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1. Introduction

doublesex (dsx) is the bottom most gene of the sex-determination cascade of Drosophila melanogaster. The
pre-mRNA of dsx splices to produce male- and female-specific transcripts which code for the male- and
female-specific proteins, respectively. dsx homologues have been characterized from different (many in
Diptera, two in Hypmenoptera and only one in Lepidoptera) insect species. Sex-specific splice forms of
dsx pre-mRNA in all these species code for one male- and one female-specific DSX proteins, which
regulate the downstream target genes responsible for sex-specific characters. In the present study we
have cloned and characterized the dsx homologues from two saturniid silkmoths, Antheraea assama and
Antheraea mylitta. The divergence time between Saturniidae and Bombycidae to which the domesticated
silkworm, Bombyx mori belongs is estimated to be around 160.9 MY. Interestingly, the dsx pre-mRNA of
these wild silkmoths sex-specifically splices to generate multiple splice variants. On the basis of their
open reading frame (ORF) and conceptual translation, two female-specific (DSX! and DSX) and one
male-specific (DSXM) proteins could be inferred, in both the moths. Presence or absence of a 15 bp
stretch within the ORF of the two groups of female-specific transcripts resulted in the production of two
distinct female-specific DSX proteins. The sex-specific DSX proteins have common amino-terminal
sequence but sex-specific carboxy termini. The two female-specific DSX proteins (DSXf! and DSX™)
share common DNA binding domain (DM domain) and oligomerization domain (OD domain) and differ
only at their extreme C-termini by 21aa. Functional analysis of dsx transcripts in A. assama by dsRNA
mediated knock-down resulted in complete abolition of expression of vitellogenin and hexamerin genes,
the direct targets of the DSX proteins, irregular differentiation of gonads, and drastic reduction in
fecundity and hatchability. Together, these results suggest the involvement of both the female-specific
DSX proteins in the process of female sexual differentiation. Further, conservation of the 4th exon
sequence, especially the PESS sequence responsible for the sex-specific splicing of Bmdsx in the female-
specific transcripts of Aadsx and Amydsx, indicated the existence of a common mechanism of sex-specific
splicing of dsx homologues in silkmoths. To our knowledge this is the first report of existence of multiple
splice forms of dsx pre-mRNA encoding two female-specific DSX proteins.

© 2010 Elsevier Ltd. All rights reserved.

encrypted very early during the development. Sex-determination
mechanisms are highly diverse in animal kingdom (Bull, 1983;

Sex determination is a fundamental biological process by which
sexual fate of an individual, either to become a male or female, is
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Zarkower, 2001); insect kingdom embodies examples of some of
the best studied sex-determination mechanisms (Sanchez, 2008).
The most well studied sex-determination pathway among insects is
exemplified by Drosophila melanogaster (Cline and Meyer, 1996;
MacDougall et al., 1995; Sanchez, 2008; Schutt and Nothiger, 2000)
where sex is determined by a well characterized sex-determination
cascade comprising of hierarchy of regulatory genes. The ratio of X
chromosomes to the autosomal set (X:A ratio) provides a primary cue
to activate this sex-determination cascade (Bridges and Anderson,
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1925; Cline, 1984; Keyes et al., 1992; Sanchez and Nothiger, 1983).
Recently, it has been proposed that the double dose of X signaling
elements (XSEs) rather than X:A ratio signals the sex-determination
cascade in Drosophila (Erickson and Quintero, 2007). An autor-
egulatory feedback loop is established to maintain the continuous
supply of functional SXL protein in females throughout the devel-
opment (Bell et al., 1991; Cline, 1984; Keyes et al.,, 1992; Penalva and
Sanchez, 2003). SXL transmits the sex-determination signal to an SR
protein encoding gene transformer (tra). SXL acts on the tra pre-
mRNA to produce functional TRA protein (Belote et al., 1989; Boggs
et al,, 1987; Inoue et al., 1990; McKeown et al., 1987). TRA, together
with the product of the constitutive gene transformer-2 (tra-2) and
with some other general splicing factors, forms a complex on the dsx
repeat element (dsxRE) in the dsx pre-mRNA, and allows the use of
anon-canonical weak female-specific 3’ splice site to execute female-
specific splicing of the dsx pre-mRNA encoding DSXF protein (Hedley
and Maniatis, 1991; Hoshijima et al., 1991; Ryner and Baker, 1991;
Tian and Maniatis, 1993).

In males, single dose of XSEs is insufficient to activate the SxI-pe
thus resulting in the absence of SXL protein (Erickson and Quintero,
2007). As a result the tra pre-mRNA splices in a default male mode
producing a truncated non-functional TRA protein due to presence of
a premature stop codon in the mature tra mRNA (Boggs et al., 1987;
Valcarcel et al,, 1993). In the absence of functional TRA protein in
males, dsx pre-mRNA splices in default male mode resulting in male-
specific mature mRNA encoding the DSX™ protein (Hoshijima et al.,
1991). The female- and male-specific DSX proteins, DSXF and DSXY,
respectively are transcription factors which share common amino
termini but differ in their sex-specific carboxy termini (Burtis and
Baker, 1989; Slee and Bownes, 1990; Steinmann-Zwicky et al.,
1990). Sex-specific DSX proteins regulate the genes involved in
various aspects of somatic sexual differentiation in an antagonistic
manner (Burtis and Baker, 1989; Burtis et al., 1991). According to
Wilkin’s ‘bottom-up’ model of evolution (Wilkins, 1995), the down-
stream genes are more conserved in sex-determination pathway as
compared to the upper hierarchy genes. Consistent with the Wilkin’s
hypothesis, upstream genes and signals in the sex-determination
cascade are very diverse even among closely related species whereas
dsx homologues characterized in a number of diverse insect taxa have
been found to be functionally conserved. Outside drosophilids, dsx
homologues have been found in many other dipterans including
Megaselia scalaris (Kuhn et al., 2000), Musca domestica (Hediger et al.,
2004) and Anopheles gambiae (Scali et al.,, 2005), in the tephritids
Bactrocera tryoni (Shearman and Frommer, 1998), Bactrocera oleae
(Lagos et al., 2005), Ceratitis capitata (Saccone et al., 2008) and
Anastrepha obliqua (Ruiz et al., 2005). dsx genes of all the dipterans
reported till date show conservation in the cis-regulatory elements
required for sex-specific splicing of their pre-mRNA: i) a weak
polypyrimidine tract at the 3’ splice acceptor site before the female-
specific exon (exon 4) and ii) TRA/TRA-2 binding sites in the female-
specific 3’ untranslated region (Sanchez, 2008). dsx homologues have
also been characterized recently in the hymenopterans, Apis mellifera
(Cristino et al., 2006) and Nasonia vitripennis (Oliveira et al., 2009),
and a lepidopteran Bombyx mori (Ohbayashi et al., 2001). A gener-
alized fact that emerges from the available data on dsx genes in
different organisms is that dsx produces sex-specific alternatively
spliced transcripts encoding one male- and one female-specific DSX
proteins which differ only at their extreme C-termini. dsx gene is
emerging as a potential candidate gene to be used in sterile insect
technique (SIT) programs for the control and eradication of harmful
insect pests (Saccone et al., 2002). In spite of the fact that the order
Lepidoptera embraces a vast array of coloured butterflies, beneficial
moths and innumerable pest species, sex-determination studies have
confined only to the domesticated silkmoth, B. mori. The Lepidop-
teran insects (moths and butterflies) follow female-heterogametic

