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Abstract. Fracture initiation in ductile metal plates occurs due to substantial tunneling of the crack in the interior of 
the specimen followed by final failure of side ligaments by shear lip formation. The tunneled region is characterized by 
a fiat, fibrous fracture surface. This phenomenon is clearly exhibited in a recent experimental investigation [8] 
performed on pre-notched plates of a ductile heat treatment of 4340 carbon steel. Experimental evidence obtained in 
[8] suggests that tunneling begins at an average value of J which is significantly lower than the J value at which gross 
initiation is observed on the free surface. In the present work, fracture initiation in the 4340 steel specimens used in I-8] 
is analyzed by performing a 3-dimensional numerical simulation. A damage accumulation model that accounts for the 
ductile failure mechanisms of void nucleation, growth, and void coalescence is employed. Results indicate that incipient 
Cmaterial failure at the center-plane of the 3-dimensional specimen is predicted quite accurately by this computation. 
Also, good agreement between results obtained at the center-plane of the 3-dimensional specimen and a plane strain 
analysis, suggests that a local definition of J can be used to characterize fracture initiation in the center-plane of the 
specimen. Finally, radial and thickness variations of the stress and porosity fields are examined with the view of 
understanding the subsequent propagation of the failure zone. 

I. Introduction 

The most  impor tan t  micro-mechanical  processes that are operative during ductile fracture are 

void nucleation, growth and coalescence. This is evidenced by the many  depressions or dimples 

that  are often observed on the fracture surface of a ductile material. Void nucleation occurs due 

to brittle cracking or interfacial decohesion of inclusions. These inclusions could be second- 

phase particles added intentionally to the matrix to cultivate specific properties such as 

increased yield strength or  other particles such as slags or  impurities which serve no positive 

function. It has been observed that  void nucleation in AISI  4340 steel occurs first at lower 

strains f rom large inclusions such as sulfide particles [1]. This is followed by growth of voids 

which also takes place more  rapidly a round  larger inclusions in the matrix. While void 

nucleation itself could be relatively independent  of  the level of tensile stress triaxiality (see [1]), 

experimental and theoretical studies [1 -3]  clearly demonstrate  that void growth rates are 

increased substantially by increasing the level of  triaxial tension. 

The final process that completes the ductile fracture phenomenon  is void coalescence which 

would occur either due to necking down of ligaments connecting large voids I-2] or  due to a 

void-sheet format ion 1-1, 4, 5]. This is the result of  an intense deformation band which begins to 

concentrate  along the ligaments connecting neighboring voids after they have grown to a critical 
size in relation to their spacing 1-1, 6, 7]. This is followed by the nucleation of voids at smaller 

particles such as cementile particles 1-1] which leads to the formation of microcracks that 
connect  the large voids. 
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In a recent work, Zehnder and Rosakis [8] studied fracture initiation in three-point bend 
specimens of a 4340 carbon steel using optical experimental measurements. Their work was 
complemented by a 3-dimensional finite element simulation by Narasimhan and Rosakis [9] 
using a small strain, incremental J2 flow theory of plasticity. The specimens employed in the 
experiments of [8] were 10 mm thick. A photograph of the fracture surface obtained from one of 
the specimens used in this work is displayed in Fig. 1. This specimen was loaded to just below 
the fracture initiation point. It was then embrittled by cooling down to liquid nitrogen 
temperature and broken open in a dropweight tower. 

Two distinct features may be observed on the fracture surface of Fig. 1. The first one involves 
a central, fibrous, fiat-fracture zone which has the shape of a thumb-nail and is about 6 mm in 
length. The second one pertains to inclined failure surfaces, usually referred to as shear-li~, 
adjacent to the free surfaces of the specimen. The fiat-fracture region is characterized by the 
ductile failure mechanisms of void nucleation and growth described above. The tensile stress 
triaxiality is very high near the crack front at the center-plane of the specimen as compared to its 
free-surfaces (see, for example, the numerical results in [9]). This results in rapid growth and 
coalescence of voids near the crack front adjacent to the center-plane of the specimen leading 
ultimately to the formation of a 'damage zone' or 'tunneled region'. 

