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Design of Multiunit Electronic Exchanges
Through Decomposition

Pankaj Dayama and Y. Narahari

Abstract—In this paper, we exploit the idea of decomposition to match
buyers and sellers in an electronic exchange for trading large volumes of
homogeneous goods, where the buyers and sellers specify marginal-de-
creasing piecewise constant price curves to capture volume discounts.
Such exchanges are relevant for automated trading in many e-business
applications. The problem of determining winners and Vickrey prices in
such exchanges is known to have a worst-case complexity equal to that of
as many as (1 + + ) NP-hard problems, where is the number of
buyers and is the number of sellers. Our method proposes the overall
exchange problem to be solved as two separate and simpler problems:
1) forward auction and 2) reverse auction, which turns out to be general-
ized knapsack problems. In the proposed approach, we first determine the
quantity of units to be traded between the sellers and the buyers using fast
heuristics developed by us. Next, we solve a forward auction and a reverse
auction using fully polynomial time approximation schemes available in
the literature. The proposed approach has worst-case polynomial time
complexity and our experimentation shows that the approach produces
good quality solutions to the problem.

Note to Practitioners— In recent times, electronic marketplaces have pro-
vided an efficient way for businesses and consumers to trade goods and
services. The use of innovative mechanisms and algorithms has made it
possible to improve the efficiency of electronic marketplaces by enabling
optimization of revenues for the marketplace and of utilities for the buyers
and sellers. In this paper, we look at single-item, multiunit electronic ex-
changes. These are electronic marketplaces where buyers submit bids and
sellers ask for multiple units of a single item. We allow buyers and sellers to
specify volume discounts using suitable functions. Such exchanges are rel-
evant for high-volume business-to-business trading of standard products,
such as silicon wafers, very large-scale integrated chips, desktops, telecom-
munications equipment, commoditized goods, etc. The problem of deter-
mining winners and prices in such exchanges is known to involve solving
many NP-hard problems. Our paper exploits the familiar idea of decom-
position, uses certain algorithms from the literature, and develops two fast
heuristics to solve the problem in a near optimal way in worst-case polyno-
mial time.

Index Terms—Forward auction, generalized knapsack problem, mar-
ginal-decreasing piecewise constant bids, multiunit exchanges, reverse
auction, volume discounts.

I. INTRODUCTION

In recent times, electronic marketplaces or electronic exchanges
have provided an efficient mechanism for businesses and consumers to
trade goods and services. In this paper, we consider single-item, mul-
tiunit electronic exchanges. These are e-marketplaces where buyers
(or buying agents) and sellers (or selling agents) submit bids and ask
for multiple units of a single item. Such exchanges are relevant for
high-volume business-to-business (B2B) trading of standard products,
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such as silicon wafers, very-large scale integrated (VLSI) chips,
desktops, telecommunications equipment, commoditized goods, etc.
We assume that the bids and asks submitted by the buyers and sellers
are marginal-decreasing piecewise constant functions. Such functions
help the buying agents and selling agents to specify volume discounts
(often called quantity discounts). A buyer can specify a lower bound
on the number of units he or she demands and a seller can specify an
upper bound on the number of units he or she can supply. Here, we
consider single-shot, sealed bid exchanges. There are two optimization
problems involved with such exchanges:

1) allocation problem (also called trade determination problem or
winner determination problem): determining how much will be
bought by each buying agent and how much will be sold by each
selling agent;

2) pricing problem: determining the net payment to be made by each
(winning) buying agent and the net payment to be made to each
(winning) selling agent.

Even with many restrictions on the structure of bids and asks submitted
by the buyers and sellers, the allocation problem turns out to be in-
tractable [1]. If, in addition, truth revelation properties are required
from the buying and selling agents, the computation of payments will
involve solving several such intractable problems [1]. In this paper, our
approach to the problem is to solve it approximately, using a simple
decomposition idea, and to come up with a computationally efficient
solution that provides near optimal solutions.

A. Relevant Work

There are excellent survey papers in the area of auctions and
exchanges. For example, the reader is referred to the books [2]–[4]
and the survey articles [1], [5]–[10]. Other popular references are
[11]–[14]. Here, we provide a brief review of relevant literature in
the areas of 1) single-item, multiunit auctions and 2) single-item,
multiunit exchanges.