sex chromosome system; females are ZW or ZO whereas males are
ZZ.In B. mori a hypothetical dominant epistatic factor present on the
W chromosome determines female development whereas in its
absence male development ensues (Hasimoto, 1933). Screening of
the B. mori genome for sex-determination cascade genes has revealed
that except dsx no other genes could be identified as potential
candidates of sex-determination pathway except for the recent
reports suggesting the involvement of W-borne zinc finger motifs as
upstream regulators of sex-determination pathway (Ajimura et al.,
2006; Satish et al., 2006, manuscript under preparation). B. mori
doublesex (Bmdsx) gene is present on autosomes and like dsx, the pre-
mRNA of Bmdsx is sex-specifically spliced to produce male- and
female-specific mRNAs encoding BmDSX™ and BmDSX" proteins,
respectively (Ohbayashi et al.,, 2001). Sex-specific BmDSX proteins
differ only at their C-terminal OD2 domains, and are known to
regulate many aspects of somatic sexual differentiation (Suzuki et al.,
2003, 2005). Despite these similarities, sex-specific splicing of Bmdsx
is different from that of dsx. Unlike Drosophila dsx, default form of
Bmdsx splicing is the female form (Suzuki et al.,, 2001). In addition, in
Bmdsx the 3’ splice site preceding the upstream female-specific exon
3 is not weak and there is no dsxRE sequence found within the
female-specific exons. These results led to the speculation that pro-
cessing of Bmdsx pre-mRNA needs splicing repressor(s) rather than
splicing activators such as TRA and TRA-2 (Suzuki et al.,, 2001).
Recently it has been shown that the BmPSI, a Bombyx homologue of
PSI (P-Element Somatic Inhibitor), binds to the ‘Putative Exonic
Splicing Silencer’ (PESS) sequence in exon 4, and is essential for
repressing female-specific splicing and skipping of exons 3 and 4 of
Bmdsx in males (Suzuki et al.,, 2008). These results show that Bmdsx is
very different from Dipteran dsx in terms of cis-acting element it
harbors and the mechanism of sex-specific splicing of its pre-mRNA.

To validate further the Wilkin’s hypothesis of bottom-up evolu-
tion of sex-determination pathways and to investigate whether the
features of Bmdsx is unique to B. mori alone or it is universal among
silkmoths, dsx homologues from two saturniid wild silkmoth
species Antheraea assama (Aadsx) and Antheraea mylitta (Amydsx)
were cloned and characterized for their functional properties.
A. assama and A. mylitta possess different chromosome numbers
and distinct sex chromosome compositions. A. assama, considered
to be the progenitor species of silkmoths (Arunkumar et al., 2008a),
has low chromosome number (n = 15) (Deodikar et al., 1962) as
compared to other known silkmoths, and female lacks W chromo-
some (Z0), which makes it interesting for sex-determination
studies. A. mylitta, another economically important silk secreting
saturniid moth (n = 31), has ZW females and ZZ males (Arunkumar
et al., 2008b; Mahendran et al., 2006). The study reported here
shows that Aadsx and Amydsx do not have TRA/TRA-2 binding sites,
instead, contain PSI binding sequences in all the female-specific
transcripts similar to Bmdsx. Contrary to the reports on dsx in other
insects, our study revealed multiple isoforms of Aadsx and Amydsx
transcripts, which encode two female-specific and one male-
specific putative DSX proteins. The two female-specific Aadsx and
Amydsx ORFs differ by the presence or absence of a 15 bp stretch.
Functional analysis of Aadsx through RNAi experiments suggests
that both the female-specific AaDSX proteins are required for
expression of downstream genes involved in female sexual differ-
entiation. Further, PESS sequence required for the sex-specific
splicing of Bmdsx is 100% conserved in all the female-specific tran-
scripts of Aadsx and Amydsx, which is an indirect evidence for
existence of a universal mechanism of sex-specific splicing of dsx in
silkmoths. Also, comparative studies of dsx homologues from silk-
moths (A. assama, A. mylitta and B. mori) led us to the identification
of a novel female-specific splice form of Bmdsx containing the same
15 bp stretch found in a few female-specific transcripts of Aadsx and
Amydsx, after exon 3 of Bmdsx (Shukla, Jadhav and Nagaraju,
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manuscript communicated). Thus the study reported here suggests
the presence of two female- and one male-specific DSX proteins in
silkmoths. Further studies are required to decipher the mode of
action of the two female DSX proteins on the downstream target
genes in female sexual differentiation in silkmoths. Also, it remains
to be investigated whether multiple splice forms encoding two
female-specific DSX proteins are the characteristic feature of only
silkmoths or widespread among lepidopterans. The studies are
underway in our laboratory to characterize the dsx homologues
from other lepidopteran insects.

2. Materials and methods
2.1. Degenerate primers

DSX protein sequences of seven insect species downloaded from
the database (www.ncbi.nlm.nih.gov) were aligned using ClustalW
program (http://www.ebi.ac.uk/Tools/clustalw2/index.html). The
two conserved regions, one in OD1 domain and the other in OD2
domain (Supporting information, Fig. S1A), were selected for
designing forward and reverse degenerate primers, respectively.
Nucleotide sequences of the corresponding conserved region of
OD1 and OD2 domains were manually aligned with each other
(Supporting information, Fig. S1B) and the degenerate primers
were designed on the basis of consensus nucleotide sequences.
Codon usage database (http://www.kazusa.or.jp/codon/) was used
to select the preferential nucleotide (for A. assama and A. mylitta) in
case of highly degenerate codons. The forward and reverse
degenerate primers thus designed are:

Dsx_1aF {5'-CAACTGCGCCCGGTG(Y)(M)(R)(RY)AA(Y)CA-3'} and
New_DsxR {5-CA(Y)(W)AG(B)GGCATC(R)TCTC-3'}, respectively.
These primers were used to obtain the dsx sequences from both the
wild silkmoths. To obtain the full length transcripts, 5’ and 3’ RACE
primers were designed on the basis of specific dsx sequences of
A. assama and A. mylitta.