The tunneled region adjoining the center-plane progressively spreads forward and also 
sideways with increasing load. The load is then transferred to the side-ligaments (portion of the 
crack front between the tunneled core and the free surface). A stage is finally reached during 
which excessive softening of the material in the damage zone, coupled with the highly 
non-uniform stress state prevailing along the crack front, triggers the shear failure of the side 
ligaments through the formation of shear-lips. The shear-lips are intense strain concentration 

Fig. 1. Photograph of fracture surface of 4340 steel specimen used in [8]. 
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bands that are inclined at approximately 45 ° to the free surface. It is at this point that fracture 
initiation is first observed on the free surface. In the experiments described in [8], gross 
initiation on the free surface was observed corresponding to a J value of 420 KN/m. On the 
other hand, evidence based on strain gauge and optical measurements from the vicinity of the 
crack tip [8, 10] suggests that tunneling occurs at J = 200 - 250 KN/m. 

The purpose of the present investigation is to simulate the static loading of the three-point 
bend specimen employed in [8] using three-dimensional finite elements with the view of 
studying the initiation and subsequent development of crack tunneling. The essential difference 
between the present investigation and [9] is that a damage accumulation model [11, 12] that 
accounts for void nucleation, growth, and final material failure by void coalescence has been 
employed in the present computations. This may be viewed as an equivalent continuum 
mechanics approach as opposed to a direct study of the deformation behaviour of individual 
voids [2, 33. The material model used here has a failure criterion incorporated in it which causes 
the material stress carrying capacity to vanish locally near a point when the volume fraction of 
voids reaches a critical value [12]. The details pertaining to the material model are outlined in 
Section 2. 

The results of [9] suggest that plane strain conditions prevail near the crack tip of the specimen. 
In order to understand how accurately a two-dimensional plane strain analysis predicts local 
material failure in the center-plane of the three-dimensional specimen, a plane strain calculation 
has also been performed using the same in-plane mesh geometry used in the three-dimensional 
calculations (see Section 3). One of the important issues under investigation here (see Section 4) is 
the evolution of volume fraction of voids near the tip up to the point of incipient material failure. 
Another issue under study is the radial and thickness variations of the macroscopic stress and void 
volume fraction so that the subsequent propagation of the damage zone could be understood. 
While it was possible to simulate the actual propagation of the damage zone for the simpler plane 
strain case, the three-dimensional computations could not be continued much beyond the fracture 
initiation point because of some numerical difficulties (see Section 4). 

Several investigators have used the damage accumulation model due to Gurson [11] to study 
ductile failure under various situations. Some of this literature that is relevant to the present 
work is reviewed below. Needleman and Tvergaard [11] analyzed cup-cone fracture in a round 
tensile bar. In their work, they were able to simulate both the formation of a damage zone at the 
center of the necked region of the bar and its subsequent propagation towards the free surface. 
Aoki et al. [13] and Aravas and McMeeking [14] examined the interaction between a crack tip 
and a void. The presence of small-scale voids is accounted for in studies by using the Gurson 
model [11]. Jagota et al. [153 conducted a finite element study of the stress and porosity fields 
near a plane strain stationary crack under mode-I, small-scale yielding conditions. They 
investigated fracture by slip-induced cleavage as well as by a void coalescence mechanism with 
the view of predicting the fracture toughness. 

In a very recent work, Becker et al. [16] analyzed ductile failure in A1-Li alloys due to crack 
growth along grain boundaries by nucleation and growth of micro-voids. They found that 
calculated values of K~c and tearing modulus from their numerical simulation were in reasonable 
agreement with experimental results. Becker et al. [17] have studied void growth and ductile 
failure in notched bars both numerically and experimentally. The influence of material rate 
sensitivity and void nucleation and growth on fracture initiation in a circumferentially notched 
bar was examined by Moran et al. [33]. 
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2. Constitutive model 

The material constitutive model employed in this work is the one proposed by Gurson [11] 
which is a continuum elastic-plastic model that accounts for void nucleation and growth. 
Gurson [11] proposed his constitutive equations based on an approximate analysis of a rigid 
plastic solid containing a spherical cavity. This model was subsequently modified by Tvergaard 
and Needleman [12-1, since in its original form the complete loss of material stress carrying 
capacity due to void coalescence was not predicted at a realistic value of void volume fraction. 
The essential features of the material model are outlined below within the context of a 
small-strain incremental plasticity theory. A more elaborate discussion may be found in 1,12, 14]. 