1) Single-Item, Multiunit Auctions: Our paper uses the results in the
recent work of Kothari et al. [15] on approximately strategy-proof and
tractable multiunit auctions. In [15], the authors consider single-item,
multiunit auctions where the bidders use marginal-decreasing, piece-
wise constant functions to bid on homogeneous goods. Both forward
auction (single seller and multiple buyers) and reverse auction
(single buyer and multiple sellers) are considered. In the forward
auction, the objective is to maximize the revenue for the seller and
in the reverse auction, the objective is to minimize the cost for the
buyer. It is shown that the allocation problems are generalizations
of the classical 0=1 knapsack problem, hence, NP hard. Computing
Vickrey–Clarke–Groves (VCG) payments [1] is also addressed.
The authors develop a fully polynomial time approximation scheme
(FPTAS) for the generalized knapsack problem. This leads to an
FPTAS algorithm for allocation in the auction which is approximately
strategy proof and approximately efficient. It is also shown that
VCG payments for the auctions can be computed in the worst-case
O(T logn) time, where T is the running time to compute a solution
to the allocation problem.

Eso et al. [16] address the procurement problem faced by a buyer
who wishes to buy large quantities of several heterogeneous products.
Suppliers submit piecewise linear curves for each product indicating
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the price as a function of the supplied quantity. The problem of
minimizing the purchasing cost turns out to be intractable. The authors
develop a flexible column generation-based heuristic that provides
near-optimal solutions to the bid selection problem using branch and
price methodology. Similar problems have been investigated in [17]
and [18]. However, in all of these papers, the issue of pricing so as to
induce truth revelation by the agents has not been discussed.

Dang and Jennings [19] consider multiunit auctions where the bids
are piecewise linear curves. Maximizing the revenue of the auctioneer
is the objective. Algorithms are provided for solving the allocation
problem. In the case of multiunit, single-item auctions, the complexity
of the allocation algorithm is O(n(K + 1)n), where n is the number
of bidders and K is an upper bound on the number of segments of the
piecewise linear pricing functions. The algorithm therefore has expo-
nential complexity in the number of bids.

2) Single-Item, Multiunit Exchanges: Kalagnanam, Davenport,
and Lee [20] consider continuous call double auctions which are also
known in the literature as clearing houses or call markets. In such
a market, the marketplace collects bids from buyers and asks from
suppliers over a fixed time period and clears the market at the end of
the time period. A bid specifies quantity and price. Similarly, an ask
specifies a quantity and price. Three cases are considered.

1) Any part of a bid may be matched with any part of any ask. In this
case, the allocation problem can be solved in log linear time.

2) When there are assignment constraints, that is, some demands can
only be assigned to some supplies, then the allocation problem can
be solved in polynomial time using network flow algorithms.

3) If the demand is indivisible, that is, a given demand is constrained
to be satisfied by exactly one ask only, the allocation problem turns
out to be NP-hard.

The above results are summarized in [1].
Dailianas et al. [21] consider marketplaces for bandwidth in a net-

work services economy. The buyers specify bid curves which specify
the unit price requested as a function of quantity. Similarly, the sellers
specify offer curves that specify the unit price as a function of quantity
offered. Three types of objectives are considered:

1) profit maximization: maximize profit on the price spread between
the aggregated bids and aggregated offers;

2) buyer satisfaction: match the demand of all buyers and find the
best combination of seller offers that will maximize the profit;

3) minimum liquidity: match the demands of at least a certain per-
centage of buyers while guaranteeing some minimum profit for
the marketplace.

Both exact and heuristics-based solutions are explored for each of the
three objectives and an analysis of the performance of the solutions is
reported.

The authors in [22] discuss a variety of allocation algorithms. The au-
thors consider markets where there are multiple indistinguishable units
of an item for sale (or there are multiple units of multiple items for
sale, but different items can be treated independently as belonging to
different markets). The bids are in the form of supply curves (selling
agents) and demand curves (buying agents) that specify price quan-
tity relationships. These curves are assumed to be piecewise linear.
The objective is to maximize the total surplus. Two different pricing
schemes are considered: nondiscriminatory (all sellers share the same
price and all buyers share the same price) and discriminatory (each
seller and each buyer may be associated with a different price). The
authors present a polynomial time algorithm for clearing nondiscrim-
inatory markets and show that clearing discriminatory markets is NP
complete. If the supply and demand curves are linear, then discrimina-
tory markets can also be cleared in polynomial time.

B. Contributions and Outline

We found the following research gaps in the literature:
• the allocation problem in the general case of multiunit, single item

exchanges and auctions with marginal decreasing, piecewise con-
stant bids is NP-hard; polynomial time algorithms have been pro-
posed for the allocation problem only in very special cases;

• most of the papers do not consider the pricing problem; this is an
important issue because appropriately computed prices can induce
truthful bids by all of the agents.

Motivated by these research gaps, this paper explores the following
directions in the context of single-item, multiunit exchanges where the
bidders specify marginal decreasing piecewise constant price curves.

