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A Shapley Value Based Approach to Discover
Influential Nodes in Social Networks

Ramasuri Narayanam Y. Narahari

Abstract—Our study concerns an important current problem,
that of diffusion of information in social networks. This problem
has received significant attention from the Internet research com-
munity in the recent times, driven by many potential applications
such as viral marketing and sales promotions. In this paper,
we focus on the target set selection problem, which involves
discovering a small subset of influential players in a given social
network, to perform a certain task of information diffusion. The
target set selection problem manifests in two forms: (1) top-k
nodes problem and (2) λ-coverage problem. In the top-k nodes
problem, we are required to find a set of k key nodes that would
maximize the number of nodes being influenced in the network.
The λ-coverage problem is concerned with finding a set of key
nodes having minimal size that can influence a given percentage
λ of the nodes in the entire network. We propose a new way of
solving these problems using the concept of Shapley value which
is a well known solution concept in cooperative game theory. Our
approach leads to algorithms which we call the SPIN (ShaPley
value based Influential Nodes) algorithms for solving the top-k
nodes problem and the λ-coverage problem. We compare the
performance of the proposed SPIN algorithms with well known
algorithms in the literature. Through extensive experimentation
on 4 synthetically generated random graphs and 6 real-world
data sets (Celegans, Jazz, NIPS co-authorship data set, Netscience
data set, High energy physics data set, and Political Books data
set), we show that the proposed SPIN approach is more powerful
and computationally efficient.

A Note to Practitioners— In recent times, social networks have
received a high level of attention due to their proven ability in
improving the performance of web search, recommendations in
collaborative filtering systems, spreading a technology in the market
using viral marketing techniques, etc. It is well known that the
interpersonal relationships (or ties or links) between individuals
cause change or improvement in the social system because the
decisions made by individuals are influenced heavily by the behavior
of their neighbors. An interesting and key problem in social networks
is to discover the most influential nodes in the social network which
can influence other nodes in the social network in a strong and deep
way. This problem is called the target set selection problem and has
two variants: (1) the top-k nodes problem, where we are required to
identify a set of k influential nodes that maximize the number of
nodes being influenced in the network (2) the λ-coverage problem
which involves finding a set of influential nodes having minimum
size that can influence a given percentage λ of the nodes in the entire
network. There are many existing algorithms in the literature for
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solving these problems. In this paper, we propose a new algorithm
which is based on a novel interpretation of information diffusion
in a social network as a cooperative game. Using this analogy, we
develop an algorithm based on the Shapley value of the underlying
cooperative game. The proposed algorithm outperforms the existing
algorithms in terms of generality or computational complexity or
both. Our results are validated through extensive experimentation on
both synthetically generated and real-world data sets.

Index Terms—Social networks, target set selection, diffusion of
information, influential nodes, top-k nodes, λ-coverage, Shapley
value.

I. INTRODUCTION

A social network is a social structure made of individuals
or organizations that are tied by one or more specific types of
inter-dependencies, such as friendship, co-authorship, collabo-
ration, etc. Real world examples for web-based social networks
include Myspace.com, Facebook, Orkut, etc. In each of these
social networks, the underlying representation is a graph model
where typically each individual is represented by a node, and
there is an edge between two nodes if there exists a social
interaction between them. Analyzing the structure of complex
relationships that exist among the nodes in a social network is
helpful in several ways such as determining how the informa-
tion spreads in the network. This study allows us to know the
critical role social networks play in several applications (Watts
[51], [52]). Recently social networks have received a high level
of attention due to their ability in improving the performance
of web search, recommendations in collaborative filtering
systems, spreading a technology in the market using viral
marketing techniques, etc. It is the interpersonal relationships
(or ties or links) between individuals that cause change or
improvement in the social system because the decisions made
by individuals are influenced heavily by the behavior of their
neighbors (Granovetter [23]). Among all nodes in a given
social network, it is important and interesting to discover
nodes which can affect the behavior of their neighbors and
in turn all other nodes in a stronger way than the remaining
nodes. We call such nodes influential nodes. We present two
motivating examples to understand the importance of finding
the influential nodes in real world social networks.

Our first example deals with the diffusion of information in
social networks. In general, social networks play a key role
for the spread of an innovation or technology or information
within a population of individuals. Suppose that we have data
on a social network, with estimates on the extent to which
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individuals influence one another, and we would like to market
a new product that we hope will be adopted by a large fraction
of the network. Which set of the individuals should we target?
The idea is to initially target a few influential individuals in
the network who will trigger a massive cascade of influence
through which friends will recommend the product to other
friends, and many individuals will ultimately try it. Given such
a system, a natural question that emerges is to find a target
set of desired cardinality that consists of influential nodes for
maximizing the volume of the information cascade (Domingos
and Richardson [14], Kempe, Kleinberg, and Tardos [28],
[29]). An effective answer to this question has significant
applications in marketing, politics, economics, epidemiology,
sociology, computer networking, and databases.

The second example is based on co-authorship networks and
is concerned with the collaboration patterns among research
communities. There exists a natural social network among
the researchers where nodes correspond to researchers and
an edge exists between two nodes if the two corresponding
researchers have co-authored a paper. Using a co-authorship
social network, it may be of interest to find the most prolific
researchers since they are most likely to be the trend setters
for breakthroughs.

In the above two examples, the common goal is to find a
set of influential nodes given a well defined context in the
social network. We call such a set of influential nodes as
target set. We call the problem of determining a target set
of particular cardinality to perform a given task in the social
network as target set selection problem [5]. In this paper, we
address two natural forms of the target set selection problem
which we call the top-k nodes problem and the λ-coverage
problem. The top-k nodes problem requires to determine a
set of influential nodes to target for maximizing the volume
of information cascade in the social network. More precisely,
this problem deals with identifying a set of k most influential
nodes to maximize the (expected) number of nodes that are
influenced in the social network where k is a given parameter.
The λ-coverage problem is concerned with finding a set of
influential nodes having minimum cardinality with which we
can influence a fixed percentage λ of the nodes in the social
network through the process of diffusion. This problem is
important in many contexts, for example, see Dezso and
Barabasi [13], Ganesh, Massouli, and Towsley [18], Pastor-
Satorras and Vespignani [42].

We address these two problems in the context of diffusion
of information in social networks. The following is a brief
discussion on diffusion of information.

A. Diffusion of Information

The conceptual framework of diffusion of information refers
to the spread of abstract ideas or technical information within a
social system, where the spreading denotes flow or movement
from a source to an adopter, typically via a communication link
(Rogers [43], Bryce and Gross [7]). Such a communication
can influence and alter an adopter’s probability of adopting an
innovation, where an adopter may be an individual, a group,
or an organization.

There are two popular operational models in the litera-
ture that capture the underlying dynamics of the diffusion
process. They are the linear threshold model (Granovetter
[24], Schelling [45]) and the independent cascade model
(Goldenberg, Libai, and Muller [21]).

Linear Threshold Model: This is proposed by Granovetter [24]
and generalized by Watts [50]. We call a node active if it has
adopted the information and inactive otherwise. In this model,
initially every node is inactive. That is, no node has adopted
the information that is being propagated. As time elapses, the
neighbors of a node become active and at some point of time,
this causes the given node also to become active. Granovetter
[24] and Schelling [45] proposed models to capture this kind of
node behavior based on the thresholds of the individual nodes.
Let us consider a node i and represent its neighbors by the
set Ni. Node i is influenced by a neighbor node j according
to a weight wij . Assume these weights are normalized in
such a way that

∑
j∈Ni

wij ≤ 1. The decision of a node
i to become active is based on a threshold function (fi) of
the set of active neighbors of i and a threshold (call it θi)
chosen uniformly at random by node i from the interval [0, 1].
Note that fi : 2Ni → [0, 1] is defined as fi(T ) =

∑
j∈T wij ,

∀T ⊆ Ni. The threshold θi represents the weighted fraction
of the neighbors of node i that must become active in order
for node i to become active.

Given a choice of thresholds and an initial set (call it S) of
active nodes, the diffusion process propagates as follows: In
time step t, all nodes that were active in step (t − 1) remain
active, and we activate every node i for which the total weight
of its active neighbors is at least θi. In other words, if A(i)
is assumed to be the set of active neighbors of node i, then i
gets activated if fi(A(i)) =

∑
j∈A(i) wij ≥ θi. This process

stops when there is no new active node in a particular time
interval.

Independent Cascade Model: This model is investigated re-
cently in the context of marketing by Goldenberg, Libai, and
Muller [21], [22]. Here, we start with an initial set of active
nodes A0, and the process unfolds in discrete steps according
to the following randomized rule. When a node i first becomes
active in step t, it is given a single chance to activate each
currently inactive neighbor j; it succeeds with a probability
that is independent of the history thus far. If j has multiple
newly activated neighbors, their attempts are sequenced in an
arbitrary order. If i succeeds, then j will become active in
step (t + 1); but whether or not i succeeds, it cannot make
any further attempts to activate j in subsequent rounds. Again,
the process runs until no more activations are possible.

In this paper, we consider the linear threshold model.

B. Target Set Selection Problem

We now describe the top-k nodes problem and the λ-
coverage problem more precisely.

Top-k Nodes Problem: Define an objective function (or influ-
ence function) σ(.) as follows. If S is the set of initially active
nodes (also called the target set), then σ(S) is the expected
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number of active nodes at the end of the diffusion process. For
economic reasons, we want to limit the size of the initial active
set S. For a given constant k, the top-k nodes problem seeks
to find a subset of nodes S of cardinality k that maximizes
the value of σ(S).

