, ve).
Put
E(v: H)=E,(n)(I;*(H)— A,(H))
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and fix Hea. We claim that all eigenvalues of F,(v: H) are purely imaginary. Since
F{(v:H) is a continuous function of ve, it would be enough to verify this for
ve & (4). But this follows from Corollary 1 of Lemma 3.5 since

L(H)ej(v)=s;A,(H)e,(v) (1=j=q).
Now
L(v:H)y=E(v) 8,
Since
v @, (s 4,) Ef(v)
is a polynomial mapping (Lemma 3.4) and
|, a(s; A1 Zw(D)] >0
(Lemma 3.3), the required result follows from [1(a), Lemma 60].

Lemma 5. Fix {e3,, v,, v,eM, and s F (V). Then we can choose ¢, r=0
such that

| (v: v ;mexp H; 0y)l S ¢ Epy(m) |(v, m, H)I" e~ /2®

JormeM, HeCla* and ve §.

We recall that vi—g((:v) (1=j<g) are polynomial mappings of § into
A(n) ® n. Therefore our assertion follows without difficulty from Lemma 5.2.

Define 0*, Q° and Q~ as in §6. Then (see §6) we can choose § (0<6=<1)
such that

A(H) = -0 Bp(H)

forallieQ~ and Hea™.

Fix ieQ® vy, v,eM,, seF (V) and Hea™. Then it follows from Lemmas4
and 5 that the integral

[ [ ¥a(v: v imexpt H; vy)|, IG(v: —t H)| dt

0
converges uniformly as v and m vary within compact subsets of § and M, respec-
tively. Put

@iw(v:m)=t_lj{rnwcbi(v:m exptH)e '™ (yeF meM,).

Then, from Lemma 3, this limit exists and we prove as in [1(e), §22] that it is
independent of Hea™. Moreover &, is a continuous function from § x M; to V
which is differentiable in me M, . In fact

D, (v:v,im;v,)= lim &,(v: v, imexptH;v,) e~ TvH)
t— 4+
for v;, v,eM, and Hea™.
Define ¢, =0 forieQt*u Q™.
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Lemma 6. Fix ie Q. Then
Do (vim; )=, (v:m L) ((e€3y)
and

|@:(v:v,imexpTH; v,)—; (v: v, ;mexp TH; v,)|
e ?The {I‘P(VI vyim; vo)l [L(v: TH)|
+ [ 1¥(v: vy imexptH; v,)l, I(v: (T—t) H|| €'Pr /2 dt}
0

Jor vy, v,eM, , meM,, Hea*,ve§,se S (V)and T=0.

This is proved in the same way as [1(e), Theorem 22.1].
Put °Q°=°Q n Q°. Since

Z Ei(v)zla

iecQ
we get the following corollary.

Corollary.

|@(v:vimexpTH; v))— Y. @, (vivyimexp TH; v,)lg
ieoQo

D) {|‘1’(V2 vy em; 0}l 11 (v: TH)||
ie°Q
+ [ (v v imexptH; vy)lg I(v: (T—t) H|| #7012 dt}.
0

Define functions y; (ie Q) from § x M, to V by the formula
Z ¢iw: erbl@u:k

ieoQe ie@
Since u, =1, it is clear from the above results and the definition of ¢, [1(e), Theo-
rem 21.1] that ¢y, =¢p. The following result is now obvious from Lemma 6.

Lemma 7. Fix v,,v,eM,. Then the function (v, m)— ¢ p(v: v, :m; v,) is continuous
on & x M,. Moreover for eachse ¥ (V), we can choose c, r =0 such that

[p(v:ivyim; )l S c Ep(m) |(v, m)l"
Jorve& and me M, .
Corollary. Suppose ¢ is of type 1I'(A). Then

¢P= Z d)P,s

sew(bhrla)

on & x M,.

By Lemma 8.3 the equality holds on &'(4) x M,. But since both sides are
continuous, it must hold on & x M, .
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We recall that P3G. Fix a compact subset Q of a™ and choose ¢, >0 such
that f.(H)=2¢, for all HeQ. Put e=d¢,. Then the following result is an easy
consequence of the corollary of Lemma 6.

Lemma 8. Given v,, v, and se ¥ (V), we can choose c, r =0 such that
|dp(mexp TH) ¢(v:vyimexp TH; vy)—dp(v: v, imexp TH; v,)|,
Sce T Ey(m) (v, m)I"

forveE meM, HeQ and T=0.

§ 11. A Criterion for a Function to be of Type II' (1)

We assume in this section that 7 is a unitary [1(e), § 20]. Let 2(hg) denote the set of
all psgps P=MAN of G such that a=hg. Clearly M is independent of Pe 2(h).

Let ¢ be a function on & x G of type 1I(A). Put a=bg and fix Pe#(qa), sew(a)
and ve ' (A) (P=MAN). Then the function m— ¢p [(v:m)(me M) lies in *G(M, 7y,)
(Lemma 7.5). We observe that °¢(M, t,,), being a closed subspace of €(M, 1)
[1(e), §18], is a locally convex space.

Lemma 1. Let ¢ be a function on §x G of type 11(A) and P'=M' A’ N’ a psgp
of G. Then ¢ p(v) ~0 (ve §) unless o' is a conjugate to a under K.

Fix ded’, fe* (M, 1)) and assume that a’ is not conjugate to under K.
Then it follows from [1(e), Theorem 29.1] that

[ (fm), ¢p(vim' a))dm =0
M

for ve &' (). On the other hand, it is obvious from Lemma 10.7 that the left side is a
continuous function of ve §. Hence ¢p.(v)~0 for all ve §.

Corollary. Fix ve § and suppose ¢p(v}=0 for all Pe #{a). Then ¢(v)=0.

This is an immediate consequence of [1(e), Lemma 25.2] and the above
result.

Theorem 1. Let ¢ be as above and S a collection of continuous seminorms on
°G(M, ty). We assume that f€°€ (M, 1y) and s{(f)=0 for all s€ S, implies that {=0.
Then, in order that ¢ be of type 1I'(A), it is necessary and sufficient that the following
condition holds. For Pe?(a) and sew(a), let fp (V) denote the restriction of ¢p (v)
on M (ve §'(A)). Then s(fp ;(v)) should remain locally bounded on & for every Pe%(a),
sew(a) and seS.

For example we can take S to consist of the single element s given by

s(=1fln (e €M, y),

where

LA IRe= [ 1f (m)[* dm.
M

We first need a simple result.
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Lemma 2. Let Hy=%0 be a point in a and ¢ a function of type I1I(2) on Fx G
such that ¢(v)=0 whenever v(Hy)=0 (ve ). Then the function

Y(v:x)=v(Hy) 1 p(v:x) (ve,xeG)
is also of type I1(4).

This follows from Lemma 22.1.

Now we come to the proof of Theorem 1. If ¢ is of type II'(1), then for fixed
PeZ(a)and sew(n), f, ;defines a C* mapping from § to “6(M, 1,,) (see Lemma 12.1
below). Hence our condition is certainly necessary. So it remains to verify that it is
sufficient.

Put
Y x)=o(A+(— D)2 d(vix) (ved, xeG).

Then by Theorem 9.1, ¥ is of type II'(A). Let p be the set of all positive roots of
(g, b), p(4) the subset of those aep for which A(H,)+0 and p'(1) the complement
of p(4) in p. Put

w,= [| H, o= [] H,.

aep(d) aep’(4)
Then w=w, - w) and
@A+ (=120 2[w,(D)]>0  (ve).
Hence it follows without difficulty that
V(v:x)=m,(A+(—1D)V2v) Ly (v: x)
=w,(A+(—1)"?v) p(v: x)

is a function of type II'(4). Since 4 is a regular element in (—1)/2b¥ (see § 3), it
is clear that we can choose elements H;+0 (1<i=<r) in a and a complex number
¢=0 such that

@y (A+(=1)'"Pv)=c [] v(H) (ved).

15isr
Hence it is enough to prove the following result.

Lemma 3. Put

o= [] vH) (ve®)

15isr
where H; %0 are elements in a. Suppose ¢ satisfies the condition of Theorem 1 and
Y(v:x)=0( ¢(v:x) (ved, xeG)
is a function of type 1I' (). Then ¢ is also of type IT' (A).

By induction we are reduced to the case r=1. Fix a psgp P'=M'A'N" and
tew(a|a’). Then

Ve, ) =v(H) dp (V)  (veF (A).
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We have to verify that (¢, Y is of type II(A). Since y is of type II' (1), we know from
Lemma 9.1 that (. ) is also of type II'(4). Hence in view of Lemma 2, it would
be enough to verify that ¥, ,(v)=0 whenever v(H,)=0.

Now fix Pe#(a) and sew(a). Then

Up,s()=v(H)¢p,(v) (veF (1)

Let g(v) denote the restriction of Y5 ((v) on M. Then we conclude from Lemma 12.1
below that vi— g(v) is a continuous mapping from § into “€(M, 1,,).

Fix a point v, § such that vy(H,)=0. Let v be a variable point in & (1) which
tends to vy. Then if seS,

s(g(vo))=lims(g(v)=lm [v(H,)I s(fp,,(v)) =0

by our assumption on ¢. Hence g(v,)=0 and this implies (Corollary of Theorem
7.1) that yrp (vo)=0. But then we conclude from Lemma 7.4 and the corollary
of Lemma 1 that ¥/, (v,)=0.