• We use the familiar idea of decomposition to solve the allocation
and pricing problems by solving two separate simpler problems:
a forward auction and a reverse auction.

• We propose two fast heuristics to compute the trading quantity
to be used for the forward and reverse auctions. The heuristics
have worst-case polynomial time complexity and produce nearly
optimal values of trading quantity. The use of these heuristics in
a decomposition-based approach has worst-case polynomial time
complexity whereas the direct approach for solving the allocation
and pricing problems has a computational complexity equal to that
of as many as (1 + m + n) NP-hard problems where m is the
number of buyers and n is the number of sellers.

• Using appropriate and extensive numerical experiments, we show
the efficacy of the proposed approach and the proposed heuris-
tics, in terms of quality of solutions produced, computational ef-
ficiency, and ability to induce truth revelation by the bidders.

This paper is organized in the following way. Section II describes the
notation and formulations that will be used in the rest of the paper. First,
we present the formulation of optimization problems in a multiunit ex-
change where buying agents and selling agents submit marginal de-
creasing price functions. We show the formulation for the 1) allocation
problem and 2) computation of Vickrey payments. We also show how
the exchange problems can be solved using a simple decomposition ap-
proach involving a forward auction and a reverse auction. In Section III,
we present two fast heuristics to determine the optimal quantity to be
traded, which will be required in solving the forward auction and re-
verse auction. Section IV presents the results of a wide range of exper-
iments carried out.

II. ALLOCATION AND PRICING PROBLEMS IN

SINGLE-ITEM MULTIUNIT EXCHANGES

The notation is described in Table I. The exchange we consider can
be described as follows.

• There is a set of buying agents M = f1; . . . ;mg and a set of
selling agents N = f1; . . . ; ng.

• The buying agents submit bidsB = fB1; . . . ; Bmg, respectively.
A bid is a list of pairsBi = [(u1i ; b

1
i ); . . . ; (u

m �1

i ; b
m �1

i )], with
an upper bound of umi on the quantity, where u1i < u2i < � � � <
u
m
i ; b1i > b2i > � � � > b

m �1

i . Here, the bidder’s valuation in
the quantity range [uji ; u

j+1
i ) is bji for each unit. Note that the bid

structure here enables the buyers to specify quantity or volume
discounts.

• The selling agents submit asks A = fA1; . . . ; Ang, respectively.
An ask is a list of pairs AI = [(U1

I ; a
1
I); . . . ; (U

M �1

I ; a
M �1

I )]
with an upper bound of UMI on the quantity, where U1

I < U2
I <

� � � < U
M

I ; a1I > a2I > � � � > a
M �1

I . Note that the bid structure
here enables the sellers to offer quantity or volume discounts.
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TABLE I
NOTATION FOR THE ALLOCATION PROBLEM

Fig. 1. Bid submitted by a buying agent.

• We can interpret each list of tuples as a price function

Pbid;i(q) =

qb
j
i ; if uji � q < u

j+1
i ,

where j = 1; 2; . . . ; mi � 1

qb
m �1

i ; if q = u
m
i

Pask;I(q) =

qaJI ; if UJ
I � q < UJ+1

I ,
where J = 1; 2; . . . ;MI � 1

qa
M �1

I ; if q = U
M :

I

An example of a bid submitted by a buying agent is given in Fig. 1.
Here, the buying agent bids a price of 100 per unit (p.u.) for a quan-
tity in the range [10,21], 98 p.u. for the range [21,31], 95 p.u. for the
range [31,46], and 93 p.u. for the range [46,50]. An example of an ask
submitted by a selling agent is given in Fig. 2. Here, the selling agent
offers a price of 40 p.u. for a quantity in the range [5,16], 38 p.u. for
the range [16,36], and 37 p.u. for the range [36,50].

A. Allocation Problem

In the exchange described above, the allocation problem is formu-
lated as follows. We choose the surplus to the exchange (also called

revenue to the exchange) as the objective to maximize. The surplus
is defined as the total payment received from all of the winning buyers
minus the total payment made to all of the winning suppliers. The main
constraint to be satisfied is that the total number of units sold to the
buyers should be less than the total number of units procured from the
sellers. The notation is described in Table I

Maximize

S(M;N) =
i2M j=1;...;m �1

x
j
i b
j
i

�

I2N J=1;...;M �1

X
J
I a

J
I

subject to

i2M j=1;...;m �1

x
j
i �

I2N J=1;...;M �1

X
J
I (1)

x
j
i �Zy

j
i

8i 2M; j = 1; . . . ; mi � 1 (2)