λ-coverage Problem: We are given λ ∈ [0, 100]. The problem
is to find a subset S of influential nodes having minimal size
such that σ(S) contains at least λ percent of the nodes in the
network.

We now briefly discuss different solution methods and algo-
rithms from the existing literature that address these problems.

C. Relevant Work

We first focus on the top-k nodes problem. Domingos and
Richardson [14], and Richardson and Domingos [44] were the
first to study the top-k nodes problem as an algorithmic prob-
lem. They modeled social networks as Markov random fields
where the probability of an individual adopting a technology
(or buying a product) is a function of both the intrinsic value
of the technology (or the product) to the individual and the
influence of neighbors. The authors proposed three algorithms
that approximately determine the influential users and showed
that selecting the right set of users for a marketing campaign
can make a substantial difference.

The algorithmic and computational aspects of the top-k
nodes problem are investigated by Kempe, Kleinberg, and
Tardos [28], [29], [31]. The authors show that the optimization
problem of selecting the most influential nodes is NP-hard
and derive the first provable approximation guarantees for the
proposed algorithm. Recall that the natural objective function,
σ(.), for information diffusion is the expected number of
nodes that become active at the end of the diffusion pro-
cess given a set of initial active nodes. The authors first
show that this objective function is a sub-modular function
under the linear threshold model and the independent cascade
model. A function g(.) is called sub-modular if it satisfies
g(S

⋃{i}) − g(S) ≥ g(T
⋃{i}) − g(T ), for all elements i

and all pairs of sets S ⊆ T . The authors propose a greedy
algorithm described in Algorithm 1. Using the property of
submodularity, the authors show that the greedy algorithm
achieves an approximation guarantee of (1 − 1

e ) where e =∑∞
r=1

1
r! .

Algorithm 1 Greedy Algorithm of Kempe, Kleinberg, and
Tardos [28]. N is the set of nodes and k is a positive integer
such that k ≤ |N |.

1: Set A ← φ.
2: for i = 1 to k do
3: − Choose a node ni ∈ N \A maximizing

σ(A ∪ {ni})− σ(A)
4: − Set A ← A ∪ {ni}.
5: end for

We note that Kempe, Kleinberg, and Tardos [28] proposed a
conjecture which states that, whenever the threshold functions
fi at every node are monotone and submodular, the resulting
influence function (σ(.)) is monotone and submodular as well.

Later, this conjecture was proved by Mossel and Roch [35].
For this result to hold, the submodularity of fi is necessary
in the following sense [35]: any function fi which is not
submodular admits a network with activation function fi

where the influence function is not submodular.
Leskovec, Krause, and Guestrin [34] address the top-k

nodes problem while focusing on two specific applications,
namely (i) given a water distribution network, where should we
place sensors to quickly detect contaminants? and (ii) which
blogs should we read to avoid missing important stories?
The authors develop an efficient algorithm based on the sub-
modularity of the underlying objective function that scales to
large problems and is reportedly 700 times faster than the
greedy algorithm of Kempe, Kleinberg, and Tardos [28]. There
are two aspects to this speed up: (i) by speeding up function
evaluations using the sparsity of the underlying problem, and
(ii) by reducing the number of function evaluations using the
submodularity of the influence functions.

Chen, Wang, and Yang [10] present an efficient algorithm
to find the top-k nodes in a social network and this algorithm
improves upon the greedy algorithm of Kempe, Kleinberg,
and Tardos [28] and also the algorithm of Leskovec, Krause,
and Guestrin [34] in terms of its running time. The authors
also design a new heuristic algorithm, which they call degree
discount heuristic, that achieves much better influence spread
than classic degree and centrality based heuristics. They also
note that the performance of this heuristic algorithm is com-
parable to that of the greedy algorithm while its running time
is much less than that of the greedy algorithm.

Kimura and Saito [30] propose a shortest-path based in-
fluence cascade model and provide efficient algorithms for
finding the most influential nodes under these models. As the
information cascade models are different, they do not directly
address the efficiency issue of the greedy algorithm for the
linear threshold model and the independent cascade model.
This same issue is pointed out in Chen, Wang, and Yang [10].

Even-Dar and Shapira [16] study the top-k nodes problem
in the context of probabilistic voter model (Holley and Liggett
[26]). The authors present simple and efficient algorithms
for solving this problem. Furthermore, in a special case, the
popular heuristic which picks nodes in the network with the
highest degree turns out to be an optimal solution.

Recall that the top-k nodes problem is a hard problem
computationally. The only case for which the problem is
known to have an acceptable worst-case solution is where the
given social network has a bounded tree-width and the problem
becomes polynomial-time solvable. For this kind of tractable
instances, Ben-Zwi, Hermelin, Lokshtanov, and Newman [5]
propose algorithms by considering tree-width parameter of the
graphs.

Information diffusion models and the top-k nodes prob-
lem are also appropriately considered from the view of the
blogspace where a blogger may have a certain level of interest
in a topic and is thus susceptible to talking about it. By
discussing the topic, the blogger may influence other bloggers.
Adar and Adamic [1] and Gruhl et.al. [25] model and study the
dynamics of diffusion of information in the blogspace. Java et.
al. [27] and Agarwal, Liu, Tang, and Yu [2] discuss algorithms
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to identify influential blog posts and influential bloggers in a
blogspace.

There are two popular heuristics that measure the influential
capabilities of the nodes in social networks (Wasserman and
Faust [48]). These heuristics differ in terms of the approach
by which they choose the target set. Given this target set, the
linear threshold model could be used to determine the expected
number of active nodes at the end of the diffusion process.

(1) Maximum Degree Heuristic (MDH): The concept of
centrality is well addressed in social networks (Freeman [17]).
One of the simplest and best-known measures of centrality is
degree centrality, which is a count of the number of edges
incident upon a given node. The maximum degree heuristic
chooses the k nodes having the k highest degrees as the top-k
nodes.

(2) High Clustering Coefficient Heuristic (HCH): Clustering
of a node is a measure of the likelihood that two neighbors
of the node are neighbors themselves (Wasserman and Faust
[48]). Clustering coefficient of a node is defined as the
fraction of number of pairs of its neighbors that are connected
themselves as well. This indicates how dense the neighborhood
of a node is in a network. Following this clustering heuristic,
we choose the first k nodes with high clustering coefficient as
the initial target set.

We now turn to the relevant literature on the λ-coverage
problem. Chen [9] shows that the problem is hard to approx-
imate within a polylogarithmic factor using a deterministic
thresholds model. It is possible to design optimal polynomial
time algorithms for some restricted topologies of the networks.
In particular, when the network is a tree, Chen [9] presents an
optimal polynomial time algorithm for deterministic thresholds
model.

D. Contributions and Outline of the Paper

We are motivated by the following reasons in seeking a new
algorithm for the target set selection problem:
• The complexity of the existing algorithms for the top-k

nodes problem explicitly depends on k,
• Algorithms that work for the top-k nodes problem do not

immediately work for the λ-coverage problem, and
• Existing algorithms seem to work well (in terms of

solution quality) only when the node threshold functions
are submodular and monotone increasing.

Our approach to solving the target set selection problem is
fundamentally different from the existing approaches in the
literature. Our approach is to map the information diffusion
process in a social network to the formation of coalitions in an
appropriately defined cooperative game. The Shapley values of
the nodes in this game represent the marginal contributions that
the nodes make to the information diffusion process. We use
this fact to design an algorithm to discover influential nodes in
the social network. We call our algorithm the SPIN (ShaPley
value based Influential Nodes) algorithm.

We first propose a SPIN algorithm for the top-k nodes
problem. To compute the Shapley values required by the SPIN
algorithm, we use a simple sampling technique to obtain a
computationally efficient scheme. The SPIN algorithm can

also be used for solving the λ-coverage problem with a
minor modification. We carry out detailed experiments using
4 synthetic datasets of random graphs and 6 real-world social
network datasets (Celegans, Jazz, NIPS co-authorship data
set, Netscience data set, High energy physics data set, and
Political Books data set) and these results establish the SPIN
algorithm as a powerful and effective approach to solve the
target set selection problem. Comparison of performance with
existing benchmark algorithms shows the following specific
advantages:

(1) The SPIN algorithm produces target sets which are as
good as the target sets produced by (i) the greedy algorithm
of Kempe, Kleinberg, and Tardos [28] (call this the KKT
algorithm), (ii) the CELF algorithm by Leskovec, Krause,
Guestrin, Faloutsos, VanBriesen, and Glance [34] (call this the
LKG algorithm) and (iii) the more recent and faster algorithm
by Chen, Wang, and Yang [10] (call this the CWY algorithm).
It is known that the LKG algorithm is about 700 times faster
than the KKT algorithm [34] for certain problem instances.
We show that the proposed SPIN algorithm turns out to be
more efficient than the LKG algorithm and hence the SPIN
algorithm clearly outperforms the KKT algorithm.

(2) An important salient feature of the SPIN algorithm is that
its execution time is (almost) independent of the value of k
(regarding the top-k nodes problem). We note that the KKT,
LKG, and CWY algorithms are heavily dependent on the value
of k. For more discussion on this, we refer to Section III-C.