2.2. Primers for A. assama specific hexamerin
and vitellogenin genes

Primers (Aa_Hex_4F and Aa_Hex_4R) for A. assama hexamerin
gene were designed based on the template obtained (Unigene_
Aa00258) from the EST database of A. assama (http://www.cdfd.
org.in/wildsilkbase/home.php) through tBLASTn using Hexamerin
protein (GI: 100134931) of B. mori as a query sequence. For
designing A. assama vitellogenin gene primers, the vitellogenin gene
sequences of six lepidopteran insects (B. mori — GI: 60391273,
B. mandarina — GI: 32526657, Antheraea yamamai — GI: 123299275,
A. pernyi — GI: 152002197, Samia cynthia ricini — GI: 12862882, S.C.
pryeri — Gl: 61651633) were aligned using ClustalW (http://www.
ebi.ac.uk/Tools/clustalw2/index.html), and the primers (Aa_Vg_F2
and Aa_Vg_R2) were designed from the conserved region. These
primer sequences are given in Table S2 (Supporting information).

2.3. Silkmoths, RNA isolation and RT-PCR

Fifth instar larvae of A. assama and A. mylitta were sex separated
based on visualization of sex-specific glands present at their ventral
surface. The sexual markings appear as a pair of milky white spots
in the eighth and ninth larval abdominal segments in female, and
are referred to as Ishiwata’s Fore Gland and Ishiwata’s Hind Gland,
respectively. In males a small milky white body known as Herold’s
Gland appears ventrally in the centre, between eighth and ninth
segments (Hiaso, 1994). Tissues were obtained from 3 days old 5th
instar larvae, frozen in liquid nitrogen and stored at —70 °C till
further use. RNA was isolated using Trizol method (Invitrogen

Corporation, USA). DNAse treated total RNA was denatured at 75 °C
for 10 min and immediately chilled on ice. First strand cDNA was
synthesized by SuperScript Ill reverse transcriptase (Invitrogen,
USA) using 17-mers polyT primer, according to the manufacturer’s
instructions. The conditions for DOP-PCR to obtain dsx sequences
from A. assama and A. mylitta were initial denaturation at 94 °C for
2 min, 32 cycles 0of 94 °C for 30 s, 50 °C for 30 s, 72 °C for 1 min, and
final extension at 72 °C for 10 min.

The smear obtained in the primary PCR was diluted 50 fold in
water, and 1 ul was used for secondary PCR using the same
degenerate primers (Dsx_1aF and New DsxR) and the same PCR
conditions as mentioned above.

2.4. Rapid amplification of 5’ and 3’ ends of Aadsx and Amydsx

5’ and 3’ RACE reactions were performed using the RLM RACE kit
(Ambion, USA) according to manufacturer’s instructions, using one
adapter-specific and the other gene-specific primers. The outer and
the inner gene-specific primers for 5° RACE of Aadsx were
Aad_5'RACE1 (5'-ATCGATACTTGCAGTACCGTTTGTGGCC-3’) and
Aad_5'RACE 2 (5-AGTACCGTTTGTGGCCTTTCAGCTCGAC-3') whereas
for Amydsx were ML_5'RACE2 (5'-TGCTTTCACTATAGGCGGCTCCG
GTC-3') and Aad_5RACE 2 (5-AGTACCGTTTGTGGCCTTTCAGCTCG
AC-3'), respectively. The outer and inner gene-specific primers
used for 3’ RACE of Aadsx and Amydsx were Aad_3'RACE1
(5'-TTGCCACAAACTGCTGGAGAAGTTCCAC-3’) and Aad_3'RACE2
(5'-TGCTTTCACTATAGGCGGCTCCGGTC-3"), respectively. Both primary
and secondary RACE-PCR reactions were performed on an
Eppendorf master cycler with the PCR conditions of initial
denaturation at 94 °C for 2 min, 35 cycles of 94 °C for 30 s,
68 °C for 30 s, 72 °C for 2 min, and final extension at 72 °C for
10 min. Amplicons of different sizes were gel-eluted, sequenced
and the genuine 5 and 3’ dsx sequences were selected.

2.5. Southern blot analysis

A. assama genomic DNA isolated from male and female was
digested separately with two restriction enzymes, Ndel or Spel
(NEB, USA) which have no recognition sites in the Aadsx cDNA
sequences. Male and female genomic DNA (20 pg) was incubated
with Ndel or Spel enzymes at a final concentration of 5 U/ug, along
with 1x NEBuffer 2, at 37 °C for 16 h and the digested DNA was
electrophoresed overnight at 40 V on a 0.8% agarose gel. After
capillary gel transfer under alkaline conditions (0.4 M NaOH, 1 M
NaCl) to the Hybond N* nylon membrane (Amersham Biosciences,
USA), pre-hybridization was done for 2 h at 65 °C in 10 ml pre-
hybridization solution containing 5x Standard Saline Citrate (SSC),
5x Denhardt’s solution (0.1% w/v bovine serum albumin, 0.1% w/v
Ficoll, 0.1% w/v polyvinylpyrrolidone) and 0.5% SDS. 50 ng of
purified probe DNA (the first exon) was radioactively labeled with
0-32P-dATP using Strip EZ kit (Ambion, USA) and added to the pre-
hybridization solution at a concentration of ~1 x 10® cpm/ml.
Hybridization was carried out overnight at 65 °C and the hybridized
membrane was washed thrice in 2x SSC, 0.1% Sodium Dodecyl
Sulfate (SDS), at 60 °C for 10 min followed by two washes in 0.1 x
SSC, 0.1% SDS, at 60 °C for 5 min. The radioactive membrane was
exposed to Phosphorlmager (Amersham Biosciences, USA) screen
and the results were analyzed with Image-Quant 5.0 software
(Amersham Biosciences, USA).