X
J
I �ZY

J
I

8I 2 N; J = 1; . . . ;MI � 1 (3)

j=1;...;m �1

y
j
i � 18i 2M (4)

J=1;...;M �1

Y
J
I � 18I 2 N (5)

y
j
iu

j
i �x

j
i 8i 2M; j = 1; . . . ; mi � 1 (6)

Y
J
I U

J
I �X

J
I

8I 2 N; J = 1; . . . ;MI � 1 (7)

x
j
i <u

j+1
i

8i 2M; j = 1; . . . ; mi � 1 (8)

X
J
I <U

J+1
I

8I 2 N; J = 1; . . . ;MI � 1 (9)

y
j
i ; Y

J
I 2 0; 1 (10)

x
j
i ; X

J
I integer: (11)

Constraint (1) guarantees that the number of units sold will not ex-
ceed the number of units procured. Constraint (2) assigns xji = 0 if
y
j
i = 0. Constraints (4) and (5) enforce the exchange mechanism to

choose items from just one bid interval for each buyer and seller. Con-
straints [(6), (7), (8), (9)] ensure that xji and Xj

i lie in the range of the
jth interval for the ith buyer and the ith seller, respectively.

The classical 0/1 knapsack problem, which is a well-known NP-hard
problem, is a special case of this problem, and this immediately implies
that the above allocation problem is intractable.

B. Pricing Problem

The pricing problem involves determining the actual payments to be
made by the winning buyers to the exchange and the actual payments
to be made to the winning sellers by the exchange. VCG payments are
those that ensure that the bids and asks from the buyers and sellers
reflect the true values [1]. Market mechanisms that follow VCG pay-
ments are often called strategy proof mechanisms. VCG payments for
each winning agent can be determined as follows. First, solve the allo-
cation problem by retaining the agent in the problem and determine the
total surplus generated. Next, remove that agent from the scene, solve
the allocation problem, and determine the total surplus (with the agent
removed). The decrease in the surplus due to the absence of the agent
is given as the Vickrey discount if the agent is a buying agent and is
given as Vickrey surplus if the agent is a selling agent. It is easy to see
that we need to solve up to (m+n) intractable problems, one for each
winning buyer and winning seller, to determine VCG payments.
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Fig. 2. Ask submitted by a selling agent.

C. Decomposition Approach

We decompose the problem of a single-item, multiunit exchange into
two natural, separate problems: forward auction and reverse auction.
The approach involves the following steps.

1) Determining the trading quantity, Q � 0, that is, the quantity of
units that will be exchanged between the buyers and the sellers.

2) Solving the separate problems:
i) Reverse auction: Based on the bids submitted by the selling

agents, procure a trading quantity Q of the goods so as to
maximize the total value of the selling agents.

ii) Forward auction: Based on the bids submitted by the buying
agents, sell the Q goods to the buying agents, so as to max-
imize the total value for the buying agents.

We describe the reverse auction problem. The forward auction
problem can be formulated on similar lines.

1) Reverse Auction: The formulation here is done on the lines of
[15]

Minimize

I2N J=1;...;M �1

X
J
I a

J
I

subject to

I2N J=1;...;M �1

X
J
I � Q

X
J
I � ZY

J
I

8I 2 N; 8J = 1; . . . ;MI � 1

J=1;...;M �1

Y
J
I � 1 8I 2 N

Y
J
I U

J
I � X

J
I

8I 2 N; 8J = 1; . . . ;MI � 1

X
J
I < U

J+1
I

8I 2 N; 8J = 1; . . . ;MI � 1

Y
J
I 2 0; 1

X
J
I integer:

Here, the first constraint ensures that the total number of units procured
is greater than or equal to the trading quantity Q. This formulation
is the same as that of a generalized knapsack problem [15]. Kothari,
Parkes, and Suri [15] have proposed an O(n2) time 2-approximation

algorithm for the generalized knapsack problem arising in reverse auc-
tion and also have presented a fully polynomial time approximation
scheme based on this 2-approximation.

III. HEURISTICS FOR DETERMINING TRADING QUANTITY

The decomposition approach produces a high-quality solution only
if we use the optimal trading quantity. Determining the trading quantity
to be used by the decomposition method is thus a critical problem.
We address this problem in this section by proposing two heuristics
to compute an almost optimal trading quantity.

A. Heuristic 1

Based on the bids and asks submitted, it is easy to determine a lower
bound (L) and an upper bound (U) on the trading quantity between
which the optimal quantity will lie. Once this range is determined, for
different trading quantities in this range, our idea is to use a greedy
method to determine the allocation to the sellers and buyers, and deter-
mine the surplus. We choose the quantity that maximizes this surplus.