(3) The maximum degree heuristic (MDH) based and the high
clustering heuristic (HCH) based algorithms are much faster
compared to the KKT, LKG, CWY, and SPIN algorithms,
however their performance in terms of the target sets produced
tends to be very poor. This is strikingly observed in all the
experiments.

(4) It is known that the objective function σ(.) is monotone
increasing and sub-modular whenever the node threshold func-
tion at each node is monotone increasing and sub-modular
[35]. Thus the approximation guarantee of (1 − 1

e ) holds
when the node threshold function at each node is monotone
increasing and sub-modular. However, in many settings, it is
quite possible that the node threshold functions are monotone
decreasing and non-submodular and in such contexts none of
the algorithms have approximation guarantees. In Section IV
of this paper, we propose two new models of diffusion of
information and show that the corresponding node threshold
functions are monotone decreasing and non-submodular. In
these two settings, we experimentally show that the SPIN
algorithm outperforms the KKT algorithm in terms of quality
of the solution.

E. Organization of the Paper

The paper is organized as follows. Section II describes the
Shapley value based approach for the top-k nodes problem
and the λ-coverage problem. We first present some essential
preliminaries from cooperative game theory. Next we describe
the SPIN algorithm for the top-k nodes problem using an
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illustrative example. Then we describe the SPIN algorithm for
the λ-coverage problem. In Section III, we present detailed
experimentation (where the dynamics of diffusion process are
captured by the linear threshold model). First we describe
the data sets employed - both synthetic random graphs and
also six different real-world data sets. Then we describe the
experimental setup and the experimental results. We provide
a detailed comparison of performance of our algorithms with
that of the KKT, LKG, MDH, and HCH algorithms. We also
include a discussion on the statistical significance of the results
obtained in our experiments. In Section IV, we experimentally
show that the proposed algorithm outperforms the existing
algorithms in terms of the quality of the solution when the
threshold function at each node is monotone decreasing and
non-submodular. We conclude the paper in Section V with a
summary and several interesting directions for future work.

II. SPIN: SHAPLEY VALUE BASED DISCOVERY OF
INFLUENTIAL NODES

A. Preliminaries

A cooperative game with transferable utility (TU game) [36]
is defined as the pair (N, v) where N = {1, 2, ..., n} is the
set of players and v : 2N → R is a real-valued mapping with
v(φ) = 0. Note that 2N is the set of all possible subsets of
N . The mapping v is called the characteristic function or the
value function. Given any subset S of N , v(S) is called the
value of the coalition S and represents the total transferable
utility that can be achieved by the players in S, without help
from the players in N \ S. The set of players N is called
the grand coalition and v(N) is called the value of the grand
coalition. In the sequel, we use the phrases cooperative game,
coalitional game, and TU game interchangeably.

A cooperative game can be analyzed using a solution
concept, which provides a method of dividing the total value of
the game among individual players. There are many solution
concepts such as the core, the Shapley value, the nucleolus,
etc. We describe below the solution concept, the Shapley
value, that is relevant to our work here. The Shapley value
is a solution concept that provides a unique expected payoff
allocation for a given coalitional game (N, v). It describes an
effective approach to the fair allocation of gains obtained by
cooperation among the players of a cooperative game. Since
some players may contribute more to the total value than
others, an important requirement is to distribute the gains fairly
among the players. The concept of Shapley value, which was
developed axiomatically by Shapley [46], takes into account
the relative importance of each player to the game in deciding
the payoff to be allocated to the players. We denote by

Φ(N, v) = (Φ1(N, v), Φ2(N, v), . . . , Φn(N, v))

the Shapley value of the TU game (N, v). Mathematically, the
Shapley value, Φi(N, v), of a player i is given by,

Φi(N, v) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!
n!

{v(C ∪ {i})− v(C)}

where Φi(N, v) is the expected payoff to player i. There
are several equivalent alternative formulations for the Shapley

value. We present one equivalent formulation of the Shapley
value in the following.

Given a node i ∈ N and a subset C ⊆ N such that i /∈ C,
the marginal contribution of node i to the coalition is defined
as v(C

⋃{i}) − v(C), ∀C ⊆ N \{i}. Now consider the set Ω
of all possible n! permutations on N . Let π be a permutation
in Ω and define Ci(π) to be the set of all nodes appearing
before node i in the permutation π. We compute the average
marginal contribution of node i to the given coalitional game
as

1
n!

∑
π∈Ω[v(Ci(π) ∪ {i})− v(Ci(π))].

The above expression is exactly the Shapley value of player
i. It is clear that we have to work with n! permutations to
determine the marginal contributions of nodes. It is easy to
see (using the Stirling approximation (Cormen et. al. [11])
for n!) that the computational complexity of this approach is
O((n

e )n). Hence the direct, naive approach for computing the
Shapley values of the players is not a tractable one. We there-
fore resort to computing the Shapley values approximately in
this paper.

The Shapley value is the unique mapping that satisfies three
key properties: linearity, symmetry, and carrier property [36].
The three properties imply that the Shapley value provides
a fair way of distributing the gains of cooperation among
the players in the game. A natural way of interpreting the
Shapley value Φi(N, v) of player i is in terms of the average
marginal contribution that player i makes to any coalition of
N assuming all orderings are equally likely. Thus the Shapley
value takes into account all possible coalitional dynamics and
negotiation scenarios among the players and comes up with a
single unique way of distributing the value v(N) of the grand
coalition among all the players. The Shapley value of a player
accurately reflects the bargaining power of the player and the
marginal value the player brings to the game.

In this paper, given a social network, our approach is
to define a cooperative game that captures the information
diffusion process in the social network. The nodes of the social
network happen to be the players in this cooperative game
and we use the Shapley values of the nodes to discover the
influential nodes.

B. The SPIN Heuristic Algorithm for Finding Top-k Nodes

The fundamental idea of the greedy algorithm (that is,
Algorithm 1) is to pick, in each iteration, a remaining node
having maximum influence on the spread of information.
Essentially, this means picking a node (from the remaining
nodes) that makes the maximum marginal contribution to
the process of spread of information. This idea of marginal
contribution is what we use in the proposed SPIN algorithm
also. However, to compute the marginal contributions, we use a
well known solution concept, Shapley Value, from cooperative
game theory. The Shapley value of a coalitional game provides
the marginal contributions of the individual players to the
overall value that can be achieved by the grand coalition of
all the players. The critical idea behind the SPIN algorithm
is to model the nodes in the social network as players in a
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coalitional game and to capture information diffusion process
as the process of coalition formation in the coalitional game.
The Shapley value then automatically provides the marginal
contributions.

There are two main steps in this algorithm:
1) computing a ranking list of the nodes based on the

Shapley value, and
2) choosing the top k nodes from the rank list.

We describe these two steps in the following. Recall that a
node is said to be active if it adopts the information or the
technology. We assume that when a node becomes active, it
continues to be active later on. Our approach assigns a credit
for each node based on its influence. We say node i is more
influential than node j when node i can cause more number
of nodes to be activated than that of node j. If we know the
influential capabilities of the nodes in the underlying diffusion
process, we can identify the most influential nodes for the
top-k nodes problem. Our idea is to identify the influential
nodes through the marginal contribution the nodes make to
the diffusion process. For this we use the Shapley value of an
appropriate cooperative game.

We now define the following cooperative game (N, v) as
follows. Let N be the set of nodes in the social network.
Let n = |N | and 2N the set of all subsets of N . We define
the characteristic function v : 2N → R as follows. For each
S ⊆ N , if all the nodes in S are initially activated, then v(S)
represents the expected number of active nodes at the end of
the diffusion process. In other words v(S) = σ(S), ∀S ⊆
N . We assume that v(φ) = 0. This mapping is natural and
intuitive. We use v and σ interchangeably through the rest of
the paper.

Since computing the Shapley values of the nodes exactly is
a hard problem computationally, we compute Shapley values
of the nodes approximately using a sampling based approach
that works in polynomial time. We do this by using a randomly
sampled set, call it Ω̂, of permutations where the cardinality
of Ω̂ is a polynomial in n. Let t = |Ω̂| so that t = O(n).
Using this sampled set Ω̂, we compute the Shapley values of
the nodes approximately (Algorithm 2). In this algorithm:
• Si(πj) represents the set of nodes that occur before node

i in the permutation πj ,
• MC[i] represents the marginal contribution of node i,

and
• Φ[i] represents Shapley value of a node i.
We sort the nodes in non-increasing order of their Shapely

values and construct a rank list, call it RankList[]. The ties
could be resolved randomly. The subroutine presented in
Algorithm 2 constructs the RankList[] of the nodes.