2.6. Expression profile of Aadsx
RT-PCR was performed to analyze the expression pattern of

Aadsx in different tissues including fatbody, midgut, silkgland,
epidermis, gonads and head. The forward and reverse primers used
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were — “3’RACE_Aad” (5-GCCGTCGGTTCCGCCTTTACAGGCC-3')
and “Aad3'm3” (5-ATTTATGTCCCACACGCTTC-3’). Primers for
AaActin were used as endogenous control. PCR was carried out on
an Eppendorf PCR master cycler using PCR conditions of 94 °C for
2 min (initial denaturation), 40 cycles of 94 °C for 30 s, 60 °C for
30s, 72 °C for 2 min, and final extension at 72 °C for 10 min. All the
female- and male-specific amplicons were sequenced and were
confirmed to be dsx transcripts. RT-PCR was done using combina-
tions of common forward primer (F1) located in the first exon and
eight different reverse primers (R1, R2, R3 R4, R5, R6, R7, R8) located
in different exons of Aadsx (Fig. 1), using cDNA from fatbody as
template. Core mix for a 10 pl PCR reaction was composed of 4.7 ul
H,0, 1 ul 10x PCR reaction buffer, 0.4 ul MgCl, (25 mM), 0.5 pl dNTP
mix (5 mM), 1 ul each of forward and reverse primers (5 pm/ul),
0.8 ul cDNA, 4% DMSO and 0.2 ul Tag DNA polymerase (5 U/ul). The
amplified products were separated on 1.5% agarose gel. The PCR
product was cloned into pCR®II-TOPO® cloning vector (Invitrogen
Life Technologies, USA). The cloned DNA fragments were
sequenced with the ABI PRISM Big Dye Terminator Cycle
Sequencing Ready Reaction Kit and the ABI PRISM 3100 Genetic
Analyzer. The gene-specific and the control primers used in
different RT-PCR and PCR experiments are listed in Table S1
(Supporting information).

2.7. Sequence analysis

The sex-specific Aadsx transcripts were aligned using ClustalWw
(http://www.ebi.ac.uk/Tools/clustalw2/index.html). Exon bound-
aries were marked based on the alignment results, and were
further confirmed by genomic PCR using primers on the adjacent
exons. The sex-specific Amydsx transcripts were also aligned using
ClustalW. The sequences of Aadsx and Amydsx splice forms have
been submitted to GenBank (Accession no. for Aadsxfl, Aadsxf2,
Aadsxf3, Aadsxf4, Aadsxf5, Aadsxf6 and Aadsxm are GU930279,
GU930280, GU930281, GU930282, GU930283, GU930284 and
GU930278, respectively. Accession no. for Amydsxfl, Amydsxf2 and
Amydsxm are GU930285, GU930286 and GU930287, respectively).

2.8. Target regions and double stranded RNA (dsRNA) synthesis

Two regions of the Aadsx transcripts i.e., 574 bp of exon 1 (T1)
(present in all the splice forms of Aadsx) and 116 bp (T2) which
includes 10 bp in exon 2 common to all the female-specific forms,

15 bp of exon 2 specific to Amydsxf1, Aadsxf3 and Aadsxf5 and 91 bp
of exon 3 specific only to Aadsxf1 (Fig. 1) were amplified using the
specific primers, TIF-T1R and T2F—T2R, respectively (Supporting
information, Table S2). The amplicons were cloned in pCR®II-
TOPO® (Invitrogen Life Technologies, USA) followed by amplifica-
tion with M13 forward and reverse primers. These templates with
flanking T7 and SP6 promoters were used for in-vitro synthesis of
sense and antisense RNA strands using T7 and SP6 Megascript kits
(Ambion, USA). The synthesized RNA was treated with DNAse fol-
lowed by purification by Trizol treatment (Invitrogen Life Tech-
nologies, USA) and isopropanol precipitation. The RNA was
dissolved in DEPC treated water, combined in equimolar amounts
in 1x insect buffer saline (NaCl-160 mM, KCI-10 mM, CaCl-4 mM)
and annealed by heating to 95 °C for 10 min followed by overnight
incubation at room temperature. dsRNA specific to ORF (718 bp) of
green fluorescent protein (GFP) was used as a non-target control.

2.9. Injections of dsRNA and knock-down of Aadsx gene

70 ng of dsRNA per larva was injected into a set of 16 (8 males and
8 females) one day old fifth instar A. assama larvae at their fourth
abdominal legs using insulin syringe. GFP-dsRNA injected (n = 15),
saline injected (n = 15) and uninjected larvae of the same devel-
opmental stage were maintained as experimental controls. The
larvae were reared on their natural host plants (Litchia polyantha).
Six days post injection, six (3 males and 3 females) larvae from each
set of injected and uninjected batches were dissected and their
gonads were observed under microscope. Fatbodies of the dissected
larvae were collected separately in ‘RNA-later’ (Ambion, USA) and
stored at —70 °C until further use. The moths eclosed from the
remaining injected and uninjected larvae were allowed to mate and
lay eggs. These eggs were observed till hatching. Mean values of
eggs laid in each group were compared using student’s t-test.

3. Results
3.1. Analysis of A. assama dsx

DOP-PCR generated 490 bp of dsx sequences from A. assama and
A. mylitta. 5 and 3’ RACE-PCRs, performed on total RNA samples
from fatbody of 5th instar male and female larvae, yielded full
length transcripts including UTR sequences. In A. assama, the 5’
RACE-PCR yielded 225 bp sequence upstream of the gene-specific

== A e e,
Aadsxfs 1 1 ] ) Aln)
Aadsyfs [ 1 1 e [ | —
Aadsxz [ I I/\Zliu/\ l_la_lA‘l_Z(\\ 3 {1 7 -
Aadsy/s [ i M t— O am
Aadsx3 [T I I/\@'l/ e —] o N
Aa | 1 e ] e
- - « P + Ale)
Aadsxm [T 1 l_R7 R6 RS R4 [ S| | 1 ]
- - -
F1 RS R2 1aG R1
dsT1 dsT2

(574bp) (116bp)

Fig. 1. Schematic representation of splice forms of Aadsx pre-mRNA, showing the primer positions, probe region and regions used for the preparation of dsRNA for the RT-PCR,
Southern hybridization and RNAi experiments, respectively. Boxes are exons and lines are introns. Pink coloured portion is the ORF whereas blue coloured regions are UTRs. Seven
different splice products of Aadsx pre-mRNA, six female-specific (Aadsxfl Aadsxf2 Aadsxf3 Aadsxf4 Aadsxf5 and Aadsxf6) and one male-specific (Aadsxm), are produced. A (n)
represents the polyadenylation site. Vertical arrows represent stop codon sites whereas horizontal arrows represent primer positions. Hatched boxes indicate 15 bp additional
sequences in the exon 2 present only in Aadsxf1, Aadsxf3 and Aadsxf5. dsRNA produced for exon 1 (T1 region) is of 574 bp whereas it was of 116 bp for T2 region which includes 10 bp
in exon 2 common to all the female splice forms, 15 bp in exon 2 specific to Aadsxf1, Aadsxf3 and Aadsxf5 splice forms and 91 bp of exon 3 specific only to Aadsxf1. Green colour bar
represents the probe region used for Southern hybridization and wavy lines represent the regions used for dsRNA synthesis.