This proves Lemma 3 and therefore also Theorem 1.

§ 12. An Auxiliary Result

Let G=MA be the Langlands decomposition of G and assume a=0z. Let ¢ be a
function of type 1I(2) on § x G and ¥ its restriction on & x M. Then we know from
Lemma 7.5 that ¥ (v)e*@(M, 1, for ve &. (We note that & (1)=F and w(a)={1}
in this case.)

Lemma 1. v—y(v) isa C* mapping of § into °€ (M, 1,y).
This is an immediate consequence of the following lemma.

Lemma 2. Suppose hr={0}. Fix g,,g,€® and r,=0. Then we can choose a
finite subset F of ®'® with the following property. Given r=0 and se #(V), we
can choose a number ¢ >0 such that

(81 :x: g2)b E(X) T (1 +o(x)f° Scsp (¢)  (xeG)

Jor all functions ¢ on G of type 11(A).
Let P=MAN be a psgp of G (P G). Since hg={0}, w(hgla)=0 and F(1)=
& ={0}. Therefore ¢, =0 by Lemma 8.3. Moreover

2¢p=y(z: )¢ (zeJ).

Therefore Lemma 23.4 of [1(e)] is applicable. Fix a minimal p-pair (B, 4,) in G.
Then G=K - ClA§ - K and there are only a finite number of p-pairs (P, A)>(P,, A,).
Our assertion is an easy consequence of these facts.
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§ 13. Statement of the Two Main Theorems

We keep to the notation of § 8. For De®, se #(V) and r =0, define
OSD,r(.f):;u% IDfLE~'(1+06)™"  (feC*(FxG,V)).

Similarly if F is any finite subset of &, we write

OSF,r(.f): Z DSD,P(.f)'

DeF

A function ¢: § x G— V will be said to be of type I(4) if:
1) ¢ is of type II(A).
2) Forany De® and se#(V), we can choose r =0 such that %Sp. () < 0.

Moreover we say that ¢ is of type I'(4) if it is both of type I(1) and type II'(A).
Let &£(I'(4)) denote the space of all functions of type I'(/) and dv the Euclidean
measure on .

Theorem 1. For ¢p&(I' (1)), define
Js@=[d(v:x)dv  (xeG).
§

Then j,€¥%(G,1). Fix g,,2,€® and r,20. Then we can choose a finite subset F
of ® with the following property. Given rz0 and seSF(V), there exists a number
¢>0 such that

Ug(@1ex; g2l =g (P)E(N(1+0(x))" ™ (xeG)
Jor all ge&(I'(A).
Define the Schwartz space (&) as usual.
Corollary. Fix a function ¢ on § x G of type I1I'(A) and define
$o(x)= [a(v)p(v:x)dv  (x€G)

&
Jor aeG(F). Then ar— ¢, is a continuous mapping of € (&) into € (G, 1) and

ba(g1:%; gz)=§a(V)¢(v:g1:x; g)dv  (xeG)

for g,,2,€® and aeB(F).

This is an immediate consequence of Theorem 1.
Fix ¢ as in the above corollary. Then if P=MAN is a psgp of G and «e%(§),
it follows from Lemma 9.1 and the corollary of Lemma 10.7 that the function

d)P.a(m):g a()@p(v:mdv  (meMA)

lies in ¥(M 4, t,). Extend it to a function on G by setting
Op kmny=t(k)pp ,(m) (keK, meMA, neN).
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Put P=0(P), N=6(N), p=pp, H(x)=Hp(x) (xeG) and define ¢ as in [1(e),
Lemma 16.1].

Theorem 2. Let dfi denote the Haar measure on N. Then

¢P (m)=dp(m) | ¢, (Aim)dn= [ e ?HD ¢, (Am)d7
N N

for me M A and 0 e €(F).

This is a generalization of [1(b), Theorem 4, p. 610]. (It is part of the assertion
of the theorem that the above integrals are well defined.)
In view of the corollary of Lemma 10.7, the following result is obvious.

Corollary. ¢’ =0 unless o* <y for some keK.

The above two theorems contain the main results of this paper. The significance
of Theorem 2 may be explained as follows. Extend dp and ¢p(v) to functions on G
asin [1(e), § 24]. Then Theorem 2 asserts that

fdp(@) 1 da [ a(v)dp(mm)p(v:im)dv
N &
= {dp(A)~1dn [ a(W) pp(v:im)dv  (meMA)
N &

for ae € (F). This shows that the integral on the left remains unchanged when we
replace dp@(v) by its asymptotic value ¢p(v) [1(e), Lemma 24.1].

§ 14. Some Preparation

Put D=D(F.), & =&(I'(1) and let £ =& (I(4)) denote the space of all functions
on § x G of type I(4). It is obviously enough to prove the statement of Theorem 13.1
for se (V) [1(e), § 22].

Let R, denote the set of all real numbers r = 0. In order to avoid tedious repeti-
tions, we agree to the following conventions. The variables r, s and v shall range
freely over R, &°(V) and § respectively unless explicitly mentioned otherwise.
Let Y be any set and f; g two functions from R, x #°(V)x FxY to R, u{oo}.
Then we write

fr,5,v,0)<g(rs,v,y)  (ve)),
if for any given r and s we can choose a real number c(r, s) >0 such that
f(r? s7 v’ y)éc(r’ S)g(r’ S, v’ y)

for all ve® and yeY. Finally the letter F will always stand for a finite set. Thus
Fc Y means that F is a finite subset of Y.
We now use the notation of § 5 and fix numbers ¢,, dy, =0 such that

dp(m)E(mM) S coEp(m)(1+o(m)®  (meMf).
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Lemma 1. Fix (e3,, v,,v,eM, and DeD. Then we can choose F = ® such that
N/i,{(V; D:vgim; 0))l, £%p,, () Ep(m)|(m, H)|d°+re_ﬂp(m
Jor pe&, meM;", HeCla™ and 1LiLq.

Here y; . is the function defined in § 5 corresponding to ¢. This lemma is proved
in the same way as [1(e), Lemma 22.3].

Lemma 2. Given De® and v, ,v,eM,, we can choose F = ® such that
6o (v; D0y 5 02)l< 8 (@) Epg (M) (1 +a(m)*" (i€Q)
Jor me M, and ¢eé.
We use the notation of the proof of Lemma 8.2. Fix Hea*. Then
;o (v; Divim; v,y)
=¢;(v; D:vyim; vy)+ Fl//l-,,,"(v; D:v.:m; v, t Hydt
and our assertion follows with(())ut difficulty.

Now suppose ¢€&”. Then for any sew(bgla), ¢p ; extends to a C* function
on §xM,.

Lemma 3. Given De® and v, , v,€ M, , we can choose F = ® such that
|p,o(v; D1vyim; v,)l,<°Sp,,(§) Epg (M) (1 + 0 (m))*e*”
for meM,, ¢pe& and sew(hgla).

In view of Lemmas 3.3 and 7.3, this is an immediate consequence of L.emmas 2
and 22.2.

Corollary. If ¢peé&’, then for any sew(bgla), (pp ) is a function of type I'(4)
on §xM;.

This follows from Lemmas 3 and 9.1.
Now let us use the notation of Lemma 10.5.

Lemma 4. Fix (e 3,, v,,v,€M, and r, = 0. Then we can choose F = ® such that
| (viogim exp Hs 0)l(1+ V)" <y, (9)Zpg(m) m, H) o7 e
Jor meM;t, HeCla*, peé.

As before this follows from Lemma 5.2.
Now assume that P+ G. Fix a compact set Q in a™ and choose g, >0 such that
Be(H)=2¢, for all He Q. Select & (0<d<4)asin§ 10 and put e=de,.

Lemma 5. Given v,, v,€ I, and r, 20, we can choose F = ® such that
ldp(mexp TH)P(v:v):mexp TH; v5)— ¢p(viv imexp TH; v,)ii(1+ v
<°sp, (@) Epg(m)(1+ o (m)fotre*T
Jor me MY, HeQ, T20 and ¢€é.
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This is proved in the same way as Lemma 10.8.
Now fix r, 20 such that

f@a+p)ydv<oo.
i

If ped&’, we know (Corollary of Lemma 10.7) that
¢P = Z d)l’, 5"

sew(hrla)

Put j(¢: x)=j,(x) (xe G) and
j(¢p,sim)=ﬁf¢p,s(v:M)dV (meM,)

for sew(bhgla) and ped’.
Corollary.
|dp(mexp TH)j(¢:vyimexp TH; vy)— ) j(dp iopimexp TH; vy

sew (hr|e)

<%p, (P)Ep(m) (1 +o(m)erre=sT
Jor me My, HeQ, T20 and peé'.

This follows immediately from Lemma 5.

§ 15. Proof of Theorem 13.1

We now come to the proof of Theorem 13.1. It is clearly enough to prove the second
part of the theorem.

We proceed by induction on dim G. First assume that prk G>0and let G=MA4
be the Langlands decomposition of G. Then hy=mnbhg+a where the sum is
direct. Let &, and &, be the subspace consisting of all ve § which vanish identically
on mnbg and a respectively. Then §=§, + &, where the sum is direct. We note
that D,=D(F,; )= D=D(F.) [1(c), p. 540]. Let dv; denote the Euclidean measure
on §; so normalized that dv=dv,dv, (v=v, +v,, v,e§;, i=1,2). Since ac 3, it
follows from our assumptions that

Gy +vyima)=(v, + vy m)el~V108d (e M ge A)
for ¢ed”’ and v;e ;. Fix v, v, and ueN. Then
j¢(U1éma; U, u)=j d(vy + vy im; vy)u((— 1)1/2Vl)e(_l)l/zvl(loga)d‘ﬁ dv,.