The modified Gurson yield function ~ which depends upon the macroscopic (average, 
aggregate) stress a, the microscopic (matrix) tensile flow stress am and the current void volume 
fraction f is given by 

b f akk ¢b(a, am, f )  =  2am + 2 f ' q ,  COS - -  {1 - -  ( q , f , ) 2 }  = 0 (2.1) 

It should be noted that the above yield function depends both on the stress deviator Si~ through 
3 1/2 the macroscopic equivalent stress ae = (2 SijS~s) , and also on the hydrostatic stress akk = tra. 

Tvergaard [5] introduced the additional parameter ql, with a value of 1.5 to obtain better 
agreement with numerical studies of periodically distributed cylindrical or spherical voids. The 
modification of the yield condition to account for final material failure by void coalescence is 
achieved through the function f * ( f )  which is defined as [12]: 

f , = S  f for f<~fc  
(2.2) 

c + K ( f - f ~ )  for f > f~. 

The parameter fc in the above equation represents the void volume fraction at which void 
coalescence is first observed. Also, K in (2.2) is a constant which will be defined below. Equation 
(2.2) implies that the original Gurson model is applied to describe the material behaviour as long 
as f ~< fc, while an accelerated void evolution law is introduced for f > fc leading to rapid loss 
of material stress carrying capacity. 

It can be observed from the yield condition (2.1) that the material stress carrying capacity 
vanishes when f *  = f*  = l/q1. Now if experiments or analysis indicate that the void volume 
fraction at final failure is fF  then K is given by: 

f*  - f~ 
K - f v  - f~" (2.3) 

Experimental studies I-1, 6, 7] indicate that the ligament connecting two neighboring voids fails 
by shear band formation or by simple necking when the size of voids has grown to the order of 
magnitude of their spacing. An estimate of fc obtained in 1,7] from a simple model is 0.15. Also, 
a numerical investigation by Andersson 1,18] suggests that f -~ 0.25 at final failure. Based on the 
above studies, fc and fF are chosen as 0.15 and 0.25, respectively. Further justification for the 
choice of fe  = 0.25 for AISI 4340 carbon steel is found in Appendix A. 
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A matrix effective plastic strain e~ is assumed to be related to the matrix tensile flow stress am 
by a uniaxial equation of the form, 

em = - 6",,. (2.4) 

Here a superimposed dot implies a material time derivative and Et and E are the current tangent 
modulus and Young's modulus of the matrix material. An equivalent plastic work expression, 

= ( 1  - ( 2 . 5 )  

completes the evolution law for am. The void volume fraction f is allowed to evolve both due to 
growth of existing voids and nucleation of new voids, so that, 

f = fgrowth + f.uc,o,,io.. (2.6) 

The growth law which is described by, 

A r o w t h  = (1 - -  f)ifk, (2.7) 

is an outcome of the plastic incompressibility of the matrix material. It should, however, be 
noted that the macroscopic material response does not satisfy plastic incompressibility due to 
the existence of voids. 

In the present work, a plastic strain controlled void nucleation law is assumed from the form 
[12], 

/ nuc l ea t i on  = A¢~, (2.8) 

e The function A is chosen as where A(.) is a function of the equivalent matrix plastic strain em. 
[193: 

A -  ~ e x p  (2.9) 

so that void nucleation follows a normal distribution about a mean nucleating strain e, and with 
a standard deviation s,. In the above equation, f ,  denotes the volume fraction of void nucleating 
particles. The values of f , ,  s, and e, were chosen as 0.04, 0.1 and 0.3 respectively. These values 
were chosen in such a way, so that the nucleation of voids as predicted by (2.8) and (2.9) was in 
reasonable agreement with the microstructural observations of Cox and Low [13 for AISI 4340 
steel. (See Appendix A for comparison with the micromechanical observation of [133 

The flow rule is assumed to obey macroscopic normality, so that, 

~. = ): O 0  (2.10) 
8tTq" 
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As pointed out by Berg [20], macroscopic normality follows from the fact that the matrix 
material exhibits normality. In the above equation, the plastic parameter 2 is non-negative 
since plastic work rate a i j~/> 0. The loading/unloading conditions may then be expressed as 
follows: 

O(a, o'm,f) ~< 0 (2.11a) 

J, t> 0 (2.1 lb) 

• 2 = O. (2.11 c) 

Equation (2.1 la) requires the stress state to be confined to on or inside the yield surface. Along 
any process of loading, conditions (2.11) must hold simultaneously. For • < 0, (2.11c) necessi- 
tates ,( = 0 so that elastic material behaviour is obtained. On the other hand, plastic flow is 
characterized by 2 > 0, which in view of (2.1 lc), requires the satisfaction of the yield condition 
~ = 0 .  