First we determine

minimum demand; Dmin =
i2M

u
1
i

maximum demand; Dmax =
i2M

u
m

i

minimum supply; Smin =
I2N

U
1
I

maximum supply; Smax =
I2N

U
M

I :

Consider Smin < Dmin. Here, three cases are possible:
1) Smin < Smax < Dmin < Dmax;
2) Smin < Dmin < Smax < Dmax;
3) Smin < Dmin < Dmax < Smax.

For Case 1) and Case 2), L = Smin; U = Smax. and for Case 3),
L = Smin; U = Dmax. Now, sort the tuples submitted by the buyers
t
j
i in descending order of unit price and sort the tuples submitted by

the sellers T ji in ascending order of the unit price. For different trade
quantities I , we compute the total valuation of the buyers V (I) and
total valuation of the sellers C(I) as discussed in the algorithm below.
We scan through the sorted list and determine a feasible allocation. The
trading quantity Q is chosen as a value between L and U such that the
difference between V (I) and C(I) is maximum.

The following describes our algorithm for determining the trading
quantity Q.

Algorithm: Heuristic-1 for Determining Trading Quantity

1) Sort all pairs from the buyers in descending order of unit price and
all pairs from the sellers in ascending order of unit price.

2) Vary the quantity to be traded, I from L to U .
3) Compute total valuation V (I) of the buyers for quantity I as fol-

lows:
• set mark(i) = 0, for all bids Bi; i = 1; . . . ;m Initialize the

remaining quantity to be sold, Rb = I ; the quantity allocated
to buyer i; Qi = 0; V (I) = 0;

• scan the pairs in sorted order. Let the selected pair be tji ;
• if mark(i) = 1 and (Qi + Rb) > (uj+1i � 1)

V (I) = V (I) + �

where � is the difference in the valuation of buyer i for (uj+1i �

1) and his or her valuation for Qi units

Rb = Rb +Qi � u
j+1
i � 1; Qi = u

j+1
i
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go to scanning step;
• if mark(i) = 1 and uji � (Qi + Rb) � (uj+1

i � 1)

V (I) = V (I) + �

where � is the difference in the valuation of buyer i for (Qi +
Rb) units and his or her valuation for Qi units.
return V (I),
else go to scanning step;

• if mark(i) = 0 and Rb > (uj+1
i � 1)

V (I) = V (I) + �

where � is the valuation of buyer i for (uj+1
i � 1) units.

mark(i) = 1; Qi = u
j+1
i ; Rb = Rb �Qi

go to scanning step;
• if mark(i) = 0 and uji � Rb � (uj+1

i � 1)

V (I) = V (I) + �

where � is the valuation of buyer i for Rb units.
return V (I).

4) Compute total valuation C(I) of the sellers for quantity I as fol-
lows:
• set mark(i) = 0, for all asks Ai; i = 1; . . . ; n

Initialize the remaining quantity to be procured, Rs = I ; the
quantity allocated to buyer i; Qi = 0; C(I) = 0;

• scan the pairs in sorted order. Let the selected pair be T ji ;
• if mark(i) = 1,

go to the scanning step;
• if mark(i) = 0 and Rs > (U j+1

i � 1)

C(I) = C(I) + �

where � is the valuation of seller i for (U j+1
i � 1) units

mark(i) = 1; Qi = U
j+1
i ; Rs = Rs �Qi

go to scanning step;
• if mark(i) = 0 and U j

i � RS � (U j+1
i � 1)

C(I) = C(I) + �

where � is the valuation of seller i for Rs units.
return C(I).

5) if V (I) � C(I) � maxsurplus
Q = I , update maxsurplus.

6) if I � U ,
go to step 2.

Once the initial sorting is done, the algorithm takes O((U � L)N)
running time, where N = m + n.

B. Heuristic 2

Here, we come up with a faster heuristic for determining the trading
quantity based on the concept of determining the call market price-

Fig. 3. Supply and demand curves for determining market price-quantity pairs.

quantity pair. First, we discuss an algorithm for clearing the call mar-
kets [23]. We will modify it for determining the trading quantity to be
used. A call market is a sealed-bid, one-shot exchange which can be
described as follows.

• There is a set of buying agents M = f1; . . . ; mg and a set of
selling agents N = f1; . . . ; ng.

• The buying agents submit bidsB = fB1; . . . ; Bmg, respectively.
A bid Bi is of form Bi = (ui; bi) where buyer i is willing to
accept up to ui units at unit price � bi.