The implementation details of Algorithm 2 are as follows.
We randomly generate t permutations of the nodes in the
network. Let π be a permutation from the set of t randomly
generated permutations. Assume that π(i) represents the i-
th node in the permutation π. Now following the order of
the nodes as dictated by π, we compute the contribution of
each node to the spread of influence as follows. Initially all
nodes in the network are inactive and we randomly assign a
threshold to each node. First we activate π(1) to determine

Algorithm 2 RankList[] Construction (SPIN)

1: Let πj be the j-th permutation in Ω̂.
2: Also let R be the number of repetitions of the experiment.
3: for i = 1 to n do
4: set MC[i] ← 0
5: end for
6: for j = 1 to t do
7: for i = 1 to n, do
8: temp[i] ← 0;
9: end for

10: for r = 1 to R, do
11: assign random thresholds to nodes;
12: for i = 1 to n, do
13: temp[i] ← temp[i] + v(Si(πj)∪ {i}) − v(Si(πj))

14: end for
15: end for
16: for i = 1 to n, do
17: MC[i] ← temp[i]/R;
18: end for
19: end for
20: for i = 1 to n, do
21: compute Φ[i] ← MC[i]

t
22: end for
23: use an efficient sorting algorithm to sort the nodes in non-

increasing order based on average marginal contribution
values of the nodes

how many nodes are activated because of its activation and
this becomes the contribution of π(1). Next we consider π(2)
and if it is already activated due to the activation of π(1),
then the contribution of π(2) is 0. Otherwise, we activate
π(2) to determine the number of nodes activated because of
its activation and this becomes the contribution of node π(2).
Likewise, we continue up to π(n). We repeat the above process
R times (for example 10000 times) using the same π. Further-
more, we repeat all the above steps for each permutation in
the set of sampled permutations and we determine the average
contribution of each node towards the spread of information.
Finally, we sort the nodes in non-increasing order of their
contribution values to construct the rank list of nodes.

Now we come to the important question of how to choose
the top-k nodes from the RankList[]. The naive approach is
to choose the first k in the RankList[] as the top-k nodes.
This approach suffers from the following drawback: the chosen
nodes may be clustered at one place. For example, consider
the network shown in Figure 1. Here we note that wij = 1

di
,

Fig. 1. An example network

∀j ∈ Ni, ∀i ∈ N . More specifically, w12 = w14 = 1
2 ,
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w21 = w23 = w24 = w25 = 1
4 , etc. For this network,

RankList[] = {5,4,2,7,11,15,9,13,12,10,6,14,3,1,8}. If k = 4,
then we choose the nodes 5, 4, 2, 7 as the top 4 nodes fol-
lowing the naive idea of choosing the top 4 nodes from the
RankList[]. Observe that these 4 nodes are located in the same
cluster of the network. On the other hand, if these nodes are
appropriately spread over the network, then such a situation
will increase the number of active nodes or the cascade of
information.

Motivated by the above situation, we choose the top-k nodes
from the RankList[] as follows. We consider the nodes in the
order given by RankList[] and initially we add the nodes to
the list of top-k nodes that are not adjacent. More precisely,
(i) we take the first node from the RankList[] and add it to
the list of top-k nodes; (ii) we take the second node from
RankList[] and add it to the list of top-k nodes if it is not
adjacent to the node in the list of top-k nodes, and so on; (iii)
in general, when we consider a node from the RankList[], we
add it to the list of top-k nodes if it is not adjacent to any
node in the list of top-k nodes. In this process, after adding
a certain number of nodes to the list of top-k nodes, we may
not find any node from the RankList[] that is not adjacent to
any node in the list of top-k nodes. In other words, any node
in the network is either added to the list of top-k nodes or
adjacent to some node in the list of top-k nodes. Then we
consider nodes with the highest Shapley values that are still
not included to the list of top-k nodes and add them to the list.
We stop the above process when the size of the list of top-k
nodes is k. The algorithm presented in Algorithm 3 chooses
the top-k nodes from the RankList[] as described above.

In Algorithm 3, the list of top-k is represented by top-
knodes[] and index refers to how many nodes are added
to topknodes[]. Initially the status of each node is set to 0
indicating the fact that each node i is not added to topknodes[]
and this task is performed at step 1 in the algorithm. Next, we
do the following for each node j in the RankList[]: (i) we
examine whether the node in RankList[j] is already added to
topknodes[]; also we examine whether the node in RankList[j]
is adjacent to any node in topknodes[] (step 4 to step 11); (ii)
if the above two conditions are not satisfied, then we add the
node in RankList[j] to topknodes[] (step 12 to step 19). We
also make a consistency check whether we have already found
the top k nodes (step 13 to step 15); (iii) If k nodes are not
added to topknodes[] at the end of step 20, then we add the
nodes (among the nodes that are still not added) with highest
Shapley values to topknodes[] and we stop the process when
topknodes[] contains exactly k nodes (step 21 to step 29).

To illustrate the proposed approach, let us consider again
the graph shown in Figure 1. Table I summarizes the number
of active nodes using (1) the greedy algorithm (Algorithm 1),
(2) the SPIN algorithm, (3) the maximum degree heuristic
(MDH) based algorithm, and (4) the high clustering heuristic
(HCH) based algorithm when the size of the initial target
set (k) takes values 1, 2, . . . , 15 respectively. The results of
the greedy algorithm are averages over 10000 repetitions of
the experiment. It is clear that the performance of the SPIN
algorithm almost matches that of the greedy algorithm. For ex-
ample, when k = 4, (i) greedy algorithm chooses {5,11,2,15}

Algorithm 3 Choosing The Top-k Nodes (SPIN)
1: Initialize index := 1 and status[1..n] to 0;
2: for j = 1 to n, do
3: flag ← 0;
4: for i = 0 to index, do
5: if topknodes[i] = RankList[j] or
6: topknodes[i] is adjacent to RankList[j],
7: then
8: flag ← 1;
9: break;

10: end if
11: end for
12: if flag = 0, then
13: if index = k
14: then goto Step 30:
15: end if
16: topknodes[index] ← RankList[j];
17: status[j] ← 1;
18: index ← index + 1;
19: end if
20: end for
21: for j = 0 to n, do
22: if status[j] 6= 1
23: if index = k
24: then goto Step 30:
25: end if
26: topknodes[index] ← RankList[j]
27: index ← index + 1;
28: end if
29: end for
30: Declare the nodes in topknodes[] as top-k nodes

as the target set, (ii) the SPIN algorithm chooses {5,4,11,15}
as the target set, (iii) the maximum degree heuristic chooses
{5,4,2,7} as the target set, and (iv) the high clustering heuristic
chooses {1,3,6,8}. Note that the nodes in the target sets chosen
by the greedy algorithm and the SPIN algorithm are spread
over the network whereas the nodes chosen by the maximum
degree heuristic are clustered. For this reason, the performance
of the maximum degree heuristic is inferior to that of the
greedy algorithm and the SPIN algorithm.

1) Computational Complexity:: Recall that the running
time of the Shapley value based algorithm depends on two
main steps namely RankList[] construction and the choice
of top-k nodes from RankList[]. We have to compute the
marginal contribution of each node and it takes O(t(n+m)R)
time where R is the number of repetitions of the experi-
ment and m is the number of edges in the graph. It takes
O(n log(n)) time to construct the RankList[]. Then choosing
the top k nodes from the RankList[] takes at most O(kn)
time. Finally, with these top k nodes in hand, we repeat the
experiment R times in order to determine the expected number
of active nodes at the end of the diffusion process and this
takes O(kRm). The overall running time of the Shapley value
based algorithm is O(t(n + m)R + n log(n) + kn + kRm)
where t is a polynomial in n.
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k value Greedy SPIN MDH HCH
Algorithm Algorithm Algorithm Algorithm

1 4 4 4 2
2 8 7 7 4
3 10 10 8 6
4 12 12 8 7
5 13 13 10 8
6 14 14 13 8
7 15 15 13 8
8 15 15 13 8
9 15 15 13 10
10 15 15 13 11
11 15 15 13 13
12 15 15 13 13
13 15 15 14 14
14 15 15 15 15
15 15 15 15 15

TABLE I
NUMBER OF ACTIVE NODES AT THE END OF THE DIFFUSION PROCESS

WHEN THE SIZE (k) OF THE INITIAL TARGET SET TAKES VALUES
1, 2, . . . , 15 RESPECTIVELY

Note: From the view point of practical graphs (or real world
graphs), it is reasonable to assume that n < m. With this,
the overall running time of the SPIN heuristic algorithm is
O(tmR) where t is a polynomial in n.

C. The λ-coverage Problem

Though the λ-coverage problem is different from the top-
k nodes problem, a very minor modification to the SPIN
algorithm turns out to be an efficient heuristic algorithm for
this problem. In particular, our approach is the following:

1) We invoke Algorithm 3 with k = n. This yields an
ordering of nodes as provided by the list of topknodes[]
from Algorithm 3.

2) Now we determine the smallest value of x for which
initially activating the first x nodes in the list of
topknodes[] results in at least λ percent of the nodes
in the network become active.

For example, recall the graph shown in Figure 1 and Table
I shows the expected number of active nodes at the end
of the diffusion process when the size of the initial target
set takes values 1, 2, . . . , 15 respectively. Now we make the
following observations: (i) to cover the whole graph, we need
7 nodes using both the greedy algorithm and the SPIN algo-
rithm; in particular, we find that both these algorithms choose
{5, 4, 11, 15, 2, 7, 9} as the nodes to be initially targeted to
cover the whole network; (ii) if we wish to cover 2

3 of the
network, i.e. 10 nodes, the greedy algorithm requires 3 nodes
and it picks {5, 11, 2} as the initial target set. The SPIN
algorithm also requires 3 nodes and it picks {5, 4, 11} as the
initial target set.

III. EXPERIMENTAL RESULTS WITH SUBMODULAR
INFLUENCE FUNCTIONS

Throughout this section, we consider the linear threshold
model as the model of diffusion of information. Recall that
the influence function (σ(.)) is submodular under the linear
threshold model [28]. We evaluate the performance of the

SPIN algorithm experimentally. For our experiments, we con-
sider both synthetic data sets and real world data sets.