The total strain rate is taken to be the sum of the elastic and plastic parts, gij g~i + .e = eij, where, 

"e 
~ij = Ci jk l~kl"  (2.12) 

Here Cijk, are the Cartesian components of the constant, isotropic, positive definite elasticity 
four tensor. 

3. Numerical procedure 

The three-point bend specimen shown in Fig. 2a was modelled using three-dimensional finite 
elements. The geometry of the in-plane mesh is shown in Fig. 2b. Due to symmetry, only a 
quarter of the specimen was simulated with appropriate boundary conditions imposed on the 
planes of symmetry. The mesh consists of 6 layers of elements (through the half thickness of the 
plate). Each layer is composed of 320 eight-noded brick elements. The layer interfaces are 
located at x3/h --- 0, 0.113, 0.226, 0.339, 0.415, 0.469, and 0.5. It should be noted that the layers 
become thinner as the free surface is approached in order to model the corner singularity. A 
detailed in-plane region near the notch tip is displayed in Fig. 2c. The initial notch diameter bo is 
chosen as h/50, where h is the plate thickness (h = 1 cm). The in-plane dimension of the smallest 
element near the notch tip is bo/8 (which is equal to h/400). Two-dimensional plane strain 
calculations were performed with the same in-plane mesh (Fig. 2b). 

The size of bo in the numerical calculation is dictated by the dimensions of the initial notch in 
the experiments described in [8]. 

The response of the matrix material in uniaxial tension was characterized by a piece-wise 
power hardening law of the form: 

'~m fO'm/G'O G'm ~ frO 

,S O ~(O'm/~O) n (7" m > (7" 0 
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Fio. 2. (a) Test specimen geometry. All dimensions are in cm. (b) Mesh used in finite element analysis. (c) Details of 
in-plane mesh near the notch tip. 

with a hardening exponent n = 22 and yield stress ao -- 1030 Mpa. These values were also 
chosen in the previous investigation I-9] to match the macroscopic constitutive properties of the 
particular heat treatment of 4340 carbon steel used in the experiments 1,8]. 

The governing finite element equilibrium equations were derived from a small-strain virtual 
work principle (see [21]). These non-linear equations were solved incrementally using a 
quasi-Newton method (BFGS) 1-22]. The stress computations were performed using an explicit 
algorithm with subincrementation (see [21] and also Appendix B). 

As noted in Section 2, complete loss of material stress carrying capacity occurs when 
f* = ~ = 1/ql (or equivalently when f = fF), resulting in local failure. This implies that the 
material separates completely at this point and a traction free surface develops. This failure 
criterion was implemented in the present computations following the method suggested in 1-23, 
14]. In this method, the matrix yield strength trm and void volume fraction f,  which evolve 
according to the laws described in Section 2, are held constant after f reaches a value of 0.95 ft. In 
other words, subsequent evolution of trm and f are frozen. The macroscopic material response is 
then elastic-perfectly plastic with a small pressure dependent yield stress. As pointed out in 1,14], 
the condition f = 0.95f~ was used instead o f f  = f e  because as f approaches f r ,  the macroscopic 
equivalent stress ae approaches zero, causing numerical difficulties. An alternative element 
vanishing technique has been proposed by Tvergaard 1-23] to model the failure criterion. 
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4. Results and discussion 

4.1. Variation of void volume fraction and notch opening with d 

The J integral for a three-dimensional crack front is defined over a cylindrical surface 
surrounding the crack front (see [24]). This surface integral may also be interpreted as the 
energy released due to unit (normal) virtual crack extension along the entire crack front. An 
average value, denoted here by J, can then be obtained by dividing the above quantity by the 
length of the crack front [25]. A local energy release rate has also been defined in the literature 
(see, for example, [25-27]) as a pointwise measure along the crack front. It has been suggested 
that this local definition of energy release rate [26, 27], denoted here by J(x3), plays a role as a 
characterizing parameter of the crack tip fields. This suggestion has been motivated by the 
assumption that plane strain conditions prevail through the thickness as the crack front is 
approached. This issue was investigated in the previous work [9] by the authors on three- 
dimensional effects near the crack front on a three-point bend specimen. There is strong 
evidence from this study [9] that the plane strain HRR field [28, 29] dominates close to the 
crack front in the interior (near the center-plane) of the specimen. This provides support for the 
use of local ] value to characterize crack initiation at the center-plane of the specimen. 