http://www.ebi.ac.uk/Tools/clustalw2/index.html

676 J.N. Shukla, . Nagaraju / Insect Biochemistry and Molecular Biology 40 (2010) 672—682

primer binding site. The 3’ RACE, on the other hand, amplified 6
amplicons of 1092 bp, 1022 bp, 959 bp, 944 bp, 744 bp and 729 bp in
female and one amplicon of 690 bp in male. These were further
confirmed to be genuine stretches of Aadsx transcript by aligning
the overlapping sequences and performing BLASTx searches. All the
seven dsx (six female- and one male-specific) sequences revealed
overlapping and non-overlapping regions. The full length
sequences of sex-specific Aadsx transcripts were confirmed after
the assembly of the RACE sequences with the sequence obtained
through DOP-PCR. RT-PCR with the specific primers, 3’'RACE_Aad
and Aad3’m3 in the first and the last exons, respectively using male
and female fatbody cDNAs as template generated six amplicons
(Aadsxf1, Aadsxf2, Aadsxf3, Aadsxf4, Aadsxf5 and Aadsxf6) in female
and one in male (Aadsxm). RT-PCR using cDNA as template from
different tissues of assama also yielded similar results (Fig. 2). In
addition, we observed very faint male-specific transcript in all the
female tissues examined (Fig. 2).

Alignment of sequences of full length Aadsx transcripts
(Supporting information, Fig. S2), RT-PCR results and genomic PCR
results (not shown) confirmed that Aadsx gene is comprised of seven
exons of variable lengths (Table 2). Exons 2—5 are skipped in males,
leading to change in the reading frame (Fig. 1). Exons 1, 2,4 and 7 are
common to all the female-specific dsx transcripts; exons 3 and 5 are
specific to Aadsxfl and Aadsxf2, respectively and exon 6 is present in
Aadsxfl, Aadsxf2, Aadsxf3 and Aadsxf4 and absent in Aadsxf5 and
Aadsxf6 (Table 1). A 15 bp stretch (GTACGGACTTTAATA), generated as
a result of alternative 5’ splice site selection at exon 2, is present in
the female-specific transcripts Aadsxf1, Aadsxf3 and Aadsxf5 (Fig. 1).
Tissue-specific expression profile showed no difference in the
expression pattern of different Aadsx splice forms in different tissues
(Fig. 2) and in different developmental stages tested (data not
shown). RT-PCR, using the common forward primer (in the first
exon) in combination with different reverse primers (in different
exons) (Fig. 1), gave the expected numbers and sizes of the amplicons
in both male and female (Fig. 3). The primer combinations, the
amplified transcripts and the lengths of the amplicons in each
RT-PCR experiments are summarized in Table 3.

3.2. Analysis of A. mylitta dsx

In A. mylitta, a single sequence of 229 bp (upstream of the
primer binding site) was obtained from 5’ RACE-PCR product, in
both the sexes whereas 3’ RACE-PCR products yielded two
sequences (downstream of primer binding site) of 845 bp and
860 bp in female and one sequence of 590 bp in male. Two female
(Amydsxfl and Amydsxf2) and one male-specific (Amydsxm)

Fatbody = Gonad  Head  Silkgland Midgut Skin
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AadefT (913 )
Aadsxf? (843 )
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Aadsxfs (550)
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Fig. 2. RT-PCR using cDNA from different A. assama tissues as template and forward
(3’RACE_Aad) and reverse (Aad3’m3) primers designed in the common region of the
first and last exons of Aadsx (see text). Multiple bands were amplified in all the female
organs whereas only single band was amplified from the male organs which were
subsequently confirmed to be Aadsx transcripts. The splice variants are mentioned on
the left of the diagram. A. assama B-actin gene was amplified as a control. Faint male-
specific band (indicated by star) amplified in all the female tissues.

Table 1
Transcript lengths of Aadsx and Amydsx, presence of different exons in sex-specific
transcripts of Aadsx.

Serial No. Transcript Length of the Exons present
transcript (bp)

1 Aadsxf1 1746 1,2,3,4,6,7

2 Aadsxf2 1676 1,2,4,5,6,7

3 Aadsxf3 1614 1,2,4,6,7

4 Aadsxf4 1598 1,2,4,6,7

5 Aadsxf5 1398 1,2,4,7

6 Aadsxf6 1383 1,2,4,7

7 Aadsxm 1344 1,6,7

8 Amydsxf1 1587 -

9 Amydsxf2 1603 -

10 Amydsxfm 1333 —

Note: The second exon of Aadsxf1, Aadsxf3 and Aadsxf5 differs from that of Aadsxf2,
Aadsxf4 and Aadsxf6 by the presence of 15 bp stretch generated as a result of
alternative 5’'splicing.

sequences were assembled. The RT-PCR using primers (F1 and
Amydsx_R2) designed from the beginning (F1) to the end
(Amydsx_R2) of the Amydsx transcripts confirmed the RACE results
(Fig. 4). The full length Aadsx and Amydsx transcript sizes are given
Table 1.

We could not deduce the exon—intron boundaries for Amydsx
gene. Alignment of sex-specific Amydsx transcripts (Supporting
information, Fig. S3) confirmed the existence of two female splice
forms whose difference is attributed to the same stretch of 15 bp
sequence as observed in Aadsx.

3.3. Fourth exon sequence of Bmdsx is conserved
in Aadsx and Amydsx

As described earlier, 4th exon of Bmdsx contains the cis-acting
element (PESS-Putative Exonic Splicing Silencer) responsible for
the sex-specific splicing of Bmdsx pre-mRNA and skipping of exon 3
and exon 4 in Bmdsxm splice form. On analyzing the nucleotide
sequence of Aadsx and Amydsx transcripts, we found that the
nucleotide sequence of 4th exon of Bmdsx is relatively well
conserved in Aadsx and Amydsx. Notably, the PESS sequence of
Bmdsx is 100% conserved (Fig. 5). This sequence is present in all the
female splice variants of Aadsx as well as in the female splice forms
of Amydsx, but not in the male splice variants.