All the experiments are executed on a desktop computer
with (i) Intel(R) Pentium(R) 4 CPU (3.20 GHz speed) and 1
GB of RAM, and (ii) 32-bit Windows operating system. Each
experimental result on each data set is taken as the average
over 10000 or 4000 repetitions depending on the type of data
set. In other words, we consider that R = 10000 or R =
4000 depending on the data set. Further, we note that all the
experiments are carried out using JAVA.

We first describe the data sets and the experimental setup.
We then demonstrate the performance of the proposed al-
gorithm on various data sets in comparison with the greedy
algorithm (or the KKT algorithm), the LKG algorithm, MDH,
and HCH. We now make a note regarding the implementation
of the LKG algorithm. Recall (from Section I-C) that there
are two aspects to the speed up of the LKG algorithm. Since
the first aspect (i.e. sparsity) is not relevant to the context of
the target set selection problem, we only leverage the second
aspect in the implementation of the LKG algorithm.

A. Data sets and Experimental Setup

1) Synthetic Data sets: There are several popular models to
generate synthetic data sets with specific structural character-
istics. We consider the following two types of synthetic data
sets.

Sparse Random Graphs: The basic random graph model
(Gilbert [19]) is defined by two parameters: the number of
vertices (n) and common the edge probability (0 < p < 1).
The edge between any pair of nodes is created with probability
p independently of any other edges. Clearly, the number of
edges in such a graph is binomially distributed with mean
p
(
n
2

)
. Graphs generated from this model are balanced with

similar vertex degrees, low level of clustering, and relatively
short distances. We efficiently generate sparse random graphs
with 500 nodes using the algorithm presented by Batagelj and
Brandes [4].

Scale-free Networks: Preferential attachment is a model
proposed by Barabasi and Albert [3] for generating random
graphs with heavy-tailed degree distribution. Consider a graph
with n vertices. The n vertices of the graph are added one at a
time, and for each of them, a fixed number of edges connecting
to previously created vertices with probability proportional to
their degree are added.

2) Real World Social Network Datasets: We now present
details about six real world datasets that we have experimented
with.

Celegans Data Set: This data set describes the neural
network of the worm Caenorhabditis elegans and is used by
Watts and Strogatz [49]. This is a weighted, directed, graph.
There are 306 nodes in this dataset.

Jazz Data Set: This dataset consists of the list of links of
the network of Jazz musicians (Gleiser and Danon [20]). There
are 198 nodes in this network.

Netscience Data Set: This is a co-authorship network of
scientists working on network theory, compiled by Newman
[40] in May 2006. The vertices of the network represent
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authors of papers and edges join every pair of individuals
whose names appear together as authors of a paper. This
network has a total of 1589 scientists from a broad variety
of fields in network theory.

NIPS Co-authorship Data Set: This is an un-weighted co-
authorship network of NIPS (Conference on Neural Infor-
mation Processing Systems) papers (Estevez, Vera, and Saito
[41]). This network consists of 1061 nodes.

High Energy Physics (HEP) Data Set: This is a weighted
network of co-authorship between scientists posting preprints
on the High-Energy Theory E-Print Archive between Jan 1,
1995 and December 31, 1999. This is compiled by Newman
[39]. This network has 10748 nodes.

Political Books Data Set: Nodes represent books about US
politics sold by the online bookseller Amazon.com. Edges
represent frequent co-purchasing of books by the same buyers,
as indicated by the ”customers who bought this book also
bought these other books” feature on Amazon. The number
of nodes in this data set is 105. This data set is compiled
by V. Krebs and is available on Krebs’ web site (http :
//www.orgnet.com/).

A summary of all the datasets described above is given in
Table II.

Data Set Number of Nodes Number of edges
Sparse Random Graph 500 5000 (approx.)

Scale-free Graph 500 1250 (approx.)
Political Books 105 441

Jazz 198 2742
Celegans 306 2345

NIPS 1061 4160
Netscience 1589 2742

HEP 10748 52992

TABLE II
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS

3) Experimental Setup: We follow the linear threshold
model of information diffusion. We determine the probabilities
(or weights) on the edges with the help of the multiplicity of
the edges between two nodes. If there are l(x, y) multiple
edges between nodes x and y, and the degrees of the nodes
are dx and dy respectively, then the directed edge from x to y

has weight l(x,y)
dy

and the directed edge from y to x has weight
l(x,y)

dx
.

We use the following convention while plotting the perfor-
mance curves for various algorithms: the X-axis represents the
size of the initial target set, and Y -axis represents the number
of active nodes, that is, the number of influenced nodes at the
end of the diffusion process.

B. Experimental Results and Analysis

Figure 2 shows the performance of the SPIN algorithm vis-
a-vis other algorithms on synthetic data sets consisting of 500
nodes each. In particular, Figure 2(i) corresponds to a sparse
random graph with p = 0.005, Figure 2(ii) corresponds to a
sparse random graph with p = 0.01, Figure 2(iii) corresponds

to a sparse random graph with p = 0.02, and Figure 2(iv)
corresponds to a scale free graph. It is clear that the efficacy
of the SPIN algorithm is good as that of the greedy algorithm
(Algorithm 1). We note that the performance of MDH and
HCH is quite poor.

The performance of various algorithms on the Celegans data
set is shown in Figure 3(i). Note that the performance of the
SPIN algorithm inferior to that of the greedy algorithm by
4.9% whereas the performance of MDH is inferior by 14.3%
to that of the greedy algorithm. HCH efficiency is much worse
than that of the remaining three algorithms. The results of
the greedy algorithm on this data set are computed by taking
averages over 10000 repetitions of the experiment.

For each possible size of the initial target set, the following
is easy to observe from Figure 3(ii) and Figure 3(iii): the SPIN
algorithm produces almost the same number of active nodes as
that of the greedy algorithm. Note that Figure 3(ii) corresponds
to the jazz musicians data set and Figure 3(iii) corresponds
to the netscience co-authorship data set. The performance of
MDH is inferior by about 37.5% and 53% to that of the
greedy algorithm on the jazz data set and the netscience data
set respectively. HCH performs quite poorly on both the data
sets. The results of the greedy algorithm on the jazz and
netscience data sets are computed by taking averages over
10000 repetitions of the respective experiments.

Figure 3(iv) shows the performance of the SPIN algorithm
on the high energy Physics co-authorship data set. The per-
formance of the SPIN algorithm is inferior by about 4.4% to
that of the greedy algorithm and the performance of MDH is
inferior by 15.7%. For the greedy algorithm, the number of
active nodes for each size of the initial target sets is computed
by taking average over 10000 repetitions of experiment.

From Figure 3(v), we see that the performance of
the SPIN algorithm is inferior by 3.4% to that of
the greedy algorithm on NIPS co-authorship data set.
The efficacy of MDH is inferior by 12.6% to that of
the greedy algorithm. In particular, the greedy algorithm
chooses the following set of nodes as the top 10 nodes:
{479, 836, 376, 855, 68, 298, 331, 644, 440, 866}; the SPIN al-
gorithm chooses the following set of nodes as the top 10
nodes: {479, 836, 376, 855, 298, 68, 331, 459, 924, 852}; and
MDH chooses the following set of nodes as the top 10
nodes: {479, 836, 298, 331, 376, 206, 517, 644, 440, 855}. The
experiment is repeated 4000 times in order to determine the
average number of active nodes for each possible size of the
target set using the greedy algorithm.

Figure 3(vi) shows the performance of the SPIN algorithm
on the political books data set. The performance of the SPIN
algorithm is inferior by about 1.9% to that of the greedy
algorithm. For the greedy algorithm, the number of active
nodes for each size of the initial target sets is computed by
taking average over 10000 repetitions of experiment.

Recall that the SPIN algorithm works with a sampled set
(Ω̂) consisting of t number of permutations. The running time
of the algorithm clearly depends on the value of t. Table III
shows the values of t on various data sets using the SPIN
algorithm.

From these experiments, we note that there exists a small
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Fig. 2. Number of active nodes versus the size of the initial target set using (i) sparse random graph with p = 0.005, (ii) sparse random graph with p = 0.01,
(iii) sparse random graph with p = 0.02, and (iv) scale-free graph
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Fig. 3. Number of active nodes versus the size of the initial target set using (i) Celegans data set, (ii) Jazz musicians data set, (iii) Netscience co-authorship
data set, (iv) High energy physics co-authorship data set, (v) NIPS co-authorship data set, and (vi) Political Books data set.

Data Set t

Sparse Random Graph 1000
Scale-free Graph 700
Political Books 500

Jazz 800
Celegans 1000

NIPS 700
Netscience 1000

HEP 10000

TABLE III
SIZE OF THE SAMPLED SET (t) USING THE SPIN ALGORITHM FOR

VARIOUS DATA SETS

performance gap in terms of the quality of the answer between
the SPIN algorithm and the KKT algorithm. The following
observations clarify this:

1) We work with approximate Shapley values of the nodes
in order to rank them.

2) We notice that the approximate Shapley values of the
nodes follow a power-law like distribution. That is, a few
nodes have very high Shapley values and a large fraction
of the nodes have very low Shapley values. Thus, to
identify top-k nodes for small values of k, it is required
to obtain the approximate Shapley values of nodes with
high accuracy.
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C. Computational Efficiency of the SPIN Algorithm

Here we explain certain implementation details of the
proposed approach and the KKT and LKG algorithms. This
highlights the reasons behind the computational efficiency of
our approach.