The domain integral method proposed in [25-27] has been used to compute J and J. The 
variation of J (normalized by the average value of J) versus normalized distance x3/h along the 
crack front is shown in Fig. 3 for different levels of applied load P. This figure displays a 
considerable variation of J through the thickness with increasing plastic deformation and is 
similar to earlier published results based on J2 flow theory of plasticity (see [9, 25]). It should be 
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Fig. 3. Variation of J through the thickness for different loads. 
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noted that the value of ] at the center-plane (x3/h = 0 )  is much higher than that at the free 
surface (x3/h = 0.5) for large load levels. 

The issue pertaining to the use of ] as a local fracture parameter to predict crack initiation 
near the center-plane of the specimen is examined further in the present work. In Fig. 4, the 
evolution of void volume fraction f with local J value is shown for the element nearest to the 
three dimensional notch front that failed first. For the plane strain case, the element immediately 
ahead of the notch tip, which is denoted by B in the inset diagram given in Fig. 4, was the first to 
fail. The variation of f versus J in this element is represented by the dashed line. In the 3-D 
simulation, the element corresponding to A (see the insert diagram) adjacent to the center-plane 
of the specimen exhibited incipient material failure. The f versus ] relationship for this element 
is displayed by the solid line in the figure. It should be noted that the evolution of void volume 
fraction (with respect to local J) at the center-plane of the 3-D specimen is remarkably close to 
plane strain up to the point of incipient material falure. The ] value corresponding to the 
center-plane at which incipient damage occurs is around 250 KN/m and is very close to the 
value of 270 KN/m predicted by the plane strain calculation. It can be deduced from Fig. 3 that 
this corresponds to an average J value of about 200-250KN/m. This average value is of 
relevance when comparison with the results of experiments is desired, since experimental 
techniques such as the optical technique described in [8] can only provide the average value of 
J. Indeed, the measured value of J average reported in [8] at the onset of tunneling lies within 
the predicted range. Hence, the present damage model calculation appears to predict the onset 
of crack tunneling in the center-plane of the specimen quite accurately. 

The notch opening (b - bo), normalized by the initial notch diameter bo, is plotted against 
J/(aobo) in Fig. 5. Results are once again represented corresponding to plane strain and the 
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Fig. 4. Evolution of void volume fraction vs. ] in the element near the notch tip that was first to fail. Comparison 
between plane strain and 3-D center-plane results. 
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Fig. 5. Variation of normalized notch opening vs. J/(~obo). Comparison between plane strain and 3-D center plane 
results. 

center-plane of the 3-D specimen. The current notch diameter b was calculated from the 
numerical solutions using the 45 ° intercept procedure 1-30]. It can be seen that the 3-D 
center-plane result agrees very well with plane strain and displays an almost linear relationship 
between the notch opening and the local J value. 

From Fig. 5, it can be deduced that b - bo --- 0.6J/no in the center-plane of the 3-D specimen. 
This is in very good agreement with previous published results based on the J2 flow theory for 
low hardening materials under plane strain. In the earlier numerical investigation of this 
specimen geometry and material [9], with an initially sharp crack, a normalized crack tip 
opening 5,/(J/ao) of 0.62 - 0.60 was obtained corresponding to plane strain. Shih [30] reports a 
value of 6~/(J/¢o) that varies from 0.65 to 0.58 for a Cracked Bend Bar of perfectly plastic 
material under plane strain as the extent of crack tip yielding varies from contained to fully 
plastic conditions. 

The results of Figs. 4 and 5 discussed above corroborate the view that plane strain conditions 
prevail near the notch tip close to the center-plane of the 3-D specimen. They also provide 
justification for the use of the local J value to describe fracture initiation (or tunneling) in the 
center-plane of the specimen. 

4.2. Contour plots near the notch tip 

4.2.1 Plane strain 
The contours of macroscopic equivalent stress ae around the notch tip are shown in Fig. 6 for 
the plane strain case after incipient material failure (Fig. 6a) and after the failure of three 
elements ahead of the notch tip (Fig. 6b). The contour levels are also indicated in the figure. It is 
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Fig. 6. Contours of macroscopic equivalent stress (re for plane strain: (a) after failure of the first element and (b) after 
failure of three elements. 

recalled that the initial yield stress of the matrix material is 1.03 x 105 N/cm 2 and that the 
matrix material exhibits very little strain hardening (n = 22). It can be noticed from Fig. 6a that 
o- e decreases as the notch tip is approached indicating that material softening has occurred in this 
region. This has eventually led to complete loss of material stress carrying capacity (refer to 
Section 2) and to the emergence of a damage zone. In Fig. 6b, the region over which material 
softening has occurred has spread forward with the failure of subsequent elements. 