• The selling agents submit asks A = fA1; . . . ; Ang, respectively.
An ask AI is of form AI = (UI ; aI), where seller I is willing to
sell up to UI unit at unit price � aI .

In a call market, all trades clear at a market-clearing price. An algo-
rithm for clearing a call market from [23] is described below.

Algorithm: Call Market Clearing Algorithm

• Sort the bids in decreasing order of unit price.
Let the sorted order be p1 � p2 � . . . � pm.

• Sort the asks in ascending order of unit price.
Let the sorted order be q1 � q2 � . . . � qn.

• At the buy side, the quantity of item available at price pr is

Er =
i2M

C
i
r

where

C
i
r =ui; if bi > pr

=0; otherwise.

• Similarly at the sell side, the quantity of item available at price qs
is

Fs =
I2N

D
I
s

where

D
I
s =UI ; if aI < qs

=0; otherwise:

• Plot a graph between the price and cumulative quantity of the
available item both for sellers and buyers (Fig. 3).

• The intersection point gives the optimal trading quantity Q.
Here, the quantity Q will maximize the surplus, and the market-

clearing price � will be a0 � � � b0. Notice that our exchange
(single-item, multiunit exchange) is a variation of the above call market
in the following ways.
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1) For buyers, each bid corresponds to a range, that is

u
j
i ; u

j+1
i ; bi :

2) Each buyer submits XOR bids of the type

Bi = u
1
i ; u

2
i ; b

1
i � . . .� u

m �1
i ; u

m
i ; b

m �1
i

where b1i > . . . > b
m �1

i and u1i < . . . < u
m
i :

3) For sellers, each ask corresponds to a range, that is

U
J
I ; U

J+1
I ; aI :

4) Each seller submits XOR asks of the type

AI = U
1
I ; U

2
I ; a

1
I � . . .� U

M �1

I ; U
M

I ; a
M �1

I

where a1I > . . . > a
M �1

I and U1
I < . . . < U

M

I .
We now propose our heuristic for determining trading quantity for our
exchange based on the call market-clearing algorithm.

Algorithm: Heuristic-2 for Determining Trading Quantity

1) Sort the bid prices of buyers
(b11; . . . ; b

m �1
1 ); . . . ; (b1m; . . . ; b

m �1
1 ) in descending order.

Let the sorted order be Ob = (p1; . . . ; pr; . . . ; pR).
R is the number of terms in Ob.

2) At the buy side, the maximum quantity of item available at price
pr is

Er =
i2M

C
i
r

where

C
i
r = u

j +1
i � 1 jj0 = max jjbji > pr

=0 otherwise:

3) Sort the ask prices of sellers in ascending order.
Let the sorted order be Os = (q1; . . . ; qs; . . . ; qS).
S is the number of terms in Os.

4) At the sell side, the maximum quantity of the item available at
price qs is

Fs =
I2N

D
I
s

where

D
I
s = U

J +1
I � 1 jJ 0 = max J jbJI < qs

=0 otherwise:

5) Observe that Er increases with a decrease in pr . This is because
each bid submitted by the buyers is marginally decreasing the
piecewise constant valuation function. So, as the price decreases,
the cumulative quantity of item available increases. Similarly, Fs
increases with an increase in qs.

TABLE II
LOWER BOUND AND UPPER BOUND RANGES FOR BIDS AND ASKS

6) A graph of the total cumulative quantity of item and price both for
sellers and buyers is similar to the one shown in Fig. 3.

7) Initialize r = 1; s = 1. Let V (Er) be the total valuation of
the buyers for quantity Er , and C(F 0

s) be the total valuation of
the sellers for quantity F 0

s. maxsurplus is used to store maximum
surplus.
Perform the following steps.
while (r � R and s � S)
• if pr � q0s and Er � F 0

s

if V (Er)� C(F 0
s) � maxsurplus

Q = Er ; update maxsurplus;
• if Er � F 0

ss = s + 1;
• if Er < F 0

s

r = r + 1.
The above algorithm gives the trading quantity Q. But it may not be

the optimal quantity because we do not consider the lower bound of
each range of the bids and the asks. The running time of the algorithm
can be easily seen to be O(max(m logm;n logn)).

IV. EXPERIMENTAL RESULTS

In this section, we present results of our numerical experiments to
show the performance of the proposed decomposition approach and
the proposed heuristics.

A. Experimental Setup

We used an ILOG CPLEX solver package on a 3-GHz Xeon server
with 2-GB random-access memory (RAM) to compute exact solutions.
We refer to this as the direct solution approach. We used the same server
for implementing our heuristics, our decomposition approach, and the
FPTAS algorithms for forward auction and reverse auction.