(We regard u as a polynomial function on &, . in the right side.) Now fix r, =20. Then
we can choose peS(&, ) such that

(=D H)zZ(1+|H])° (Hea).
Also we can select a polynomial function p, on §, such that p, =1 on &, and

{prtdvy<oo.
&1
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Hence it is obvious that there exists an element D, € D, such that

qu(vl ima; v,u)(1+a(a)°< sup ! I Oy +vy; Dyivyim; vy) dvsy
viefh &2
for meM, aeA and ¢peé&’.
On the other hand dim M < dim G and so the induction hypothesis is applicable
to M. Let &) be the space of all functions y on &, x Mof type I'(4). Then we can
choose a finite subset F, of M =D, @M? such that

1{; Y(vyivim; ”2)dV2’s<osF2,,(‘/’)5(m)(1 +a(m))~"

formeM and yed)y,. -
We regard 9t as a subalgebra of & =D ® G*?. Let F denote the subset of ®
consisting of all elements of the form D, D, (D,eF,). Fix ¢€é’, v,e &, and put

Y(vym=¢(vy+vy; Diim)  (v,€8,, meM).
Then Yy e&’, and so we conclude from the above result that
ljp (v ima; v, w|s<°sg (P) E(m)(1+a(m) ™ (1+0(a) ™"

for me M, ae A and ¢pe&”’. This obviously implies Theorem 13.1 in this case.

So now suppose prk G=0. The case G =K being trivial, we may assume that
G is not compact. Fix a minimal p-pair (P,, 4,) in G and let S* be the set of all
HeClad with |H|| =1.Fix HyeS* and let F, be the set of all simple roots of (F,, A,)
which vanish at Hy. Put (P, A)=(F,, Ay)s,. Then Hyea™. Fix a compact neighbor-
hood Q, of Hy in §* such that

a(H)zoa(Ho)/2  (Hef)
for every root a of (P, Ay). Put e5=Bp(Hy)/4 and e=d¢, where 6 is defined as
in § 10. Since

exptH=m,exp(tH,/2) (HeQ,, t=0),

where m,=exp t(H—1H,)eClA c M}, we get the following result from the
corollary of Lemma 14.5.

Lemma 1. Given v, , v,€I,, we can choose F =® such that
ldp(exp tH)j($:viiexp tH; v)— 3. j(¢p sivyiexp tH; vy)
sew(hgla)

<DSF,r(¢)EM(eXp tH)(l-}—[)dO‘H‘e—at
for HGQO, t20and d)e(g”.

On the other hand since prk G=0 and H, =0, it is clear that dim M, <dim G.
Moreover for sew(bg|a) and ¢ped’, (¢p ) is a function of type I'(4) on F x M;
(Corollary of Lemma 14.3). Hence if we take into account Lemma 14.3 and apply
the induction hypothesis to M3, we get the following result immediately.
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Lemma 2. Fix v,,v,eM,; and ro,=0. Then we can choose F = ® such that
li(@p,s:01 em; 05)s<"sp ($)Ep(m)(1+0(m)) ="
Jor sew(bgla), me M, and peé".

Combining this with Lemma 1 and standard inequalities relating £ and =Z,,,
we get the following result.

Lemma 3. Given v, , v,9R, and ry =0, we can choose F = ® such that
[j(¢: vy iexp tH; 0,)ls<"Sr, () E(exp tH)(1 + 1)~
for HeQ,, t=0 and ¢peé’.
On the other hand the following result is an immediate consequence of

Lemma 5.2.

Lemma 4. Fix De®, g;e® (1=i<4) such that g, e®n and g, €0(n) &. Then
we can choose F = ® such that

Y |6(v; D:giiexptH; g, ) <8y () E(exp tH)(1+1) e 2!

i=1,3
Jor &, HeQ, and t 2 0.
Now fix a polynomial function p on § such that p=1 on & and

[p~tdv<oo.
&

Then taking D = p in the above lemma, we get the following corollary.

Corollary. Let g, (1 i <4) be as above. Then we can choose F =® such that

Z lj(¢:g;iexptH; gi+1)|s§osp,r(¢) E(exp tH)(1+1t) e~ 2wt

i=1,3
Jor pe&, HeQy and t 2 0.
Now fix g, g,€®. Since G=K - CIA{ - K, S is compact and
Jo(gr s kitak,; gz)="7(k1_l)jqb(g'1cl ca; g5 t(ky)
(ky, k€K, ac Ay, ¢ped’), in order to prove Theorem 13.1, it would be enough to

verify the following lemma.

Lemma 5. Fix g,, g,€® and HyeS*. Then we can choose a neighborhood Q,

of Hy in S* satisfying the following condition. Given ro, 20, there exists F = ® such
that

li(¢: byt exptH; o)l <sp, () Z(exp tH)(1 +1) 7™

for peé&’, HeQy and t 2 0.
Since

® = RIM, N =09 M, K|
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and t is differentiable, we may without loss of generality assume that g, eI, R
and g,e08()M,. Then we can choose v;eIM, (i=1, 2) such that

g, —0,e€bn, g,—v,e(n)G.

Our assertion now follows immediately from Lemma 3 and the corollary of
Lemma 4.

This completes the proof of Theorem 13.1.

§ 16. Proof of Theorem 13.2

We shall now begin preparation for the proof of Theorem 13.2. Fix a function ¢
on § x G of type 1I'(A). We use the notation of § 10 and assume, as we may, that
P+ G. We also agree to the convention that the variables v, i and m shall range
freely over &, N and M, respectively unless explicitly stated otherwise. Put

O(v:n:m)=dp(m) Y, P(v:am;n)@u}

15is5q

and consider the obvious pairing [1(e), §21] of V® U*, U into V given by

o@u*,uy={u*,upv  (veV,urteU* uel).
For any be 4 (¥, U)=%(F) ® U, define

@(b: 7i: m)= [ (P(v:fi: m),b(v)> dv
and put "

Fy(m)=F(b: m)= { ®(b: 7i: m) d.

b4

It follows from the corollary of Theorem 13.1 and [1(e), § 16] that this integral is
well defined and in fact we have the following result.

Lemma 1. b— F, is a continuous mapping of €(&, U) into €(M,, ty).
For (€3, define g,({: v) (1£i< g) as in § 10 and put
Fviiizmy=dp(m) ), &(v:am; gl )@ uf.

1<isq
Lemma 2. Let {€3;. Then
@(v: iz m; )=P(v: iz m) L)+ ¥ (v: n: m).

This is proved in the same way as Lemma 10.1.
Now put

¥(b:7i: m)= [ {(v: Az m), b(v)> dv
for (e 3, and be¥(§, U).
Lemma 3. Let (€3, and be€(§, U). Then
{¥(b:7i: m)dn=0.
boj
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We know (see §10) that vi—g,({: v) is a polynomial mapping of & into i ®.
Therefore (Corollary of Theorem 13.1) the above integral is defined and it would
be enough to verify the following result.

Lemma 4. Fix X eii, ge® and be€(F). Then
{da[bv)¢(v:iim; X g)dv=0.
8

Put
lp(x)=i£b(v) o(v:x;g)dv  (xeG).

Then Yy €%(G, V) (Corollary of Theorem 13.1). Let
f(x)={y@x)dn (xeG).
N

Then [1(e), §16] fe C*(G, V) and
f(x; X)y= {¥@x; X)dn.
N

Therefore since f(7 x)= f(x) and X™efi, we conclude that
Sm; X)= f(X" :m)=0.

This proves the lemma.

For any be¥(&, U) and {e3,, let I'({)b denote the function v— L(y, () b(v)
from & to U in the notation of § 10. It is clear from Corollary 3 of Lemma 3.5 that
for a fixed {, b—TI'({)b is a continuous endomorphism of ¥(F, U).

Lemma S. Let be¥(F, U) and [ € 3,. Then
F:m; )=F({()b: m).

This is an immediate consequence of Lemmas 2 and 3.
Define °Q and e (ie°Q) as in Lemma 3.4 and put
b)=Le(v)b(v)

for be € (&, U). Then it is clear from Lemmas 3.3, 3.4 and Corollary 3 of Lemma 3.5
that b+ b is a continuous endomorphism of (&, U) and

b= Z ibA
ie°Q
Put °Q°=°Q ~ Q° as in § 10 and define
eD(v)= Z ie(v)»
iecQe
b= Y b (bed(d, U)).
ieoQe
Lemma 6. Let be¥4(F, U) and ie°Q. Then F(b: m)=0 unless ie’Q°. Hence
F(b: m)=F(b°: m).
Put
F(b: m: g)=[F(b: mexp H) e~ ("' g
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for be%(§, U) and puea*. (Here dH denotes the Euclidean measure on a and a*
the dual of a.) It follows from Lemma 1 that for (m, u) fixed,

b— F(b: m: u)
is a continuous mapping of €(&, U) into V. Moreover we conclude from Lemma 5
that

F(FrH)b: m: py=(—1Y? w(H) F(b: m: p)
for Hea.