The contours of void volume fraction around the notch tip are presented in Fig. 7 after 
incipient material failure (Fig. 7a) and after the damage has spread to three elements (Fig. 7b). 
These figures offer more precise information on the shape and size of the damage zone which is 
identified by the shaded regions within the contour F. It can be noticed from Fig. 7b that the 
damage zone has spread directly in front of the notch tip with the failure of subsequent elements. 
Another observation that can be made from Fig. 7b is that the damage zone is strongly 
reminiscent of a sharp crack profile (see, for example, [31, 32]). The reasons for the sharp crack 
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Fig. 7. Contours of void volume fraction f near the notch tip for plane strain: (a) after failure of first element and (b) 
after failure of three elements. The damage zone is indicated by the shaded region. 

profile during crack growth in an elastic-plastic material as opposed to a blunted shape before 
initiation are the decreased strain singularity folds and the failure of the strain fields to re-focus 
at the new crack tip [32]. As emphasized by Rice [32], this decreased strain singularity is the 
source of stable crack growth in elastic-plastic materials. 

4.2.2. Three-dimensional simulation 

A three-dimensional view of the near-tip mesh is shown in Fig. 8. The top surface in the figure 
corresponds to the free surface of the plate and the bottom (hidden) one to the center-plane. The 
notch tip is located along the bright portion near the center of the semi-cylindrical region. Due 
to the high density of elements, this region is obscured in the figure. Figure 9 displays 
three-dimensional colour band contours of macroscopic equivalent stress tre. The range of 
contour levels corresponding to various colour bands is indicated in the inset diagram of the 
figure. The border between the bright red and bright yellow bands (corresponding to a level of 
ae - 1.03 x 105 N/cm 2) is an approximate indication of the plastic zone. The maximum plastic 
zone extent in this figure is about 0.6 h. The shape and size of the plastic zone obtained here is 
very close to that reported in [9] on the basis of the d2 flow theory at around the same load 
level. A close-up of the notch front region is shown in Fig. 10. The color bands of o" e clearly show 
a drop of tre very near the notch front, in the interior of the specimen. (See yellow region parallel 
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Fig. 8. A three-dimensional view of the near-tip mesh. 

to the notch front.) This is due to damage accumulation near the front and the resulting collapse 
of the yield surface. 

In Fig. 11, colour contour bands of the macroscopic hydrostatic stress (all + azz + o33)/3 
through the (semi-) thickness of the plate are given. The top part of the diagram corresponds to 
the free surface and the bottom to the center-plane. It can be observed that there is a very strong 
variation of the hydrostatic stress through the thickness with the values at the center-plane 
being much higher than those at the free surface. The radial variation of the hydrostatic stress 
ahead of the notch tip corresponding to various planes through the specimen thickness will be 
discussed later (see Fig. 15). 

In Fig. 12, line contours of macroscopic equivalent stress are displayed from a very detailed 
region near the notch tip at the point of incipient material failure. Results are shown for three dif- 
ferent planes through the specimen thickness. These are near the center-plane of the specimen (Fig. 
12a), near the quarter-plane (Fig. 12b), and near the free surface (Fig. 12c). The contour levels cor- 
responding to each case are also included in the figures. It should be noted that there is consider- 
able material softening near the center-plane close of the notch tip. The softening region is much 
diminished near the quarter-plane and is virtually non-existent near the free surface (see Fig. 12c). 

In Fig. 13, contours of void volume fraction very near the notch tip are shown at the point of 
incipient material damage. As in Fig. 12, results are given for three different planes taken 
through the specimen thickness. The damage zone is just starting to form near the center-plane 
(see Fig. 13a) at the locations indicated by the shaded zones. (Symmetry about the center line of 
the notch has been utilised in drawing the contours below the center-line.) The contour levels of 
f in the quarter-plane and free surface (see Figs. 13b and c) are much lower than in the 
center-plane and the material damage has not yet spread to these regions. 