3.4. Genomic copy number of Aadsx

To test whether the multiple sex-specific Aadsx transcripts are
produced as a consequence of alternative splicing of pre-mRNA
from a single gene or are transcribed by more than one gene, copy
number of Aadsx gene was determined by Southern hybridization.
Genomic DNA from male and female larvae was digested separately
using two different restriction enzymes (Ndel or Spel). 370 bp from
the common region (first exon) of Aadsx transcripts (Fig. 1) was

Table 2
Exons of Aadsx and their corresponding length.

Serial No. Exon No. Exon length (bp)
1 Exon 1 741

2 Exon 2 84 or 99°

3 Exon 3 133

4 Exon4 170

5 Exon 5 78

6 Exon 6 215

7 Exon 7 388

2 Exon 2 of transcripts Aadsxf1, Aadsxf3 and Aadsxf5 is of 99 bp whereas exon 2 of
Aadsxf2, Aadsxf4 and Aadsxf6 is of 84 bp.
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Fig. 3. RT-PCR using cDNA from A. assama fatbody as template and the combinations of one common forward (F1) and eight different reverse (R1-R8) primers (Fig. 1). A) RT-PCR of
the first combination (F1 x R1) has been shown in an enlarged view for clarity and the molecular sizes of the amplified bands has been indicated on left of the figure. B) RT-PCR
products generated by primer combinations F1 x R2, F1 x R3 and F1 x R4 resolved on the same gel. M is the 1 kb marker C) RT-PCR by the primer combinations F1 x R5, F1 x R6,
F1 x R7,F1 x R8 and A. assama B-actin. M is the 1 kb marker.Number of amplicons is consistent with the primer set used. The primer combinations, the amplified transcript(s) and
the length(s) of the amplicons in each of the RT-PCR experiments are summarized in Table 3.

used as a probe for hybridization. A single band, common to both
the sexes hybridized to the probe (Fig. 6), suggesting that Aadsx is
present as a single copy per haploid genome.

3.5. Sex-specific proteins encoded by Aadsx and Amydsx transcripts

On the basis of virtual translation, the six female-specific Aadsx
transcripts can be grouped into two, three transcripts (Aadsxf2,

Table 3
Aadsx transcripts amplicon size profile using different primer-pairs.
S. No. Primer Transcripts amplified Amlicon
combinations size (bp)

1 F1 x R1 Aadsxf1 1705
Aadsxf2 1635
Aadsxf3 1572
Aadsxf4 1557
Aadsxf5 1357
Aadsxf6 1342
Aadsxm 1303

2 F1 x R2 Aadsxf1 1342
Aadsxf2 1272
Aadsxf3 1209
Aadsxf4 1194
Aadsxm 940

3 F1 x R3 Aadsxf2 1064

4 F1 x R4 Aadsxf1 1037
Aadsxf2, Aadsxf4, Aadsxf6 889
Aadsxf3, Aadsxf5 904

5 F1 x R5 Aadsxf1 929

6 F1 x R6 Aadsxf1, Aadsxf3, Aadsxf5 849

7 F1 x R7 Aadsxf1, Aadsxf2, Aadsxf3, Aadsxf4, 815
Aadsxf5, Aadsxf6

8 F1 x R8 Aadsxf1, Aadsxf2, Aadsxf3, Aadsxf4, 662

Aadsxf5, Aadsxf6, Aadsxm

Note: All the different Aadsx transcripts in this table are represented by f1—f6
(female-specific transcripts) and m (male-specific transcript).

Aadsxf4 and Aadsxf6) coding for the female-specific protein,
AaDSXf! and the other three transcripts (Aadsxfl, Aadsxf3 and
Aadsxf5) coding for the second female-specific protein, AaDSX"™
(Fig. 7). The male-specific splice form, Aadsxm, on the other hand,
codes for only one male-specific protein, AaDSX™ (Fig. 7). The two
female-specific Amydsx transcripts encode two female-specific
putative proteins (AmyDSX"! and AmyDSX") whereas the male-
specific transcript encodes male-specific putative protein
AmyDSXM (Fig. 7). The putative DSX proteins of A. assama and
A. mylitta, DSXT!, DSX™ and DSXM are of 265aa, 247aa and 279aa,
respectively.

The deduced amino acid (aa) sequences of DSX proteins enco-
ded by sex-specific Aadsx and Amydsx transcripts can be divided

Fatbody

? d

Amydsxf2
(1434bp)
Amydsxfl
(1418bp)

Amydsxm
(1163bp)

Fig. 4. RT-PCR using cDNA from A. mylitta fatbody as template and forward (F1) and
reverse primers (Amydsx_R2), designed in the first and last exons of Amydsx (see text).
Two Amydsx bands are amplified in female whereas only single band is amplified in
male. Amydsx splice variants and their respective sizes are indicated on the left side of
the diagram.
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Aadsx GARAATGCTGGAAATTAATAATATAAGTGGTGTACTGTCGTCATCGATGAAGTTATTTTG 60

Amydsx GAAAATGCTGGAAATTAATAATATAAGTGGTGTACTGTCGTCATCGATGAAGTTATTTTG 60

Bmdsx GAAAATGCTGGAAATTAATAATATAAGTGGTGTACTGTCTTCGTCAATGAAGTTATTTTG 60
khkkhk kARt A A A A AR A AR Ak d R Ak dhk kAR bd bbbt

Aadsx CGAATGATACTTTGTTTTACGAGTGCCGTGGTTTTTGTGGACACATGCTGTGCGATGCTC 120

Amydsx CGAATGATACTTTGTTTTACGAGTGCCGTGGTTTTTGTGGACACATGCTGTGCGTTGCTC 120

Bmdsx CGAATGATACTTAGTTTTACAAGTGCCGTGETGTGTGTTGACACTTGCTGTGCGATGCTG 120
hkhkhkhkhkhhhhhhkd hhkhkhhkddt hhdhhhdhdddt * hhd Shkhdkd Sdhhdhdhhd Shhd

Aadsx TGTGTTGCGAATTTCAACGGACAATTGTGTTGTCGCTTCACTGGACATTTAG 172

Amydsx TGTGTTGCGAATTTCAACGGACAATTGTGTTGTCGCTTCACTGGACATTTAG 172

Bmdsx TGmmm== CGAATTTCAACGGARATATTTGTTGTCGTAACATTGGATCTATGG 167

* & hhhk ARk kA kA eh *

R T T T T LT

gk dedokk * * K

Fig. 5. ClustalW alignment of 4th exon of Bmdsx and Aadsx and the corresponding sequence of Amydsx. The Bmdsx nucleotide stretch in the yellow background is the cis-acting
element responsible for the skipping of Bmdsx exon 3 and exon 4 in males (Suzuki et al., 2008).