Now fix mye M,, pea*, ie’Q and put

T(b)=F(b:mo: )  (beb (S, U))

Since dim U < oo, T may be regarded as a tempered distribution on & with values
in V® U* (i.e. a continuous linear mapping of €(F) into V& U*).

Lemma 7. Fix Hea, be%(&, U) and put
b= [] {(=1)'"?uH)~ts A(H)} - b(v)
teWol(s;, A)
in the notation of § 3. Then T(b')=0.
It follows from what we have seen above that
T(r(H)b)=(=1)'? W(H)T(b) (Hea, be?(F, U)).
Hence our assertion is an immediate consequence of Corollary 5 of Lemma 3.5.
Now suppose T=0. Then if voeSupp T (v,e ), it follows from Lemma 7 that

[T (=D uH) =15, 4,,(H)} =0

teWo(si, A)

for all Hea. Since Rts; A, (H)=s; A’(H), this implies that ie’Q’. Therefore if
i¢°Q° we conclude that F(b: m: u)=0 for all meM, and pea*. The statement
of Lemma 6 now follows immediately by Fourier transform.

Now introduce the structure of a Hilbert space on U so that (u,, ..., u,) be-
comes an orthonormal base. Moreover for any Ee End U, let |E| denote the
Hilbert-Schmidt norm of E.

Lemma 8. Put
EH:v)=e"~®[(e°(v)) (Hea).

Then for a given De D(§,), we can choose ¢, r 20 such that
IEH:v; D) c(1+ v (1+ | HIY

for all Hea.
Set
p(V) = l_[ ws,-, ).(Si Av)
ieoQe

in the notation of §3. Then p is a polynomial function on § and by Lemma 3.3,
lp(W)| Z|@,(A)|*°>0
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where g, is the number of elements in °Q°. Put E°(v)=1I,(e’(v)). Then for a fixed
Hea, v~ (H) and v p(v) E°(v) are polynomial mappings of & into End U
(see §3). Moreover

E(H:v)="PE WM. Eo(y)

and all eigenvalues of I(H)E’(v) are pure imaginary (Corollaries 2 and 5 of
Lemma 3.5). Hence our assertion follows without difficulty from [1(a), Lemma 60].
Now fix Hyea, ac%(g, U) and for any teR, put

a,(v)=E(—tHgy: v)a(v).

Then it follows from Lemma 8 that t+—a, is a C* function from R to 4(§, U).
Lemma 9. Fix me M, and ypea*. Then
F(a:m: p)=F(a°: m: y)=e~1'"?%#H F(q m: y)

for teR.
Put

Th)=F(b:m:u) (beb(F, U)).
Then, as we have seen above, T is a continuous linear mapping of 4(&, U) into V/
and

T (H)b)=(—1)"?u(H) T() (Hea).

Now let

f@O=T@,) (teR)
It follows from the definition of a, that

dajdt= —T'(Hy)a,
and therefore

dfjdt=—(~1)""2 w(Ho)
This implies that

f()=e=-VEmEI (@),

which is equivalent to the required result, if we take Lemma 6 into account.
Now assume that Hyea™. Then it is clear from Lemma 2 that

dd(a,: ni: mexp tHy)/dt
=—@(I'(Hy)a,:fi:mexptHy)+P(a,:ii:mexptH,; Hy)
=¥y (a;:n:mexptH,) (teR)

Put ¥ =¥y, and for any be%4(&, U) and ae C*(N), define

O(b: a: 7iy: m)= | a(n) D(b: Ay 71z m) di,

N

Pb: oz Ag:m)= [ (i) Y(b: Fig n: m)dn
N

for 7i,e N. Then the following result is obvious.
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Lemma 10. dd(a;:o:n:m exptHy)/dt="Y(a,: a: fi: mexptHy) for aeC®(N)
and teR.

Let us now put

Gp(n: x)=gp(Ax) (x€G)

for be¥(§), and define
dyla: ig: X)= [a(R) Py(MoR: X)dAi (FpeN, xeG)
N

for ae C*(N). Then if X efi and ge®, it is clear that
Pp(nm; X g)=y(n; X™: m; g).

Since X™en, it follows that
oyl i m; X g)=— (X" a: iz m; g).

Put Bp(Hg)=2¢ so that ¢>0.

Lemma 11. Fix mye M;, xe C*(N), Xeii, ge®, se.#(V) and r,=0. Then we
can choose a continuous seminorm t on €(§) such that

| oz iz my: X )| S t(b) e (B, (AA,m,)dh,

for t =0 and be (). Here m,=myexptH,,
Z (x)=EX)(1+o(x))"™ (xeG)
and o =Supp o.
This follows from the corollary of Theorem 13.1 and the above remarks.
Corollary. We can choose ¢ =0 such that
|W(a: o i )l Sce dp(m) | 5, (g my) dii
Jor t=0. ©
This follows from the corollary of Theorem 13.1 and the above remarks.

Now fix ae C2(N). Then it follows from the above corollary and [1(e), §10]
that

{1¥(a,: a: 7i: mexp tHo)l, dt <o
0
forse (V). Put
P laz i m=P@’ a:fi: m)+ | W(a,: o A: mexp tH)dt.
0
Then it follows from Lemma 10 that

D (a:a:n: m)=tli£n @(a,: o i mexptHy).

Lemma 12. Fix ae C(N) such that | a(f)dfi=1. Then
N
Fa:m)= [ & (a:o: 7i: m) dA.
N
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It follows from [1(e), §10] and the corollary of Lemma 11 that
fdn {{¥(a,: a:fi: mexp tH)l, dt< oo
N O
for se # (V). Therefore we conclude from the corollary of Theorem 13.1 that

fi® (@ a: iz m), dii < oo.
¥

On the other hand it is clear from Lemma 3 that

f¥@;a:A:mexptH,)din=0.
N

Therefore by Fubini’s theorem we obtain
[P (a:o: A m)dii= | P(@’: a: 7i: m)di
N N
=F(@’: m)=F(a: m)

from Lemma 6.
Now put

D°(v: i m)=P(v: n: m) E°*(v),
Yo(v: iz m)=Y(v: Ai: m) E°*(v)
where E°*(v)=1® [*(e’(v)). Then
®(a,: iz m exp tHO)=£ {P(v: Ai: mexp tH,y),a,(v)) dv

= [(P°(v: iz mexp tHy) e T+Ho) a(y)> dv.
i

Lemma 13. Fix xeG, Xefi, ge® and se L (V). Then we can choose c, r=0
such that

d(v: xexptHy; X g)lySc(1+|v]y e 2% E(x exp tHy) (1 +1t)
Jor t =0.
This follows immediately from the fact that
P(v: x;; Xg)=d(v: Ad(x) X x,; 8)
where x,=x exptH,.
Corollary. Fix nieN, meM, and se F (V). Then we can choose ¢, r 20 such that
[Po(v:ii: mexp tHo) e "I HO| <ce (1 +|v|)
for t=0.

This is an immediate consequence of Lemmas 13 and 8.
On the other hand it follows from Lemma 2 that

@°(v: ii: mexp THy) e~ TTWHo)
T
=@°(v: iz m)+ [ Po(v: iz mexp tHo) e TvHo) gy,
0
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Moreover we conclude from the above corollary that

o0

§1¥°(v: 7 mexp tHp) e M Ho)| dt < o0
0

for se # (V). Therefore if we put

D, (v my=@°(v: i m)+ [ PO(v: 7iz mexp tHo) e~ H0 d,
it follows that ’

| @, (v: 7i: m)—@°(v: 7i: m exp THy) e THH|
< [|P(v: iz mexp tHo) e > HO| dt
T

for T=0 and se ¥ (V). Hence we get the following result from the corollary of
Lemma 13.

Lemma 14. Fix fieN, me M and put

& (v:n:m)= lim @°(v:ii: mexp tHy) e 'T+Ho),
®© t— + o p 0

Then for any se (V), we can choose ¢, r 20 such that

| @, (v: 7ie m)—P°(v: iz mexp THo) e~ T | <ce*T(1+|v]y
for T20.

Now define

D (a:ni:m)= lim P(a,: A: mexptH,).
=+

It is clear that this limit exists and in fact
@, (a:7i:m)= lim {<P°(v:n: mexptHy)e TH a(v)y dv

t—+0 §

= [ D(v: iz m),a(v)) dv.
i

On the other hand, let us put
D (vim)=D (v:1:m)
= lim ®(v: m exp tH,) E°*(v) e~ 'TvHo),

t—+ o0

Extend this to a function on § x G by setting
D (vikmn)=t(k) D (v:m) (keK, meM,, neN).
Lemma 15. §_(v: ii: m)=e PH® @_ (v: 7im).

It is obvious from Lemma 14 that for fixed 7 and m, &(v: Ai: m) is a continuous
function of v. Therefore, in view of its definition, the same holds for & (v: im).
Hence it would be enough to verify the above relation for ve & (4).