It would be extremely interesting to follow the further development of the damage zone and 
compare it with the tunneled region from the experiments (see Fig. 1). However, in the present 
work, the computations were stopped after incipient material failure because of numerical 
difficulties caused by elastic unloading of some elements surrounding the damage zone. This led 
to lack of convergence to equilibrium in the quasi-Newton iteration algorithm mentioned in 
Section 3. It was possible to overcome this difficulty in the plane strain simulation by taking 
small load increments and by using the full-Newton iteration scheme. But the prohibitive cost of 
carrying out a 3-dimensional, non-linear computation precluded these alternatives for the 3-D 



Fig. 9. Three-dimensional colour band contours of ae (global view). 

Fig. 10. Three-dimensional colour band contours of ae (close-up view). 



Fi#. 11. Three-dimensional colour band contours of hydrostatic stress, illustrating the variation through the (semi-) 
thickness of the plate (close-up view). 

case. In this connection, it must be mentioned that it would be advantageous to perform these 
computations with a rate dependent constitutive model [16, 17] which does not have an explicit 

loading/unloading condition. 
Nevertheless, some comments may be made about the subsequent propagation of the damage 

zone on the basis of Fig. 13. On comparing Figs. 13a and b, it may be seen that the levels of void 
volume fraction at equivalent distances from the notch tip are much lower in the quarter-plane 
as compared with the center-plane. Hence, further failure is expected to occur near the 
center-plane, before the elements near the quarter-plane begin to fail. This would then result in a 
'thumb-nail' shaped damage zone similar to that observed in the experiments (see Fig. 1). 

Also, it is likely that with further failure of elements in the center-plane, the damage zone 
would link up with the symmetry line ahead of the notch tip. However, a zig-zag or wavy 
damage surface across the plastic region in the front of the notch is also possible. This has been 
suggested by Berg [20] for a material that exhibits dilational plastic straining similar to the one 
used in the present investigation. 

Finally, it is noted that the lack of a length scale in the constitutive equations (2.1)-(2.12) may 
introduce a mesh-size effect into the pattern of failure propagation. The onset of failure is 
expected to be accurately predicted, however, and no significant mesh effects are expected for the 
limited amount of 'crack growth' considered in the present calculations. 

4.3. Thickness and radial variations 

Figure 14 illustrates the variation of the void volume fraction f through the thickness of the 
specimen. It must be recalled that the center-plane is located a t  x3/h = 0 and the free-surface at 
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Fig. 12. Contours  of a~ in three different planes through the specimen thickness: (a) x3/h = 0.057, (b) x3/h = 0.282, (c) 
x3/h = 0.485. 

x3/h - -  0.5. Each of the curves in the figure correspond to different radial distances ahead of the 
notch tip as listed in the legend. A very strong variation of the void volume fraction through the 
thickness can be observed from this figure. For example, corresponding to the curve 'a' 
(r/h = 0.001), the void volume fraction varies from 0.15 near the center-plane to about 0.02 near 
the free surface. The reason for the high values of f near the center-plane as compared to the free 
surface is because of a strongly triaxial stress field prevailing near the center-plane of the 
specimen which promotes rapid void growth as noted earlier. 

In Fig. 15, the hydrostatic stress normalized by the initial matrix yield stress ao is plotted 
against radial distance (normalized by the initial notch opening bo) ahead of the tip at the point 
of incipient material failure. Results are presented from the 3-D simulation corresponding to 
three different planes through the specimen thickness, which are near the center-plane, 
quarter-plane, and free surface, in order to highlight also the thickness variations of the 
hydrostatic stress. Plane strain results at the point of incipient material damage are also 
included in the figure for comparison. 
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It should be noted that the hydrostatic stress levels are highest near the center-plane and 
decrease as the free surface is approached (see also the colour band contours in Fig. 11). The 
peak value reached in the center-plane at around two notch openings (2bo) ahead of the tip is 
2.3ao. This value is in reasonable agreement with the plane strain HRR field [28, 29] for low 
hardening materials. Also, the close comparison between 3-D center-plane and plane strain 
results should be noted. 

The radial variation of the normalized opening stress, az2/0.o, versus normalized distance 
ahead of the tip, r/bo, is shown in Fig. 16 for the 3-D case along with the plane strain results. 
The trend is similar to Fig. 15 for the hydrostatic stress with the peak values being reached in 
the center-plane. The maximum value of 0"22 in the center-plane is about 30"o, again in good 
agreement with the plane strain HRR field [28, 29] for low hardening materials. 