The bids and asks required for the numerical experiments were gen-
erated to be as representative as possible. The bids and asks are mar-
ginal-decreasing piecewise constant valuation functions. We conducted
experimentation with four sets of data. These sets of data differ with
respect to the range of values for choosing the lower bound and upper
bound on the number of units for each bid and ask. Table II gives these
ranges for the four sets of data. In all of the experiments, we consid-
ered ten sellers and ten buyers. Also, we assumed the maximum number
of steps in a bid or an ask to be 10. For each buyer, we generated the
number of steps (mi�1) in the bid through a discrete uniform random
variate in the range 1 to 10. For each buyer, say buyer i (i = 1; . . . ; 10),
we chose the minimum and maximum number of units (u1i and umi ) in
his or her bids using uniform random variates in the appropriate range.
For each step (j), we generated the price per unit (bji ) randomly in the
range (0.5, 1) such that b1i > b2i > � � � > b

m �1

i . We followed a similar
method for each of the ten sellers.

The experiments on four different data sets were conducted 20 times
using independent samples. We computed the average of the solution
values for 2, 3, . . ., 20 replications and found that after 20 replications,
the averages of the solution values remained invariant. The reported
results are thus averaged over the 20 experiments conducted for each
data set.
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TABLE III
COMPARISON OF OPTIMAL SOLUTION WITH THE SOLUTION OBTAINED BY THE

DECOMPOSITION APPROACH USING OPTIMAL TRADING QUANTITY

TABLE IV
COMPARISON OF THE HEURISTICS

B. Performance of the Decomposition Approach With Optimal
Trading Quantities

Our first experiment is to investigate how effectively the decompo-
sition idea works. For this, we first solved the allocation problem to
optimality use a direct solution approach (that is, without using de-
composition) and obtained the optimal value of the total surplus (call
it So) and the value of optimum quantity traded (call it Qo). Using the
value Qo in our decomposition approach and the FPTAS algorithms
for forward auction and reverse auction problems, we then obtained
the total surplus (call it Sd). Table III compares the values of the total
surplus obtained using the direct solution approach and the decompo-
sition approach. The table clearly shows that the allocation determined
through the decomposition approach is very nearly optimal. Note that
this experiment uses the optimal trading quantity in the decomposition
approach and, hence, shows how well the FPTAS algorithms in the de-
composition approach approximate the total surplus.

C. Comparison of the Heuristics

Here, we use the heuristics presented in Section IV to determine the
trading quantity and use this trading quantity for solving the forward
auction and reverse auction problems using the FPTAS algorithms.
Table IV first compares the trading quantities obtained using the two
heuristicsQ1 andQ2, with the optimal trading quantityQo (computed
using a direct solution approach). Then, it compares the total surplus
values obtained using the decomposition approach with that computed
using a direct solution approach. S1 (S2) is the surplus value obtained
using the decomposition approach employing the trading quantity Q1

(Q2). So is the surplus value obtained using a direct solution approach
through an ILOG CPLEX solver. In Table IV, we have omitted the frac-
tional component of the surplus values (by truncating the values to the
nearest integer).

The table clearly shows that the values of quantity to be traded ob-
tained using heuristic 1 and heuristic 2 are quite close to the optimal
quantity and also the surplus generated is quite close to the optimal one.
Heuristic 1 seems to provide better estimates compared to heuristic 2
as shown by the table. This is because heuristic 1 does an exhaustive
search on a set of short listed candidate values whereas heuristic 2 may
not always produce the optimal value (see Section III-B). However,
our experimentation (not reported here) for large values of n and m
has shown that the trading quantities estimated by the two heuristics
are almost the same. In terms of running time, however, heuristic 2 is
much faster than heuristic 1 (see Section IV-E for a discussion on this).
The surplus values produced by the decomposition approach with the
help of heuristics are quite close to the optimal surplus values, which
shows the efficacy of the heuristics.