Fix ve®'(4) and let ¢}*(v) (1 £i<q) be the base of U* dual to ¢,(v) (1<iZq).
Then

Z u; @ uf =Z e, (V) ® ef (v).
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Hence
Yt @uf [H(e(v) e~ T M) = o= [(e0(3)) ,(1) @ e} (7)
= e e ()@er()
from Corollary 1 of Lemma 3.5. Hence
°(v: fi: m) e~ IvHO)

=dp(m,) 3, @oy(s; A,)7" e A EI By Timg; ,(v)) @ e (v),
ieQ°

where m,=mexptH, and ®,,, #;(v) have the same meaning as in §2 and §4

respectively.
Now fix ie Q°. Then (see §6)

Pico(v:m)= lim dp(m,) $(v: my; m;(v)) e~ 4 H

and
Pi(vimexp H)=¢,;,,(v:m) e (Hea)

from Lemma 6.2. Therefore
Hm_{dp(m) @(v: me; 1,0)) = dionlv: mY} =0
and we conclude from [1(e), Lemmas 21.3 and 24.1] that
Dp(v: m; 0, (V))=; 5 (v: m).
Extend ¢, (v) to a function on G by setting
O (vikmn)=1(k) p;,(vim) (keK,meM,, neN).
Then we conclude from [1(e), Lemma 24.17 that
Hm {dplx) $v: X5 1)) = bion(v: X)) =0,
Here x is a fixed element in G and x,=x exp tH,. But this implies that

Hm dp(e) (2 x,3 7)) eI = (v: x)

and therefore
G (via:m)= lim @°(v: A: m,) e "F>Ho)
t—+w
=e PHD Y mo1(54,) 7 Gioo(v: im) @ eX(v).
ieQ®
The assertion of the lemma is now obvious from the definition of @ (v: m).
Lemma 16. eX(v)= Y ufs; A,)uf (15j<q) forveF.(A).

1=isq

By Corollary 1 of Lemma 3.5
y=Lu)l= Z L(u;) ef(v)

1=j=q

= Z u;(s; 4,) ej(")-
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Therefore

Z u;@u¥ =Z u(s; 4,) e;(n)@uf.
i i j
But since
L @ut=) e,(")®e}(v),
i j
our assertion is now obvious.

Corollary. Let ve § (). Then
D (vim)=3 Y @oulsiA,) 7 hio(v: M@uyls; A,) uf.

ieQ® 15j5¢q
This follows immediately from Lemma 16 and what we have seen above.
Now put

D (a:m)= [ (P, (v:m),a(v))dv.
&
Then it follows from Lemmas 7.3, 8.2 and the coroliary of Theorem 13.1 that
b (a)e€(M,, 7). Hence we conclude from [1(e), Lemma 32.1] that

[e P ™\ (a:fim),di<co (seS(V)),
N

provided @ (a) is extended to a function on G in the usual way so that
D (a:kmny=1(k) D (a: m) (keK, meM,, neN).
Now put, as before,
D (a:n:m)= [ (P (v:7i: m),a(v))dv.
i}

Then it follows from Lemma 15 that
S (a:n:m=e "HO P (a:iim)
and therefore from Lemma 12 that

Fa:m)= [e "™ @ (a:7fim)dn.
N
Substituting the definition of F(a) we obtain the following result.

Lemma 17. Let ae%4(§F, U). Then

fP@:ni:mydi= e " ¢ _(a:nm)dn.
8 N

In order to prove Theorem 13.2 we take a(v)=a(v) 4,. Then we claim that

(Do (v: m), a(v)y =a(v) pp(v: m).

Since both sides are continuous in v, it is sufficient to verify this for ve (/). But
u; =1 and so this is an immediate consequence of Lemma 7.3 and the corollary
of Lemma 16. The statement of Theorem 13.2 is now obvious from Lemma 17.



38 Harish-Chandra

§ 17. Application to Eisenstein Integrals

Let U be an open subset of .. A function f: Ux G —V will be said to be of
type H x C* if )it is of class C* on U x G and 2) for all xe G the function v — f(v: x)
from U to V is holomorphic.

Fix a psgp B=MAN, in 2(bg). Then for any Yy e C*(M, 1,,), we consider the
Eisenstein integral E(B: ) [1(e), §9]. Clearly it is a function of type H x C* on
G.xG.

Put

ss(¥)=sup |0y, Ey'
M
forseZ(V), 5eM? =M M and Y e C*(M, V). Moreover let
sp(¥)= Z ss(¥)
deF
for any finite subset F of M. If ve §,, define vg and v; in § by v=vg+(—1)}2v,.
Then it is easy to see that we can choose ¢, =0 such that
|R(— 12 v(Hp,(x)|Sco v/ 0(x)  (veF., xeG).
Extend the norm on &, by setting
[vIZ=]vgl® +1v, 2
and put
(v, )|=(1+|v)(1+a(x)) (ved,, xeG).

Lemma 1. Fix g,, g,€® and DeD(§,). Then we can choose r20 and a finite
subset F of MP with the following property. For any se(V), there exists a
number ¢>0 such that

|E(R:y:v; D:gyox; g)ls Scsp(¥) E() (v, x)I" exp {co [vi| 6(x)}
for all e C*(M, 1), ve &, and xeG.

It is enough to consider the case D=1. The general result would follow from
this if we fix x, consider the complex polycylinder with center v and radius
(1+0(x))~! and apply the Cauchy integral formula.

We drop the subscript and write P=FE, N=N,. Put

Yo (x)=y(x) exp {(—1)'? v—p)(H(x))}  (x€G)

in the usual notation [1(e), § 19] where p = pp and H(x)= Hp(x). Then it is obvious
that

[E(P:y:v: gy x; 820l [ W8 xk; g5)ls dk
K

for se (V) [1(e), §22]. But if x=kman (keK, meM, acA, neN), it is clear that
u(grikman; g)=1(k) (g} sman; g,).

Moreover

G=6n+K/M, =6 n+M, K.
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Therefore for given g,, g,e®, we can choose r 20 and u;, v;e M (1 <i<p)such that

Wo(giikman; )l S 3 Wl m; o)l (L+|v]y e~ 1 +e)tos

15igp
for all ve ., se&#*(V) and (k, m, a, )e K x M x A x N. The required result now
follows immediately from [1(e), Corollary of Lemma 30.1].
Let &0 be an eigenfunction of 3,, in ¥(M, t,,). Then [1(e), Theorem 18.3]
there exists a regular element Ae(— 1)!/2 h¥ such that

Y =vmn oY (Ce3m)

Put ¢=E(E: ). Then it is obvious from Lemma 1 and [1(e), Lemma 19.1] that
¢ defines a function of type II1(A) (see §8) on § x G.

Let P=MAN be another psgp in 2(hg). We shall now investigate the be-
havior of

dp(a) p(vima) (meM,acA)
as a —— co. The case P=G being trivial, we assume that a=h, does not lie in the

center of g.
We now use the notation of § 5 and put

(v, x, H)|=|(v, x)| (1 + | H]})

for ve®., xeG and Hea. Note that a=hzca, and therefore we may assume
that k,=1 (see §3). Then y centralizes a and therefore A,=A"+(—1)1/2y.

Lemma 2. Fix (€3, and v,, v,€M. Then we can choose r20 and for each
se L (V) a number c(s)=0 such that

Wi, ((v: vy mexp H; v,),
Zcls) Epg(m) (v, m, H)" e P2 exp {co |v;| (a(m) + [ H|)}
forved.,meM HeCla* and 1Zi<q.

This is proved in the same way as Lemma 6.1.

Define 4, (ie @) and Q° as in §6. Fix two positive numbers ¢, § and an element
Hyea™ with |Hy| =1. Let §.(5) denote the set of all ve §, with |v;| < . By choosing
¢, 6 sufficiently small, we can assume that:

1) Bp(Ho)24e,
2) |A(Ho)|23¢e if A(Ho)+0,
3) Isivi(Ho)l+co vy Se
for ieQ and ve §.(6). Put
Yiv:m:t)y=y,; g (vimexptH,)e ' AvHo),

Fix se& (V) and veM,. Then it follows from Lemma 2 that if 4;(H,)=0, the
integral

}Oll//?(vz m; v: )]s dt
4]
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converges uniformly as (v, m) varies within a compact subset of & .(d) x M;. Hence
by Lemma 5.3, we can define

Gio(v:m)= lim ¢,(v: mexp tH,) e~ 'si4vHo
1=+

for (v, m)e §.(6) x M. Then ¢, , is a function of type H x C*.
Lemma 3. Fix i such that 1,(Hy)20. Then
Gie(v:m; =y, ((: 5:4) is(v:m)  ((€3))

for ve §.(8) and me M, . Moreover ¢;,, =0 unless ieQ° and sy ' a=a.
If 2;,(Hy)>0, it is clear that

Rs; A(Ho) —co|v| >0

for ve &.(6) and therefore ¢, , =0 from Lemma 1. So now assume that A,(H,)=0.
Then it follows easily from Lemmas 6.2 and 6.3 that our statement is true if ve &.
The rest is obvious by holomorphy.

Corollary. ¢, (v:mexp H)=¢,,(v: m) 5™ for meM,, Hea and ve§.(6).

This is obvious from Lemma 3.
Define ¢;,, =0 if 4,(H,)<0.