(1) The KKT Algorithm: The following is the procedure to
find a new influential node using the KKT algorithm. Initially
all nodes in the network are inactive and assume that A is
the current set of influential nodes. Also we randomly assign
a threshold to each node. Then we activate all the nodes in
A ∪ {ni} where ni ∈ N \ A and determine the number of
nodes that are activated. We repeat this step about R times
(for example 10000 times) and determine the expected number
of nodes activated using A∪ {ni} as the initial target set (i.e.
σ(A∪{ni}). We repeat the above procedure for all ni ∈ N \A
and we choose a node (as influential node) that maximizes
σ(A∪{ni})−σ(A), ∀ni ∈ N \A. That is, if our interest is to
find k influential nodes, we have to repeat the above process
k times (with appropriate A).

(2) The LKG Algorithm: We implement this algorithm in the
same fashion as the KKT algorithm except the fact that we
take into account the submodularity property of the influence
function. The submodularity of the influence function avoids
the calculation of the (expected) value of the influence function
with certain target sets.

(3) The SPIN Approach: We implement our proposed ap-
proach as follows. As described previously, there are two steps
in our approach: (i) rank list generation, and (ii) choosing
top-k nodes. We emphasize that the first step is completely
independent of the second step. The implementation details of
the first step (i.e. rank list generation) are clearly explained in
Section II-B.

In fact, to make the algorithm even more efficient, we
do not work with permutations of size n. We rather work
with perturbed permutations of size q where q is chosen
appropriately based on the data set. We call a permutation
as a perturbed permutation of size q if it is a sequence of
q randomly selected nodes from the set of n nodes where
q < n. We randomly generate t perturbed permutations
of size q to construct the rank list of nodes. Interestingly,
we notice that the average contributions of the nodes using
perturbed permutations of size q are almost same as that of
using permutations on n nodes. The reason for this important
observation is that the nodes ranked by the (approximate)
Shapley values (or marginal contributions) tend to follow
a heavy-tailed distribution. That is, a few nodes have high
marginal contribution values and a large number of nodes
have small marginal contribution values. For example, Figure
4 shows the same for three real world data sets. Furthermore,
Table III shows the number of perturbed permutations of order
q considered for various data sets. Table IV shows the value
of q we have chosen to generate these perturbed permutations
of size q for various data sets.

Next, we consider the second step in our proposed approach
(i.e. choosing the top-k nodes). Given the value of k, we use
Algorithm 3 to find out the set of k influential nodes. This step
takes very short time (a few seconds even for data sets of size

Data Set n q

Sparse Random Graph 500 200
Scale-free Graph 500 200
Political Books 105 70

Jazz 198 100
Celegans 306 100

NIPS 1061 150
Netscience 1589 200

HEP 10748 400

TABLE IV
THE VALUE OF q CONSIDERED IN GENERATING PERTURBED

PERMUTATIONS OF SIZE q FOR VARIOUS DATA SETS

about 10000 nodes) to execute. Thus, the execution time of
the SPIN algorithm is (almost) independent of the value of k.
Because of these reasons, the proposed approach is practically
faster than the asymptotic running time given in Section II-B1.
We note that the execution time of the KKT algorithm depends
quite crucially on the value of k. Similarly, the running time
of the LKG algorithm also depends on the value k.

The above implementation details of the KKT algorithm
and our proposed approach clearly bring out the differences
in the computation of the influence function. We notice that
this leads to significant difference in the running time of these
algorithms on various data sets as shown below.

Table V shows the running times of the SPIN algorithm
and the KKT algorithm (Greedy algorithm) to find top 30
influential nodes on various data sets that we considered above
in our experiments. This table shows that the speedup of the
SPIN algorithm over the KKT algorithm is quite significant
and even achieves a speed up of about 470 times on the
netscience data set. Since the KKT algorithm runs very slow
on the large data sets, we did not run the KKT algorithm on
the HEP data set.

Dataset Nodes SPIN KKT Speed-up
(Time in (Time in ) of SPIN

(MIN) (MIN) over KKT
Random graph 500 13.9 824.93 59
(p = 0.005)

Random graph 500 14.8 1123.16 75
(p = 0.01)

Random graph 500 16.3 1302.46 79
(p = 0.02)

Political Books 105 0.89 44.64 50
Jazz 198 1.1 366 332

Celegans 306 14.02 901 64
NIPS 1062 15.2 7201.54 473

Network-Science 1589 28.25 8539.48 302

TABLE V
SPEEDUP OF THE SPIN ALGORITHM TO FIND TOP-30 NODES ON VARIOUS

DATASETS COMPARED TO THAT OF KKT ALGORITHM

We also observe that the SPIN algorithm is efficient than the
LKG algorithm as well and the following experimental results
reveal this fact. Figure 5 shows the running times of the SPIN
algorithm and the LKG algorithm to find top 30 influential
nodes on three sparse random graphs with p = 0.005, p =
0.01, and p = 0.02 respectively. Similarly, Figure 6 shows the
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(i) (ii) (iii)

Fig. 4. Nodes ranked by the (approximate) Shapley values (or marginal contributions) tend to follow a heavy-tailed distribution. A few example data sets
are: (i) Jazz data set, (ii) NIPS co-authorship data set, and (iii) Netscience co-authorship data set.

Fig. 5. Running times of the SPIN algorithm and the LKG algorithm to
identify the top-30 influential nodes on three data sets namely (i) sparse
random graph with p = 0.005, (ii) sparse random graph with p = 0.01
(i) sparse random graph with p = 0.02

Fig. 6. Running times of the SPIN algorithm and the LKG algorithm to
identify the top-30 influential nodes on various real world data sets

running times of the SPIN algorithm and the LKG algorithm
to find top 30 influential nodes on various real world data
sets (except HEP data set) that we considered previously. In
the case of the HEP data set, to find the top 30 influential
nodes, the SPIN algorithm takes 887 minutes whereas the LKG
algorithm takes 1730 minutes.

To exemplify the fact that the running time of our proposed
approach does not depend on the value of k, we report
experiments on two data sets. Table VI shows that the speed
up of the SPIN algorithm (on the Celegans data set) increases
significantly compared to that of the KKT algorithm as the
value of k increases. Table VII shows clearly that the speed
up of the SPIN algorithm (on the netscience data set) increases
significantly compared to that of the KKT algorithm as k value
increases. We note that the SPIN algorithm obtains a speed up
of about 700 times, when k = 50, over the KKT algorithm on
the netscience data set.

Running Time (in MINUTES) Speed-up
Top-k SPIN KKT LKG of SPIN
Nodes Algorithm Algorithm Algorithm over KKT
k = 10 14 236 13.97 16
k = 20 14.01 572 28.26 40
k = 30 14.02 901 32.55 64
k = 40 14.04 1192.68 56.18 85
k = 50 14.07 1479.65 62.33 105
k = 60 14.09 1757.49 63.86 125
k = 70 14.10 2027.37 65.95 144
k = 80 14.11 2287.93 67.64 163
k = 90 14.12 2535.76 68.76 181
k = 100 14.13 2773.07 69.83 198

TABLE VI
RUNNING TIMES OF THE SPIN, KKT, AND LKG ALGORITHMS ON THE
CELEGANS DATA SET (n = 306) TO DETERMINE TOP-k NODES WHERE
k = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 AND THE SPEED UP OF THE

SPIN ALGORITHM OVER THE KKT ALGORITHM

D. Experimental Results for the λ-Coverage Problem

Here we compare the performance of the SPIN algorithm
for the λ-coverage problem with that of the greedy algorithm.
Since the greedy algorithm takes several hours of time to
run on large data sets (Chen, Wang, and Yang [10]), we
consider two moderate size real world data sets namely Jazz
data set and Celegans data set (refer to Section III-A for more
details about the data sets). Table VIII and Table IX show the
number of nodes required to cover a given percentage λ of
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Running Time (in MINUTES) Speed-up
Top-k SPIN KKT LKG of SPIN
Nodes Algorithm Algorithm Algorithm over KKT
k = 10 28.04 1341.29 77.07 47
k = 20 28.09 4297.02 79.75 152
k = 30 28.13 8539.48 85.04 302
k = 40 28.18 13949.9 90.33 493
k = 50 28.25 20411.1 99.03 722

TABLE VII
RUNNING TIMES OF THE SPIN, KKT, AND LKG ALGORITHMS ON THE

NETSCIENCE DATA SET (n = 1589) TO DETERMINE TOP-k NODES WHERE
k = 10, 20, 30, 40, 50 AND THE SPEED UP OF THE SPIN ALGORITHM

OVER THE KKT ALGORITHM

the nodes in the network using the greedy algorithm and the
SPIN algorithm on the Jazz data set and the Celegans data
set respectively. In our experiments, we consider that λ takes
values 25%, 50% and 75%.

Algorithm Jazz
λ = 25% λ = 50% λ = 75%

Greedy Algorithm 2 3 5
SPIN Algorithm 2 3 5

TABLE VIII
NUMBER OF NODES REQUIRED TO INFLUENCE A GIVEN PERCENTAGE λ OF

NODES USING JAZZ DATA SET

Algorithm Celegans
λ = 25% λ = 50% λ = 75%

Greedy Algorithm 3 8 20
SPIN Algorithm 3 8 24

TABLE IX
NUMBER OF NODES REQUIRED TO INFLUENCE A GIVEN PERCENTAGE λ OF

NODES USING CELEGANS DATA SET

E. Comparison of SPIN with Other Algorithms

The SPIN algorithm proposed in this paper follows a funda-
mentally new approach to solve the target selection problem.
It has several advantages and a few limitations when compared
to the algorithms existing in the literature. We first discuss the
advantages followed by the limitations.