into three parts: the region common to both the sexes (aa 1-216),
the female-specific regions (aa 217—265 of DSX'! and aa 217—247 of
DSX?), and the male-specific region (aa number 217—279) (Fig. 7).
The female-specific (DSX'! and DSX™) and male-specific (DSXM)
proteins are similar at their N-termini but differ at their C-termini,
starting from the C-terminal region of DBD/OD2 domains. Both the
female proteins (DSXF! and DSXF?) differ at their C-termini by 21aa
(Fig. 7). The predicted AmyDSX and AaDSX proteins in both male
and female were 100% identical at OD1 and OD2 domains but at
nucleotide level their identity was 92 and 93% respectively. But
both the proteins differed from BmDsx by 4 out of 63 residues at
OD1 domain and 5 out of 61 residues at OD2 domain (90% identity)
with 80% identity at nucleotide level (Fig. 7, Fig. S3A). In contrast to
their female counterparts, the male-specific regions were
remarkably poorly conserved (Fig. 7). Both AaDSX and AmyDSX
male-specific regions differed from that of BmDSX by 31 out of 51
residues. The otherwise remarkably well conserved AaDSX and
AmyDSX also differed from each other by as many as 5 out of 63
residues in this region (Fig. 7).

3.6. In vivo knock-down of Aadsx by RNAi inhibits the expression
of downstream genes required for female sexual differentiation

In order to establish the functional conservation of Aadsx gene,
the dsRNA specific to different regions (Fig. 1) of Aadsx transcripts
were administered into the haemocoel of A. assama larvae. Four
different parameters were checked for the effectiveness of RNAi
experiments: a) Absence of target transcript/s, b) Change in the
expression profile of Aadsx downstream target genes, c) Change in
the anatomy and morphology of sex organs and secondary sexual
characters, and d) Mating behaviour, egg laying and hatching of the
eggs. To check the downstream effect of Aadsx transcript/s knock-
down, the expression profile of two A. assama genes i.e., vitellogenin

Fig. 6. Aadsx is present as a single copy per haploid genome. Southern hybridization
was performed with a radiolabeled probe common to both male and female Aadsx
(Fig. 1), that has no restriction site recognized by any of the two enzymes used. The
molecular sizes of the hybridized bands are indicated on the right side of the figure.

and hexamerin were analyzed by semi-quantitative RT-PCR. In
insects, vitellogenin and hexamerin genes are the direct targets of
the DSX proteins, and are predominantly expressed in females
(Burtis et al., 1991; Coschigano and Wensink, 1993; Izumi et al.,
1988; Suzuki et al., 2003; Yano et al., 1994; Zakharkin et al. 2001).
Expression of vitellogenin and hexamerin homologues in A. assama
is also female-specific as confirmed by RT-PCR results (Fig. 8).
RT-PCR of cDNA from female larval fatbody showed complete
abolishment of the target transcripts in the Aadsx-specific dsSRNA
treated larvae whereas in male organs Aadsx transcript remained
unaffected (Fig. 8). Though no significant morphological defect was
observed in the moths eclosed from the RNAi-treated larvae, at
molecular level, expression of vitellogenin and hexamerin gene was
completely abolished in all the Aadsx-dsRNA treated female larvae
(Fig. 8). The gonads of the dsRNA injected female larvae were
deformed and shrunken compared to those of control female larvae
(Fig. 9). No knock-down effect was observed seen at molecular level
in the treated males. We also checked Aadsx knock-down effect in
the next generation offspring by crossing female and male moths
derived from Aadsx-dsRNA injected larvae; T1 females with T1
males, T2 females with T2 males and control females with control
males. The number of eggs laid by the knock-down females mated
with knock-down males reduced drastically in all the Aadsx-dsRNA
injections compared to that of control females (P > 0.0001)
(Table 4). Moths derived from the dsGFP and saline injected larvae
laid the same number of eggs as that of uninjected control (Table 4).
The eggs laid by moths derived from different crosses of treated
individuals failed to hatch, whereas moths derived from uninjected
females mated with Aadsx-dsRNA injected males recorded normal
fecundity and hatchability (Table 4).

4. Discussion

Production of sex-specific doublesex (dsx) transcripts is a general
feature reported till date in insects where dsx has been character-
ized. In all the dipteran dsx reported so far, one male- and one
female-specific transcripts are produced using alternative splicing
and alternative polyadenylation. The same is also true for the
lepidopteran, B. mori dsx gene (Bmdsx) (Ohbayashi et al., 2001). One
exception is the A. mellifera dsx (Amdsx) gene, which produces 4
alternatively spliced transcripts, two specific to female, one specific
to male and one common to both the sexes. Both the female-
specific transcripts share a common ORF, coding for the similar
putative protein (Cho et al., 2007). A generalized fact that emerges
from the available data on dsx genes and their splice forms in
different organisms is, dsx produces sex-specific alternatively
spliced transcripts to produce one male- and one female-specific
DSX proteins which differ only at their extreme C-termini.

In the study reported here we show that both Aadsx and Amydsx
produce sex-specific transcripts. Unlike the case of dsx splicing in
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Fig. 7. Amino acid sequence alignment of DSX proteins of A. mylitta (Amy), A. assama (Aa), B. mori (Bm) and D. melanogaster (Dm). The sequence is divided into (A) the region common to
males and females, (B) the conserved female-specific region and (C) the male-specific region. The DNA binding domain (OD1) is boxed in blue and oligomerization domain (OD2) is shown
in green. Three female splice forms (Aadsxf2, Aadsxf4 and Aadsxf6) of Aadsx code for AaDSXF1 whereas the other three splice forms (Aadsxf1, Aadsxf3 and Aadsxf5) code for AADSXF2. The
two female splice forms of Amydsx code for two female-specific proteins, AmyDSXF1 and AmyDSXF2.The female splice forms of Bmdsx also encode two female-specific proteins, BmDSXF1
and BmDSXF2 (Shukla, Jadhav and Nagaraju, In press). The female splice forms of Dmdsx code for single female-specific protein, DmDSXF. The male-specific transcripts of Aadsx, Amydsx,
Bmdsx and Dmdsx encode only one male-specific protein, AaDSXM, AmyDSXM, BmDSXM and DmDSXM, respectively. The two female-specific proteins, F1 (purple shaded) and F2 (orange
shaded) in all the three species of silkmoths differ in their size. The male-specific proteins differ from the female-specific proteins in their C-terminal regions.
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Fig. 8. Expression profile of Aadsx, hexamerin and vitellogenin genes in the fatbody
tissue of knock-down and control larvae. Complete abolishment of vitellogenin and
hexamerin expression was observed in females with the knock-down of Aadsx tran-
scripts. Males were unaffected by the dsRNA injections. A. assama B-actin gene was
used as a loading control.
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Table 4
Effect of dsRNA injections on egg laying and their hatching.