Lemma 4. Fix ve § (0), me M,. Then
|¢:(v: m exp THo) — ¢; o (v: m exp TH,),

Se 2T {ld’i(‘“ mj|,+ O}OWi,Ho(V: mexp tH,)l, e** dt}

forseS(V), Tz0andicQ.
Put m,=mexp tH, (teR) and first suppose A,(Hq)=0. Then

0

Gio(V: mp)=(v: mp)+ [ Yy g (vimy) e - D5 AED gy
T
from Lemma 5.3. Moreover
Rs; A(Ho)=Ai(Ho)—s;vi(Hp) Z —e.
Hence

@i (v: mp) = i(v: mp)| = i[ Wi g, (v: m)| e~ T dt

and this implies the required inequality.
Now suppose 4;(Hy) <0. Then ¢; =0 and

T
Gi(v: mp)=y(v: m) T AH L [y (v my) o T =05 AV ED) gy
(V]
from Lemma 5.3. But

Rs; A,(Ho)=A(Ho)—s;vi(Ho) = —2¢
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and therefore

|pi(v: m exp TH0)|s§e~2£T{|¢i("3 m)ls+ jW: Ho(V: mexp tHy)lg e dt}
0

This proves the lemma.

Let &.(5,4) denote the set of all veF.(6) where @w(A+(—1)1/2v)=+0, so that
(see §3)

80, 2) =F(8) N F(A).

For any sew=m(a), there exists a unique index ieQ such that s=s;! on a
(Lemma 7.1). Define

Gp,((v: m)y=m(5; A,) 7" i (v m)
for ve §.(8, ), me M, . Note that
5; A, (H)=A,(sH)= P (sH)+(—1)*"? v(sH)
=(—1)"?v(sH) (Hea)

since y centralizes a and A=0 on a=hg. This shows that ieQ°. Therefore the
following result is obvious from Lemmas?2 and 4, Corollary of Lemma 3 and
Lemma 5.1.

Lemma 5. Let ve §.(5, 1), me M, and se S (V). Then

Hm e |dp(m) §(v: m)— T gp,(v: m) el D6, 0

sSew

where m=mexptH,.

Corollary. Fix veF.(6, ) and sqew and suppose v(sq Ho)<v;(sH,) for every
S=*sq in w. Then

lim dp(m,) §(v: my) =~ VA0 HI =, (v m)

t— 4w

Jor me M, .
Since |v,(so Hy)| < ¢, this follows from Lemma S if we observe that
R(— D2 {v(sHp) —v(so Ho)} =v,(so Ho)—v,(sH) <0

for s+s,.

§ 18. The c-Functions

Now assume that dim t < oo and 7 is unitary. Put
L="8(M, 1))

Then by [1(e), Theorem 27.9], dim L < c0. Let |-| denote the norm in the finite-
dimensional Hilbert space V. Put

I l2= fl¥(m)* dm
M

for y e L. This defines the structure of a Hilbert space on L.
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Let £,(M) be the discrete series of M (i.e. the set of all equivalence classes of
irreducible, square-integrable representations of M). For we&,(M), put

L@)=Ln(9,®V)

where §,, is the smallest closed subspace of L,(M) containing all the matrix
coefficients of w. Then

L= L(w)

where the sum is orthogonal.
We keep to the notation of §17 and put a=bhz and w=w(a). Fix Pe#(a)
and define

=[] <™ (ved)

15isr

where «,, ..., o, are all the distinct roots of (P, A) and m; the multiplicity of «;.
As usual (o, v>=0o;(H,). Let §. be the set of all veF, where n(v)£0. Clearly §.
is independent of the choice of P in 2(a). Put §F =F §. and F.(5)=F.()NG.
for 6>0.

Theorem 1. Fix ve{ and F,, B,e#?(a). Then there exist unique elements
cp,|p,(s: v)eEnd L (sew) such that

Ep,(B:y:vima)= Y (cp,; p,(s: V) ) (m) e~ 1/ svlloea)

seEw

for yeL, meM and ae A. Moreover we can choose 6>0 such that for every sew,
7t(v) Cp, ) p,(s: V) extends to a holomorphic function of v on §(3).

Fix ve®'. Then sv=+v for s+1 in w (Lemma 22.3). Hence the uniqueness is
obvious. So now we have to prove existence. Fix wed&,(M) such that L(w)+{0}.
It is enough to define cp | p,(s: v) on L(w). By [1(e), Theorem 18.3] there exists a
regular element Ae(—1)'/2 ¥ such that

Y =7, (DY (C€3m)

for all Yy e L(w). Now fix ye L(w) and put ¢=E(R : y :v). It is easy to verify that
& (A) = & and therefore by Theorem 7.1

¢P2 = Z ¢P2,S'

sSEw

Moreover by Lemma 7.5 the functions
me—@p, (m) (meM)

are in L. Now define
cpp (s VY =0p,; (sew).

Then the first statement of the theorem follows from Theorem 7.1 and its corollary.
For any linear function u on ¥ and me M, put

(W) =p(p(m)  (Yel).
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Then p,, is a linear function on L. For a given Y €L, the condition pu,(¥)=0 for
all 4 and m, implies that ¥ =0. Hence we can choose a base (A,, ..., 4,) for the
space dual to L, consisting of linear functions of the form y,,. Let (Y, ..., {,) be
the dual base for L. For each i, choose m;e M and a linear function y; on V such
that A;(y)=p;(y(m,)) for y e L. Then

W=2Ai(‘p) ¢i=Zﬂi(‘//(mi)) ¥ (el)
Now fix w and € L(w) as above and put
Y=o +(=1)!?v) dp, (V)
for ve §.(9) in the notation of § 17 where
S()=EB:¥: ).
Then for a fixed sew, the function
(v, My (v: m)
on §.(6)x M is of class Hx C®. Moreover Y (v)eL for ve §'. Hence
Ui m) =3 (W (v: m)) Yi(m)  (meM)

for ve'. Therefore by holomorphy this relation holds for all ve§.(d). This
shows that Y, (v)eL and v—,(v) is a holomorphic mapping from () to L.
The second statement of Theorem 1 is now obvious.

We observe that w operates on L. For if sew and e L, then sy =y (see §7)
is also in L. Clearly the sets §.(6) and §' are also stable under w.

Lemma 1. Let B, B,e#(a) and s, tew. Then

sCp,ip(t:v)=Cps(p(st: V)
Cpyyp(tiv)s™! =cp, pi(ts™':sv)

SJor ve §.(9).
It is enough to prove this for v in §'. Fix eL, ved and put ¢=E(B:{: v).
Then it follows from [1(e), Lemma 21.1] that

(¢P2)3 = d)Pi

and the first assertion is an immediate consequence of this fact.
Similarly the second statement is an easy consequence of the following lemma.

Lemma 2. Fix Pe#?(a) and sew. Then
E(P:y:v)=E(P*: syr: sv)

foryel andve ..
For f, ge C*(G, 1) and «, fe C*(M, 1,), put
(f 8)e= g (f(x), g(x)) dx,

(@ P = 15 (a(m), B(m)) dm,
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provided the integrals are absolutely convergent. Moreover for fe C*(G, 1), define
f;'(P)e CEO(M’ TM) (VE %c) by
Pm)= | fP(ma) e~ "8 dg  (meM)
A

in the notation of [1(e), § 16]. Then it is clear that
(EP: ), Ne=W, £17)n
for yeL and ve . Similarly
(E(P*: sy sv), Ng=(s¥, 15 u-
However it is easy to verify that
S =s(£P)
and therefore
(E(P:y:v), flg=(E(P*: syr:sv), flg

for all fe C?(G, 7). The statement of Lemma 2 is now obvious.
Lemma 1 shows that it is sufficient to investigate the functions cp,|p (1:V)
for B, B,eZ?(a).

Lemma 3. Fix PeP(a), YeL, veF and let P'=M A’ N’ be a psgp of G. Then
Ep(P:y:v)~0
unless A’ is conjugate to A under K.

We may assume, without loss of generality, that Y e L(w) for some weé&’,(M).
Then our assertion follows from Lemmas 11.1. and 17.1.

§ 19. Some Integral Formulas

Fix Pe#(a) and let §.(P) denote the set of all ve, such that {a, v,)>>0 for
every root a of (P, A). Put p=pp, and H(x)= Hp(x) (xeG). Every xeG can be
written uniquely in the form x=kman where ke K, meM nexpp, a€ A, neN.
Put k=x(x) and m=pu(x). As usual let P=0(P) and N =6(N).

Theorem 1. cpp(1:v) and cpp(l: —v) extend to holomorphic functions of v on
&.(P) and they are given by the following integrals.

(cpp(1: V) Y)(m) = [ Tk (7)) Y (u(7)) m) e~ V270 HE) g
N

(cpp(l: =V Y)(m)= [ Y(muA)™) (@) =" D20 H®D gp,
N

Here yeL, ve §(P), meM and the Haar measure dii on N is so normalized that

[ e 20 g7i=1.
N

We need some preparation. Observe that G=KP and NP is an open dense
subset of G whose complement is of Haar measure zero. Let d,p and d, p denote
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the left- and right-invariant Haar measures respectively on P so that d, p=d, p~1.
Then d, p=4(p) d, p where 6 is a homomorphism of P into RX. We can normalize
the Haar measures dx and dn on G and N respectively in such a way that

[fx)ydx= [ f(ap)dad,p= | flkp)dkd,p
G

NxP KxP

for fe C,(G). Put
f®= If)f(xp) dp (xeG)

where x+ X is the natural projection of G on G = G/P. Note that
G=K=K/KnP=K/K,,

and put f(k)=f(k) (keK). Then
Igf(k) dk= [ f(kp)dkd,p= | f(kp)d(p)~" dkd,p.