1) Advantages of the SPIN Algorithm: The proposed SPIN
algorithm produces target sets which are as good as the target
sets produced by the greedy algorithm of Kempe, Kleinberg,
and Tardos [28] (KKT algorithm) and the more recent, faster
versions of Leskovec, Krause, and Guestrin [34] (LKG algo-
rithm) and Chen, Wang, and Yang [10] (CWY algorithm). The
SPIN algorithm is in general more computationally efficient
than the LKG algorithm and hence much more efficient than
the KKT algorithm.

It is known that the objective function σ(.) is monotone
increasing and sub-modular whenever the node threshold
function at each node is monotone increasing and sub-modular
[35]. Thus the approximation guarantee of (1 − 1

e ) holds
when the node threshold function at each node is monotone
increasing and sub-modular. However, in many settings, it is
quite possible that the node threshold functions are monotone

decreasing and non-submodular and in such contexts none of
the algorithms have approximation guarantees. In two such
specific settings as shown in Section IV, it is experimentally
verified that the SPIN algorithm outperforms in terms of
quality of the solution over the KKT algorithm (as well as
the LKG algorithm and the CWY algorithm).

The other advantages of the SPIN algorithm over the KKT
algorithm are: (a) SPIN can solve both the top-k nodes
problem and the λ-coverage problem equally effectively while
the KKT algorithm runs slower on both these problems; (b) the
execution time of the SPIN algorithm is (almost) independent
of the value of k, whereas the execution time of the KKT,
LKG, and CWY algorithms heavily depends on the value of
k.

The maximum degree heuristic (MDH) based and the high
clustering heuristic (HCH) based algorithms are much faster
compared to the KKT, LKG, CWY algorithms or the SPIN al-
gorithm, however their performance in terms of the target sets
produced tends to be quite poor. This is strikingly observed in
all the experiments. This is a serious limitation of the MDH
and HCH algorithms.

2) Limitations of the SPIN Algorithm: The target sets pro-
duced by the SPIN algorithm are occasionally a little inferior
to the ones produced by the KKT, LKG, and CWY algorithms
when the σ(.) function is sub-modular. This happens because
the Shapley values computed are approximate.

F. Statistical Significance of Experimental Results

We evaluate the quality of the approximate Shapley values
of the nodes that are computed using Algorithm 2. For the
experiments in this section, we use the high energy physics
data set as it is a large data set.

We rely on statistical techniques for bounding the corre-
sponding errors (Trivedi [47], Law and Kelton [32]). Recall
from Algorithm 2 that Ω̂ is a set of randomly sampled
permutations. Let {X1

i , X2
i , . . . , Xt

i} be the random sample
representing the marginal contributions of a specific node i
due to the permutations in Ω̂. Following standard methods
of statistical inference, let us define an estimator X̄i for the

actual Shapley value of the node i as X̄i =
∑t

j=1
Xj

i

t . If
we directly use X̄i as an estimator of the actual Shapley
value, the problem is that we do not know how close X̄i is
to the original Shapley value. In this process, we first need
to determine the variance of the random variable X̄i given

by V ar(X̄i) =
∑t

j=1
{Xj

i
−X̄i}2

t(t−1) . Table X gives the estimated
Shapley values and the corresponding variances of the top 10
nodes in the high energy physics data set where the sampled
set size t = 60.

Now we need to assess the quality of the estimator X̄i.
For this, we construct the confidence interval, which is an
open interval on the real line such that we have a given level
of confidence that it contains the actual Shapley value. More
precisely, if we can ascertain that the estimator X̄ satisfies the
condition

P (X̄i − δ < Φi < X̄i + δ) = γ,
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Node ID X̄i V ar(X̄i)

1 62.23 7.32
5 57.10 5.88
2 56.18 2.01
3 55.36 4.24

10 51.50 3.13
6 47.23 3.77
4 46.83 1.95

14 46.35 2.32
26 43.01 2.44
7 40.43 3.83

TABLE X
ESTIMATED SHAPLEY VALUE AND VARIANCE OF TOP 10 NODES IN THE

HIGH ENERGY PHYSICS DATA SET WHEN SAMPLED SET SIZE t = 60

then, it is possible to say that the probability is γ (or the
confidence is γ) that the interval (X̄i − δ, X̄i + δ) will
contain the actual Shapley value (Φi). Using the standard
results in this theory (Trivedi [47], Law and Kelton [32]),
we construct (1 − α)100 percent confidence intervals of the
form

(
X̄i − zα

2
[ s
t0.5 ], X̄i + zα

2
[ s
t0.5 ]

)
. Here s stands for the

standard deviation of the random sample and z is the standard
normal random variable. Since we do not know the actual
standard deviation of the underlying distribution, we use the
standard deviation (s) of the random sample. This method
gives good approximate confidence intervals for large values
of t (t > 30). If α = 0.01, then we get a 99 percent
confidence interval. Similarly, if α = 0.05, then we obtain a
95 percent confidence interval. We consider the first 10 nodes
in the high energy physics data set and for each node we
consider a random sample of size t = 60 and determine the
99 percent, 95 percent, and 90 percent confidence intervals
for their corresponding actual Shapley values. Table XI shows
these results.

Node ID 90 Percent 95 Percent 99 Percent
Interval Interval Interval

1 (57.78,66.68) (56.93,67.53) (55.28,69.18)
3 (53.12,61.08) (52.36,61.84) (50.87,63.33)
2 (53.85,58.52) (53.42,58.94) (52.56,59.80)
3 (51.98,58.74) (51.35,59.37) (50.58,60.64)
10 (48.59,54.4) (48.06,54.94) (46.65,56.35)
6 (44.04,50.42) (43.43,51.03) (42.24,52.22)
4 (44.54,49.12) (44.11,49.55) (43.25,50.41)
14 (43.85,48.85) (43.38,49.32) (42.44,50.26)
26 (40.44,45.57) (39.95,46.06) (38.99,47.02)
7 (37.22,43.64) (36.61,44.25) (35.43,45.23)

TABLE XI
VARIOUS CONFIDENCE INTERVALS FOR TOP 10 NODES IN THE HIGH

ENERGY PHYSICS DATA SET

From the definition of confidence interval, we have 100(1−
α) percent confidence that the estimator X̄i deviates from the
actual Shapley value by less than zα/2

s
n0.5 and call this error

by e. Then the sample size required in order to produce a
symmetrical 100(1− α) percent confidence interval of width
2e (i.e., (X̄i−e, X̄i +e)) for the actual Shapley value is given
by

t ≈ ( zα/2s

e )2

Table XII shows the required cardinality of the sample size
t to construct 99 and 95 percent confidence intervals with error
e = 0.05 and e = 1 for the top 10 nodes in the high energy
physics data set. Clearly, the respective sizes of the cardinality
decrease when we go to 95 percent confidence interval from
99 percent confidence interval.

Node 99% Interval 99% Interval 95% Interval 95% Interval
ID with e = 0.05 with e = 1 with e = 0.05 with e = 1
1 11602 2901 6718 1679
5 10865 2717 6294 1573
2 3745 936 2168 542
3 6465 1616 3744 935
10 4603 1150 2664 667
6 5587 1396 3234 809
4 3072 768 1778 445
14 3614 903 2092 523
26 3352 838 1941 485
7 5750 1437 3329 832

TABLE XII
REQUIRED CARDINALITY OF THE SAMPLE SIZE t TO CONSTRUCT 99 AND
95 PERCENT CONFIDENCE INTERVALS WITH ERROR e = 0.05 AND e = 1

FOR TOP 10 NODES IN THE HIGH ENERGY PHYSICS DATA SET

From the above results, it is clear that we can approximate
the marginal contributions of the nodes even with a small
or moderate size of the sampled set using the subroutine in
Algorithm 2. There is a clear reason for this phenomenon.
The Shapley values of the nodes for most real world networks
tend to follow a somewhat power law like distribution. That
means, only a small fraction of the nodes have high marginal
contribution values and a large fraction of the nodes have very
small marginal contribution values.

This observation helps us in the following way. If a node is
really a candidate node for the diffusion process, its marginal
contribution value is high even if it occurs in a small number
of randomly sampled set of permutations. On the other hand,
if a node is not a candidate node for the diffusion, its marginal
contribution value is low even if it occurs in a large number of
permutations in the sampled set. In our experimentation, the
sample size chosen guarantees a 99% confidence interval.

IV. EXPERIMENTAL RESULTS WITH NON-SUBMODULAR
NODE THRESHOLD FUNCTIONS

In this section, we demonstrate the efficacy of the SPIN al-
gorithm when the threshold function at each node is monotone
decreasing and non-submodular. Towards this end, we progress
as follows: (a) we first propose two new models of diffusion
of information which we call multiplication threshold model
and minimum threshold model; (b) we then show that the
threshold function at each node is monotone decreasing and
non-submodular for each of these two new threshold models;
and (c) we then experimentally show the superior performance
of the SPIN algorithm (in terms of the quality of the solution)
compared to that of the KKT algorithm.

A. Multiplication Threshold Model

The process of diffusion in this model is described as:
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• Each node i initially chooses a threshold θi uniformly at
random from the interval [0, 1],

• Node i becomes active in time step t if fi(S) ≥ θi, where
S ⊆ Ni is the set of active neighbors of i in step (t−1),

• We define the threshold function fi as follows:

fi(S) =
∏

j∈S

wij (1)

where wij is the normalized weight representing the level
of influence of node j on node i such that

∑
j∈Ni

wij ≤
1.