TABLE V
COMPARISON OF TOTAL VICKREY DISCOUNT AND TOTAL VICKREY

SURPLUS OBTAINED BY THE DECOMPOSITION APPROACH WITH

THOSE OF THE EXACT SOLUTION

TABLE VI
COMPARISON OF INDIVIDUAL VICKREY DISCOUNTS

AND VICKREY SURPLUSES FOR EXPERIMENT 1

D. Degree of Strategy Proofness of the Decomposition Approach

Table V compares the total Vickrey discount (TV Do) and total
Vickrey surplus (TV So), respectively, for winning buyers and sellers
computed by solving the problem to optimality using a direct solution
approach with the values (TV Dd and TV Sd) when the problem
is solved using our decomposition approach. In the decomposition
approach, we used heuristic 1 to determine the trading quantity. The
table clearly shows that the total Vickrey discount and total Vickrey
surplus values obtained by the decomposition approach are quite close
to those obtained when the problem is solved optimally. To investigate
this at a more detailed level, we computed the individual Vickrey
discounts (V Do and V Dd) and Vickrey surpluses (V So and V Sd)
for the ten buyers and ten sellers. Table VI shows these results for
data set 1. In the tables, we have omitted the fractional component
of the surplus values (by truncating the values to the nearest integer).
The results in this table also suggest that in most of the cases, even at
the level of individual buyers and sellers, the Vickrey discounts and
Vickrey surpluses obtained are close to the VCG values as computed
by the direct solution approach. This shows that our approach is
approximately strategy proof.

The results presented in Tables V and VI for the case of the decompo-
sition approach use heuristic 1. Similar results are obtained if heuristic
2 is used instead.

E. Computational Savings

Note that the clearance of a single-item, multiunit exchange by the
direct method will involve solving (m+ n+ 1) NP-hard problems in
the worst case, where m is the number of buyers and n is the number
of sellers. By using the decomposition approach, this complexity is
reduced to that of solving the following three problems.

1) Determining a trading quantity, for which we have provided
two heuristics. Before applying these heuristics, we first sort
the bids from buyers and sellers, which has worst-case running
time O(max(m logm; n logn)). Heuristic 1 has a worst-case
running time of O((U �L)N), where N = n+m and U and L
are as described in Section IV-A and Heuristic 2 has a worst case
running time of O(max(m logm;n logn)).

2) Reverse auction using an FPTAS algorithm.
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TABLE VII
COMPARISON OF COMPUTATION TIME (IN SECONDS) OF DECOMPOSITION

APPROACH (USING HEURISTIC 2) WITH THAT OF EXACT APPROACH

3) Forward auction using an FPTAS algorithm.
Since all of the above steps have polynomial time complexity, the de-
composition approach will lead to significant savings in running time,
compared to the direct method. Table VII compares the solution time
of the decomposition approach with that of the exact approach. Here,
m is the number of buyers and n is the number of sellers participating
in the exchange. To and Td denote the computation time in seconds
of the direct approach (using ILOG CPLEX solver) and the decompo-
sition approach, respectively. So and Sd denote the total surplus ob-
tained using the direct approach and the decomposition approach, re-
spectively. For each choice ofm and n, the experiment was conducted
20 times and the computation time reported is an average over these
20 replications. To make the problem interesting from a computational
viewpoint, we introduced an additional business constraint in this ex-
periment, namely, that no single buyer is to be allocated greater than
50% of the total quantity traded. We used heuristic 2 to compute the
trading quantity in the decomposition approach. The ��� entry in the
table indicates that the ILOG CPLEX solver was unable to solve the
instance even in 3600 s (1-h computing time). The table clearly shows
the tremendous speedups achieved by the decomposition approach for
large problem instances. Also, the surplus values computed by the de-
composition approach are quite close to the optimal values (wherever
the optimal values could be computed). Notice the nonmonotonicity in
the sequence 6, 6, 5, 8, 6. This is a trend observed for small values ofm
and n. Monotonicity is observed for higher values of m and n. In fact,
the computation time starts rising sharply only after m = n = 1300.

The results presented in Table VII for the case of decomposition
approach use heuristic 2. Similar results are obtained if heuristic 1 is
used instead.

V. SUMMARY AND FUTURE WORK

In this paper, we have used a simple, natural method of decomposing
a multiunit, single-item exchange problem into forward auction and
reverse auction problems. We have presented two heuristics for de-
termining the quantity to be traded which is required for solving the
forward auction and reverse auction problems independently. We have
used known fully polynomial time approximate algorithms for solving
these individual problems. Our specific contributions in this paper are
as follows:

• establishing that the decomposition approach is an attractive ap-
proach to clear single-item, multiunit exchanges with numerical
experimentation;

• polynomial time heuristics for determining trading quantity to be
used in the decomposition approach.

There is plenty of scope for further work in several directions: 1) we
have looked at single-item exchanges here. The next immediate

problem would be to look at multiunit combinatorial exchanges using
the decomposition-based approach; 2) the strategy proofness proper-
ties of the mechanism when the decomposition approach is used needs
to be formally investigated; 3) formal error bounds on the value of the
trading quantity when heuristic 1 and heuristic 2 are used need to be
investigated; and 4) formal error bounds on the value of the objective
function, when the decomposition approach in conjunction with the
heuristics is used, also need to be investigated.
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