Since K n P lies in the kernel of §, we can extend § on G by defining §(k p)=5(p)
(ke K, pe P). Then 6(y p)=4(y) 8(p) for yeG, pe P and therefore

Igf(k) dk=[ f(x)6(x)~"dx= [ f(7ip)&(ip)~* drid,p
= [ f(Rp)6(m)~* dn d,p.

On the other hand N N P={1} and so we may identify N with its image under
the projection of G on G. Then the above relation becomes

[ flk)ydk= [ f(n) 8(m)~* dn.
K N

But since fi—f is a surjective mapping of C,(G) on C(G/P), we have obtained the
following result.

Lemma 1. We can normalize the Haar measure dn in such a way that

(k) dk= | p(m)o(A)~" dn
K R

for all pe C(G/Py= C(K/K}).
1t is easy to verify that
S(x)=e2PHE  (xe(G).

Hence taking ¢ =1 in the above lemma we get the following result.
Corollary. Under the above normalization of din we have

[em 20O g7 1,

N

Now we come to the proof of Theorem 1. It follows from [1(e), Corollary of
Lemma 32.2] that the two integrals converge uniformly when v varies in a compact
subset of §.(P). Therefore (see the proof of Theorem 18.1), it would be enough to
verify the two equations for ve &.(P) N &.(6). We prove only the first since the
proof of the second is quite similar.
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Fix yeL, ve§.(P)n §.(6) and put
¢=E(P:y:v).
Then
¢(x)= [ Ylxr(®) (@)~ exp {(— D'? v—p)(H(x k(M) -2 p(H(m)} d7i

for xeG, from Lemma 1. Now
iA=x(n) u(7) exp H(H) -n
where ne N. Hence if me M, = M A4,
Y(m™ k@) =y(m~ npm"),
H(m™! k(n))=H(m™1n)— H(R).
Take x=m™!, replace 7 by #™ inside the integral and observe that
dim=e~2PHm) gy
Then we obtain
e’ (H(m)) ¢(m—1)___ jW(ﬁm—l ﬂ(ﬁm)—l) ‘E(K(ﬁ"’))’l ev-(H(ﬁ))—V+(H(ﬁ"‘)) dn
N
where v_=(—1)"2v—p and v, =(—1)!/2 v+ p. On the other hand, we can choose
¢>0 such that

[ (m) = c Epe(m)

for all me M,. Now let m=mg'a where myeM and ae A. Keep m, fixed and let
a—p 0. Then

H(@™)=H(mg' #*)=H(my ! x(n*)+ H(n").
Hence H(A™)— H(7*) remains bounded. Moreover

[ Em=" p(@™) =) = (@) mo p(mg* 7 mg)~*)|.
Now

A*exk(n®) u(n”) AN.
Hence

my i moemg ! k(A7) mg - p(my"e' - AN
and therefore

p(mgt 7 mo)e Ky, - p(mg * k(7 mo) p(mye "
This shows that

mg p(mg ' 7 mo) mg ' € C u(#i”)
where C is a compact subset of M. Hence

p(A) mo pu(mg " 7 mo) ™ e u(A) p(A*) " C~1my.
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Therefore we can choose ¢; >0 such that

Y @Em™" w(@) )< ¢; Epg(u(@) p(@) ")
for all ieN and aeA. By Lemma 20.1, we can take the limit inside the integral
and conclude that

lim ¢7+098%) $(my a~1)= [ y(imp) '~ H® d
a;co N

= [ 1(x(A) Y (u(R) m) e’ ™ dn.
N

The required result now follows from the corollary of Lemma 17.5.
We shall now derive some consequences of Theorem 1.

Lemma 2. Fix we&,(M). Then L(w) is stable under cg p(1:v) and cpjp(1: V).

Since %,(M) is stable under both left and right translations of M, this is
obvious from Theorem 1.
The following result was pointed out to me by Langlands.

Lemma 3. det cp p(1: v) is not identically zero.
Put
c(t)y=fe "D gn  (122)
and '
a(A)=c(t)"Le "PH®  (reN).

The proof is based on the following simple fact.

Lemma 4. Let f be a continuous function on N which is integrable with respect
to din. Then

lim | fdi=f(1).

t-+w N

We shall prove this in §21.
Now fix ve §.(P) and put

ve=v+(=1D"1tp,  CO)=c(t)  cpp(l: —v)  (£22).

Then v,e & (P) and C(t)e End L. Fix yeL. Then it follows from Theorem 1 that
(COYm)= [Y(mp@) ™) (k@) 1" Y=2HD) o (7) 47,

Hence

Jlim €=y

from Lemma 3. This proves that C(t)— 1 and therefore det C(t)— 1. Hence
det C(t)+0 for ¢ sufficiently large.

Combining Theorem 1 with Theorem 13.2, we can now obtain the following
result.



48 Harish-Chandra

Theorem 2. Fix yeL, ae C2(&'), B, B e#(a) and put

()= [a(EB:y:v:x)dv  (x€G).
&

Then ¢,€¥%(G, 1) and

PP (may=y(B) [ !~ 0BD F a(s ™ V) (cp,1p, (11 V) Cpy py (51571 V) ) (m) dv
&

semw

Jor meM, ac A. Here

WB)= [ e 2™ d,
N2

the integrand having the same meaning as in Theorem 1 for P=F,.

There is no loss of generality in assuming that yeI{w) for some weé,(M).
Put

¢(v:x)=EB:y:v:x) (ve§, xeG).

Then it follows from Lemma 17.1 that ¢ is a function on & x G of type II(4)for a
suitable A1e(— 1)}/ b (see the proof of Theorem 18.1). Therefore since Supp a = §,
it follows from Theorem 18.1 that the function

(v, ) a(v) (v: x)

is of type I'(4) (§ 13). Hence we conclude from Theorem 13.1 that ¢,e%(G, 7).
Now put P=P, and let us use the notation of Theorem 13.2. Since p(H(7)) 20,
it is clear from this that

PP (m)=lim [e~A+IPHD ¢ Gmydn (meM,).
e~0 N

(Here ¢>0.) But
Gp,q(1m)= g a(v) T(k(R) Ep(R : 2 v: p(7) mexp H(7)) dv.

Fix ¢>0 and put v,=v+(—1)"2¢p for veF. Then v,eF.(P) and we conclude
from [1(e), Corollary of Lemma 32.2] and Theorems 1 and 18.1 that

[e-G+or@® ¢ (ima) di

N
='y(P)jcx(v) Z(Cﬂp(l :(sv),) cpp, (51 V) ¥)(m) g~ VPsvH@) g,
§

Sew

for meM and aeA. But cpp(l:v) is holomorphic on §.(d). Therefore since
Supp a = &', we obtain by making ¢ — 0 that

¢P(ma)= 3, y(P) [a(v)(c 5 p(1: 5V) cpyp,(s: v) ) (m) ¢t~ D2V H@D gy
&

SEW

and this is equivalent to the required result.
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§ 20. A Result on Uniform Convergence

Let P=MAN be a psgp of G. Define p, H(x), u(x) (xeG), A* and N as usual.
Lemma 1. Fix vea* such that {v,a>>0 for every root o of (P, A) and put
v, =v+p,v. =v—p. Then the integral

fom v B 5, () u(i?) ) d
N
converges uniformly for ac A" .

The present form of this lemma is due to Langlands [2, Lemma 3.12]. My
original formulation was more complicated.

We first need an auxiliary result. Let Fy=M, A, N, be a minimal psgp of G
contained in P and let us use the notation of [1(e), § 30].

Lemma 2. Let x, yeG. Then
E(xy——1)= 3‘ g PoHo(xiio) + Ho(yFio)) d,‘lo’
No

where the Haar measure dii, on N, is so normalized that

j' e~ 2po(Ho(fo)) d'ﬁo =1.
No

Let k4(x) (xe G) denote the component of x in K corresponding to the Iwasawa
decomposition G=KA, N,. Put k,=«(yk) (keK). Then ki k, is a diffeomor-
phism of K and [1(a), p. 281]

e2Po(Ho (k) dky =dk.
Now

E(xy“1)= j‘e—po(Ho(xy‘l ) dk.
K

Replacing k by k, and observing that
Ho(xy~"k)=Ho(xk)—Ho(yk),
we get

E(xy‘1)= se—Po(Ho(xk)+Ho(yk)) dk
K

and the required result now follows from Lemma 19.1.

Let *P=*M*A*N be the minimal psgp of M corresponding to B, [1(e),
Lemma 6.1] so that *P=M nP,. Put *N =0(*N). Then N is a normal subgroup
of N®and the mapping

(B, *7) > Tig =7 - *7i

defines a diffeomorphism of N x *N onto N°. Let dn and d*# denote the cor-
responding Haar measures. Then df - d*i=cdn, where ¢ is a positive constant.
Let us now use the notations of [ 1(e), § 30].
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Lemma 3. We can normalize dfi and d*# in such a way that

je—Zp(H(ﬁ)) dri= j e~ VPUHEM) g%y — 1
N *N

Then dfio=dn d *n where dny is normalized as in Lemma 2.