We now describe an example where the multiplication
threshold model can be applied. Consider a social network
consisting of individuals. Call a node active if it has seen the
movie and inactive if it has not seen the movie. Suppose node
i is currently inactive. We call a neighbor of node i active if it
already saw the movie. An active neighbor j of i attempts to
make node i disinterested in the movie. The number θi could
be viewed as the threshold beyond which the node i becomes
active. The joint influence of the active neighbors could be
modeled as the product of the wij values - this is because as
more and more neighbors dissuade player i, the movie (or the
product) becomes lower and lower valued and player i remains
inactive. Assume that S ⊆ Ni is the set of active neighbors
of node i. We can capture this by saying that node i changes
from inactive to active if Πj∈Swij ≥ θi and continues to be
inactive otherwise.

In what follows, we show that the node threshold function fi

for each i ∈ N is monotone decreasing and non-submodular.
In the following lemma, we in fact show that the function fi

is monotone decreasing and supermodular.
Lemma 1: Given the multiplication threshold model and

any node i ∈ N , the threshold function fi is monotone
decreasing and supermodular.

Proof: Consider the threshold function fi of node i
defined as in the expression (1). It is immediate to see that
fi is monotone decreasing because

∏
j∈T wij ≤

∏
j∈S wij

whenever S ⊆ T ⊆ Ni. This is because 0 < wij ≤ 1,
∀j ∈ Ni.

We now show that fi is supermodular. Let S and T be any
two arbitrary subsets of Ni such that S ⊆ T ⊆ Ni. It is clear
that ∏

j∈S

wij ≥
∏

j∈T

wij . (2)

Now consider z ∈ Ni such that z /∈ S and z /∈ T . Also since
(wiz − 1) < 0, we now get from expression (2) that:

(wiz − 1)
∏

j∈S

wij ≤ (wiz − 1)
∏

j∈T

wij (3)

⇒
∏

j∈S∪{z}
wij −

∏

j∈S

wij ≤
∏

j∈T∪{z}
wij −

∏

j∈T

wij (4)

⇒ fi(S ∪ {z})− fi(S) ≤ fi(T ∪ {z})− fi(T ). (5)

Hence fi is supermodular.
The performance of the SPIN algorithm using these mono-

tone decreasing and non-submodular node threshold functions

on various data sets is shown in Figure 7. For these experi-
ments, we use 5 data sets namely (i) sparse random graph data
set (p = 0.01), (ii) karate data set, (iii) political books data
set, (iv) adjacency nouns data set, and (v) celegans data set.
The last four data sets here are real world data sets and they
are taken from the home page of MEJ Newman (http://www-
personal.umich.edu/ mejn/netdata/). From these experimental
results, it is clear that the SPIN algorithm outperforms in terms
of the quality of the solution over the KKT algorithm, when
the node threshold functions are non-submodular.

B. Minimum Threshold Model

Here our approach is similar to what we did in the case of
multiplication threshold model. To start with, we first define
the minimum threshold model as follows. The process of
diffusion in this model is described as:
• Each node i initially chooses a threshold θi uniformly at

random from the interval [0, 1],
• Node i becomes active in time step t if fi(S) ≥ θi, where

S ⊆ Ni is the set of active neighbors of i in step (t−1),
• We define the threshold function fi as follows:

fi(S) = min
j∈S

{αjwij} (6)

where αj ≥ 0, ∀j ∈ Ni.
We present an example setting where this model is ap-

plicable. Consider the example of a node i to which the
same message is being communicated by each of its active
neighbors. Assume that the communication channels are noisy.
If j is an active neighbor of i, the number wij gives the
normalized value of the reliability of the channel between
j and i. The number wij could be viewed as indicating a
normalized probability of the message being transmitted in an
error free way from j to i. The number θi could be viewed as
the threshold for accepting a message as error free. Assume
that S ⊆ Ni is the set of active neighbors of node i. Under
this setting, player i will consider the message received as
error free only if minj∈S wij ≥ θi, which means the threshold
function is the minimum function.

We now show that the node threshold function fi for
each i ∈ N is monotone decreasing and non-submodular. In
the following lemma, we in fact show that fi is monotone
decreasing and supermodular.

Lemma 2: Given the minimum linear threshold model and
for any node i, the threshold function fi is monotone decreas-
ing and supermodular.

Proof: Given that the minimum linear threshold model
and a node i. Now consider the threshold function fi of node
i as defined in expression (6). It is immediate to see that fi is
monotone decreasing as minj∈T {αjwij} ≤ minj∈S{αjwij}
whenever S ⊆ T ⊆ Ni.

It is not difficult to see that fi is supermodular using the
standard results from the literature. However, here we present
a proof for completeness. Let Ni be the set of neighbors of
node i. Let S and T be any two arbitrary subsets of Ni such
that S ⊆ T ⊆ Ni. Consider z ∈ Ni such that z /∈ S and
z /∈ T . Let x1 = minj∈S{αjwij}, x2 = minj∈S∪{z}{αjwij},
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Fig. 7. Number of active nodes versus the size of the initial target set using multiplication threshold model with (i) sparse random graph with p = 0.01
(nodes n = 500), (ii) Karate data set (nodes n = 34), (iii) Political Books data set (nodes n = 105), (iv) Adjacency of nouns data set (nodes n = 112), and
(v) Celegans data set (nodes n = 306)

x3 = minj∈T {αjwij} and x4 = minj∈T∪{z}{αjwij}. It is
clear that x1 ≥ x3 and x2 ≥ x4.

We now consider the following the three cases:
• Case 1: If x1 = x2, then we get that x3 = x4. This leads

to the following:

f(S ∪ {z})− f(S) = f(T ∪ {z})− f(T )

• Case 2: If x3 ≤ x2 < x1, then it is clear that x3 = x4.
This leads to the following:

f(S ∪ {z})− f(S) < f(T ∪ {z})− f(T )

• Case 3: If x2 < x3, then it is clear that x2 = x4 < x3 ≤
x1. This leads to the following:

f(S ∪ {z})− f(S) ≤ f(T ∪ {z})− f(T )

Hence, fi is supermodular.
The performance of the SPIN algorithm using these mono-

tone decreasing and non-submodular node threshold functions
on various data sets is shown in Figure 8. For these exper-
iments, we use 3 data sets namely (i) adjacency nouns data
set, (ii) celegans data set, and (iii) karate data set. All these
data sets are real world data sets and they are taken from the
home page of MEJ Newman. From these experimental results,
it is clear that the SPIN algorithm outperforms in terms of the
quality of the solution over the KKT algorithm, when we use
the above non-submodular influence function.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the target set selection problem
where the objective is to find influential nodes to perform
the information diffusion task. In particular, we focused on
two variants of this problem namely the top-k nodes problem
and the λ-coverage problem. We have proposed an efficient
heuristic algorithm which we called the SPIN algorithm to

address these problems. Our approach uses the novel idea of
modeling the information diffusion process as a cooperative
game and using the Shapley values of the nodes to compute
their network value or influence in the network. We have
experimented with 4 synthetic data sets and 6 real-world data
sets and shown that the proposed algorithm outperforms the
greedy algorithm and the LKG algorithm in terms of the
running time.

The following are a few interesting and potential directions
to enhance the performance of the SPIN algorithm.

• Currently the SPIN algorithm sieves only the single hop
neighbors in the neighborhood while selecting the top-k
nodes. A more intelligent way of sieving the nodes in the
immediate neighborhood will improve the performance of
the SPIN algorithm.

• Performance improvement can be obtained by focusing
on the bridge nodes (or cut vertices) in the network
since such nodes enable the communication between the
nodes belonging to different groups (or components). Our
current approach may not effectively capture the bridging
roles that some nodes play in the network.

• The SPIN algorithm for the top-k nodes problem assumes
that the probabilities with which nodes influence their
neighbors are computed from the structure of the network
directly. Such an approach is often not practical because
the nodes in the social network are individual entities
or organizations and they behave strategically with self-
interest. Hence the probabilities with which a node influ-
ences its neighbors depend not only on the structure of
the network but also on the private information that the
node may have about its neighbors. Such scenarios can
be effectively modeled using mechanism design.

• The existing approaches including the one in this paper do
not exactly exploit the possible presence of communities.
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Fig. 8. Number of active nodes versus the size of the initial target set using minimum linear threshold model with (i) Adjacency of nouns dataset, (ii)
Celegans dataset, and (iii) Karate dataset.

A community is a group of nodes that have a high
number of connections to the nodes within the group and
much less number of connections to the nodes outside
the group. The presence of communities strongly affects
the process of identifying influential nodes. It would be
interesting to enhance existing algorithms to exploit the
presence of communities in a more effective way.

• We have assumed the linear threshold model as the
model of information diffusion. The proposed algorithms
will work with the independent cascade model also.
Experiments could be carried out with the latter model.

• In cooperative game theory, there are other solution
concepts such as nucleolus which possibly have important
implications for discovering influential nodes. This would
be another interesting direction for future work.

• We wish to mention that there is a generalization of the
Shapley value for graph theoretic settings. This is the
Myerson Value [37]. What we have implicitly employed
in this paper is conceptually the same as the Myerson
value. It would be interesting to formalize this.
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