Injection type No. of eggs laid No. of eggs hatched

T1 =16 No hatching
T2 =19 No hatching
Control (dsGFP) =170 170 (all)
Control (Uninjected) =170 171 (all)

There is a significant difference (P < 0.0001) in the number of eggs laid by control
moths and the treated moths.

other insect species, the pre-mRNA of Aadsx gene sex-specifically
splices to produce six splice variants in female and one in male
whereas the pre-mRNA of Amydsx gene splices to produce two
female- and one male-specific transcripts. As in the case of Bmdsx,
there is no dsxRE (TRA/TRA-2 binding sequence) and PRE sequences
in any of the Aadsx and Amydsx transcripts. Analysis of different

Ovary

Fig. 9. Effect of Aadsx-dsRNA injections on the larval gonads. Control gonads are from the larvae injected with dsGFP. Testis of the experimental larvae seems to be normal
(consistent with the expression of Aadsxm — Fig. 8) whereas the ovaries are deformed compared to the ovaries of control larvae.
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splice variants of Aadsx revealed splice junctions which were
further confirmed through genomic PCR results. All these results
indicated the presence of 7 exons in Aadsx gene. The PESS sequence,
responsible for sex-specific splicing of Bmdsx (Suzuki et al., 2008),
was found to be 100% conserved in Aadsx and Amydsx which points
to the existence of a common mechanism of sex-specific splicing of
dsx in silkmoths. It remains to be investigated whether or not these
sequences are involved in splicing regulation of Aadsx and Amydsx.
The female-specific Aadsx transcripts having common ORF differ in
their 3’ UTR region which might have some regulatory significance
since UTRs are the known targets of proteins or miRNAs for spatial
and temporal regulation of translation (Ambros, 2004; Beckmann
et al,, 2005). Difference in the ORFs of two groups of female-
specific Aadsx transcripts and two female-specific Amydsx tran-
scripts is due to the presence or absence of a 15 bp stretch which
results in the alternative 5’ selection at exon 2. The two female-
specific DSX proteins (DSX"' and DSX?) of A. assama and A. mylitta
share all the features of a functional DSX protein. They have
common DNA binding (OD1 domain) and oligomerization domain
(OD2 domain) but differ in their amino acid composition at their
extreme C-terminal ends; the longer of the two female-specific Dsx
proteins (AaDSX! and AmyDSX™!) has additional 21aa whereas the
shorter one (AaDSX™ and AmyDSX™) has an additional stretch of
3aa, after the common region (1—244 aa). As is the case with sex-
specific DSX proteins of the other insect species, the AaDSXM and
AmyDSXM proteins differ from female DSX proteins at their
C-termini such that the C-terminal region of OD2 domain is
different in the sex-specific DSX proteins.

In light our finding of two female splice forms of Aadsx and
Amydsx encoding two female-specific DSX proteins, we revisited the
Bmudsx splice forms. We searched for the 15 bp stretch, which results
in two female splice forms in Anthearea, in the B. mori EST database,
which led to the identification and confirmation of existence of
a novel female splice form of Bmdsx (Bmdsxf1) having this stretch.
The protein (BmDSX!) encoded by Bmdsxf1 is identical to BmDSXF
protein reported earlier except for the difference in their extreme
C-terminal regions such that after the identical region till aa 243,
BmDSXF! contains 3 additional aa whereas BnDSXF contains 21aa
(Shukla, Jadhav and Nagaraju, manuscript communicated).

Existence of two female-specific DSX proteins in silkmoths
(A. assama, A. mylitta and B. mori) raises a possibility that both are
required to exert effect on their downstream genes involved in
sexual differentiation. Our results on RNAi mediated knock-down
experiments in A. assama corroborate our contention. The complete
abolishment of expression of vitellogenin and hexamerin genes that
are downstream target genes of dsx, deformed gonads of the
injected female larvae, reduced fecundity and complete lethality of
eggs derived from the Aadsx-dsRNA treated larvae underscore the
importance of Aadsx as a terminal regulatory gene in the hierarchy
of regulatory genes controlling the sexual differentiation of
A. assama. The failure of knock-down in male larvae may be because
of the secondary structure of male-specific transcript Aadsxm,
which does not allow the dicer components to access the transcript
(Shao et al., 2007). The effect of knock-down seen at the molecular
level is consistent with the complete failure of egg hatching in the
treated batches; however, no visible morphological changes were
noticed. It may be because of the involvement of additional factors
in the sexual differentiation of the organism, governed by the
common upstream signal but making a separate path other than
the DSX, to regulate all aspects of sexual differentiation. The knock-
down of the transcripts having 15 bp additional sequence
(contributing to the change in the ORF) also gave the same results
as that of the knock-down of all the Aadsx transcripts together. This
raises two possibilities: (i) Both the female-specific AaDSX proteins
are essential for the process of female sexual differentiation. (ii)

Alternatively, the group of transcripts that code for the longer
protein (AaDSXF!) may not have any function, as a result, either
knock-down of all the transcripts at a time or only the knock-down
of transcripts of second group (Aadsxfl, Aadsxf3 and Aadsxf5)
produces similar results. The first possibility seems reasonable
considering the existence of two female-specific transcripts having
two different ORFs in another wild silkmoth, A. mylitta, similar to
that of Aadsx. Further functional characterization of these proteins
and their binding to the regulatory sequences of the downstream
genes may shed light on this aspect. Another evidence for the
requirement of both the female-specific DSX proteins in the sexual
differentiation process comes from B. mori transgenesis experi-
ments where silkworm transgenic lines ectopically expressing
BmDSXF showed less pronounced sexual differentiation process
and change in the morphology and expression levels of vg, Sp1 and
PBP genes compared to those that ectopically expressed BmDSXM.
These results suggest the recruitment of additional factor by the
BmDSXF protein to exert its effect fully on female sexual differen-
tiation (Suzuki et al., 2003, ,2005). The BmDSX"! that we have
identified may indeed be this additional factor. The existence of two
DSXF forms in all the silkmoths we studied, and the results obtained
with the Aadsx knock-down suggest that both the DSX proteins are
important in sexual differentiation in silkmoths. We believe that
our finding of dsx splice forms encoding two female-specific
proteins (DSX! and DSX2), opens up avenue to gain insight into
the sexual differentiation process governed by DSX proteins in the
lepidopterans.
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