The proof of the first part is the same as that of the corollary of Lemma 19.1.
Since dn d*n=cdn,, we have

c= [ d*n[e=2roHoE M gy
N N
Fix *fie*N. Then *ii=kan (keK,,, ac*A4, ne*N) and
Hy(n*n)=H,y(nk)+1log a=H,(k~! nk)+*H(*7).
But since K,, normalizes N, we conclude that
[ €= 2polHO@*R) g7 — =20 CHER) [ o= 200(Ho@) 7
x , b

On the other hand

Ho(n*k)=H () +*H(u(7) *k)
for *ke K,;. Hence if d*k is the normalized Haar measure on K,,, we conclude
from [1(a), Corollary p. 261] that

j e~ 2PoHo@*R) gk — o= 20 (HE) f e~ 2P CHW@R) 7]
KM KM

—p—2PH@E)
Therefore

j‘e—Zpo(Ho(ﬁ)) dii= jdﬁ j‘ e~ 2PolHo (Ck=1A%K) 1]
N Km

N
= [~ 20 H®) g7 |
N

and this proves that

c= j’e—Z*P(*H(”ﬁ)) d*i=1.
*N

Corollary. 5y (m, my')= | e PCHm™THm) diq for m, mye M.
N

This follows by applying Lemma 2 to (M, *P) in place of (G, B).
Now we come to the proof of Lemma 1. Fix 0<e <1 such that

(po—e¥, 00> 20

for every root «, of (R, A,). Note that
~ v, (H(R)+v_(H(#) = v(H(#") — H(")) — p(H(n") + H(7))

and it follows from [1(e), Lemma 30.4] that we can choose ¢ 20 such that
VH(#)-H(m)=c
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for all ieN and aeA™*. Put v =¢v. Then
—v . (H@)+v_(HR)=(1—e) c v (H(R)+Vv_(H(#")).

Hence it would be enough to prove Lemma 1 for ev instead of .
So we may now assume that

{po—V, %> 20
for every root a, of (B, A,). Let fy=7 - *i where ic N and *nie*N. Then
Hy(7o)=H(n)+*H(u(n) - *n),
H,(Ag)=H (A" +*H(u(@*) - *n)  (aeA).
Therefore
(v—=po)(Ho(11g)) — (v + po) (H(Fio))
=v_(H(n")—v (H(n)
—*p(*H(u(n) *n)) — *p (* H(u(7") *1)).

w being a measurable subset of N, put wy=w - *N. Then integrating both sides,
we get

“’ eV —po)(Ho(ig))— (v +po) (Ho (%)) dﬁo

wo

= fer-HEN=-HW Z (um) p(7*) ) di=1,(a) (say)

w

from the corollary of Lemma 3. On the other hand M =K, - *4 - *N is an Iwasawa
decomposition of M. Hence

Ay =R *A=R"-*k-*a *n
where *ke K,,, *ac*A, *ne*N. Since M normalizes N, it is clear that
H(75)=Ho(') + Ho(*a)
where ' =*k~! . 7. *ke N. Hence we conclude from [1(a), Lemma 43] that
(Po = V(Ho(A) 2 (00 —¥)(Ho(*a)) = *p(*H(*7)).
Therefore
(v—p0) (Ho(13)) — (v + po) (H, (7))
= —*p(*H(*n))—v  (H(#) —*p(*H(u(n) *n)).
Integrating both sides on w, and applying Lemma 3 and its corollary, we find that
I(a)s fe " "D B (u@)) dii (aeA).

w

Now choose ¢ >0 so small that {v,a)=&{p,a> for every root a of (P, A). Then
vHH@E)Z(1+e) p(H®)  (eN)
from [1(e), Lemma 30.4]. On the other hand

femrnpE®™ £ (1(R) dii < o0
N
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from [1(e), Corollary of Lemma 32.2]. Therefore the assertion of Lemmal is
now obvious,

§ 21. Proof of Lemma 19.4

For T 20, let N(T) denote the set of all points ieN such that p(H(#))< T. Then
N(T) is a compact set and N(0)={1}. Let (a,, ..., o) be the system of simple
roots of (P, A). Then

2p=myoy+---+moy
where m; are positive integers. Put m=m, +--- +m,.
Lemma 1. There exists a number ¢>0 such that

| dizce*™
N

Jor 0<e=1.

Put

Bla)= inf a(loga)2 (aeA™).
Then

p(H(A) < log(1+e! ~F@)

for ieN(1) and aeA* from [1(e), Lemma 30.2]. Fixe (0 <e=<1) and choose ac 4
such that

ologa)=2(1—loge) (1=ig)).
Then ae A" and

1—-pB(a)=loge.
Hence

p(HA)=log(l+e)=¢
for ie N(1). Therefore

[ diz [ di=e-ote0 ¢

N M)
where

CO = j dﬁ > 0

NQ@)

But

2p(log a)=ma(log @)=2m(1 —log ).
Hence

§ dAzce*™
N(e)

where c=cye " 2™m>0.
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Now we come to the proof of Lemma 19.4.Fix ¢ (0 <& < 1) and let N,(¢) denote
the complement of N((r —1)¢) in N(re) (r=1). Thenif t =2,

j' et HE) > p—ret j di=e " (u(re)— u((r —1)e))

Re(a) A
where
w(T)= | dn (T=0).
N(T)
Therefore
e(t)= e~ HD g7 2 Y e~ (u(re) — ullr — 1) o).
N rz1

On the other hand

wy= | dnge*™ f[e=2PH® dr=c(2) "
N N

Hence if t > 2,

e " u(re) —0
as r — + oo. Therefore

)2 Y ure)e " (1—e™")

Zpu(e)e " (1—e™).

Now take e=¢~1. Then it follows from Lemma 1 that

cOzput)e ' (1—eH2cot™?"  (t>2),

where ¢, is a positive constant independent of t.
Now let U be any open neighborhood of 1 in N. We have to show that

| a(7) dii— 0

U

as t— + 0. (As usual ‘U denotes the complement of U.) Fixe (0<e=1) such that
N(g)cU. Then if t>2,

foa@dis | oq@da=c()™ [ e "W gp.
U cN(e) °N(e)

But c(t) ' <cg! *™and

f e~ tPH®) gy < p-t=2)e j e~ 2PHM) J7
cN(e) °N()
<c(Qet-2e
Therefore

(@ disc ?me " —0
<y

as t— + oo, where ¢; =cg ' ¢(2) e*®. This proves Lemma 19.4.
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§ 22. Appendix

Let x=(x,,..., x,) denote a variable point in E=R". Put D;=4/¢x; and D*=
Dy ... Dy for a multi-index a=(x,...,a,). We write |a|=o, +o,+-+a,,
{x|=max |x;| and denote by M the set of all multi-indices.

Let V and & (V) be as before (§6).

Lemma 1. Let f be an element in C*(E, V) such that f=0 on the hyperplane
x, =0. Then f=Xx, g where

g(x):éffl(x1 £y Xy, oeny X,) dt

and fy,=D; f. Hence ge C*(E, V) and
[D*g(x)ls = Sup IID“f1 s

for all xeE, ae M and se (V).

This is obvious.

Let p+0 be the product of N real linear forms on E and E’ the set of all points
xeE where p(x)=0. A function f from E’ to V is said to be locally bounded (on E),
if for every compact set w in E and se #(V), | f(x)|, remains bounded for xewnE'".

ForaeM,r=0and se#(V), put

S, (f)=sup(L+{x|] [D*fl,  (feC*(E, V).
If F is a finite subset of M, put
SF,r(f)= Z Sa,r(f)'

aeF

Let €(E, V) denote the set of all functions fe C*(E, V) such that s, (f)<oo for
all xe M and r=0.

Lemma 2. Fix aeM and let F denote the set of all fe M such that |f| <|a]+ N.
Then for every r=0, we can choose a number ¢, 21 with the following property.
Suppose fe%(E,V) and p~'f is locally bounded. Then f=pg where ge%(E, V)
and

sa,r(g) § Cr SF, r(f)
Sfor allse #(V).

By an easy induction we are reduced to the case N = 1. Hence we may assume
that p=x,. Then f=x, g in the notation of Lemma 1. Let E, and E, be the sets
of points xeE where |x,|<1 and |x;|=1 respectively. Then if xeE;, we have

1+]x|=2(1 +I}’1>212X [x;])
and therefore

(1+[x)"|D*g(x)l, §2'| ysl'i?x lID°‘f1(y)I (1 +yly.
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This means that
sup (1+Ix|y |D*g(x)ls=2"sp,,(f)

where f=(o; +1, a5, ..., &)
On the other hand g=x'f on E,. Since |x,|21, it follows directly by dif-
ferentiation that

ID*g()lSoy! Y DT D f(x),
O0=msa
on E, where i=(0, a5, ..., ). Therefore since E=E,u E, the required result is
obvious.

Let us now use the notation of Theorem 18.1.

Lemma 3. Let H be an element in a such that a(H)=+0 for every root a of (g, a).
Then sH =+ H for every s=+1 in w.

Extend a to a maximal abelian subspace a, of p and put w,=w(a,). Let Q
be the set of all roots of (g, ap) which vanish at H. Then if BeQ, it is clear that
p=0ona.

Let w, be the stabilizer of H in w,. Then w, is the subgroup of w, generated
by the Weyl reflexions s for feQ. Hence every element of w, leaves a fixed
pointwise.

Now suppose sH=H for some sew. We can choose soew, such that s,=s
on a. But then syew,; and hence s, =1 on a. This proves that s=1.
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