Appendix A 

Experimental justification for the choice of values for fF, f~, s. and gn 

Qualitative and quantitative micromechanical information provided by Cox and Low [1] for 
the same heat treatment of high purity AISI 4340 steel as used by Zehnder and Rosakis [8] will 
be used here to provide estimates for some of the constitutive parameters of the continuum 
damage model used in the investigation. 

An average estimate of f r ,  the void volume fraction at failure, is obtained by referring to 
Table III and to Figs. 15 and 16 of [1]. Figures 15 and 16 show the coalescence of voids whose 
average radius PF (just before failure) is 15-25 p.m. In addition, Table III provides an average 
estimate of Nv, the number of void nucleation sites per unit volume, as approximately 7 × 1 0  6 

inclusions/cm 3. Assuming that the resulting voids are spherical, one obtains an average value of 
fN = 4/3Nvnp~ ~ 0.23 which is close to the value of 0.25 used here and which is also suggested 
by Anderson [18] on the basis of a numerical investigation. 

The choice of f ,  = 0.04, s, = 0.1, and e, = 0.3 is indirectly justified by the following 
calculation. The constitutive equations (2.1)- (2.12) (also see Appendix B) are specialized to 
nniaxial tension and are integrated numerically to obtain f = f(e), the relation between the void 
volume fraction and the uniaxial strain e. By assuming spherical void geometries, the average 
void radius PA can also be obtained as a function of ~. ( p a (~ )  = (3f(~)/4Nv) 1/3 and Nv is the 
number of void nucleation sites per unit volume.) This function is shown in Fig. 1A together 
with the measurements reported by Cox and Low [1] obtained from experiments in nniaxial 
tension of high purity AISI 4340 steel. The experimental points are taken from Fig. 13 of [1] and 
correspond to their unnotched (smooth) tension test specimens. For this specimen deformation, 
a very good agreement between experiment and theory is obtained for the above choice of f , ,  s,, 
and e, and for the average value of Nv reported in Table III of [1]. 

Although such a comparison is naturally not enough to determine the values of the triplet 
f , ,  s, and e, uniquely, its success over a wide range of strains suggests that the values used 
here are reasonable for the material to be modeled. However, it should be noted that the 
unique determination of f , ,  s, and e, could not have been achieved if experimental evidence of 
void growth under other simple deformation regimes (e.g. simple shear) were also available. 
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and growth model with jr, = 0.04 s, = 0.1 and e, = 0.3. The discrete points are experimental data from Fig. 13 of [1]. 

Appendix B 

Explicit integration o f  constitutive equations 

T h e  cons t i t u t i ve  e q u a t i o n s  for  an  e las t i c -p las t i c  m a t e r i a l  o b e y i n g  an  i n c r e m e n t a l  t h e o r y  are  

s u m m a r i z e d  below.  The  in f in i t es imal  s t r a in  ra te  t en so r  ~ is d e c o m p o s e d  in to  e las t ic  a n d  p las t i c  

par t s :  

= ~e + ~v. (B.1) 

T h e  stress  r a t e  t en so r  is r e l a t ed  to  the  e las t ic  s t r a in  ra te  t en so r  t h r o u g h  a c o n s t a n t ,  i so t rop ic ,  

pos i t ive  def in i te  e las t i c i ty  t en so r  C as: 

# = C:~: e. (B.2) 

The  yie ld  c o n d i t i o n  is wr i t t en  as: 

cb(a, x) = 0, (B.3) 

where  x~(ct = 1, 2 . . . . .  n) represen t  a set of  plas t ic  h i s to ry  var iables .  The  f low rule  is desc r ibed  by, 

~v = ,~r(a, x), (B.4) 
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where ~/> 0 is a plastic parameter and r(a, x) is the flow direction tensor. The evolution laws for 
the plastic variables are given by, 

.~ = ~h(a, x), (a.5) 

where h~(a, x) represent plastic moduli. 
The loading/unloading conditions are described by the following equations (see Section 2): 

¢(a, x) ~< 0 ) 

;>~0 l" 
e,~ = 0 

(B.6) 

Finally, the normals to the yield surface in stress space and plastic variable space are denoted by 
v, and ¢, so that, 

v(a, x ) =  V,¢(a, x)|. 

¢(6, x ) =  ~--~x(~, x) 
(B.7) 

By using consistency (B.6)3 along with (B.1)-(B.5) the plastic parameter ,{ may be obtained as: 

= v:C:i 
( v : C : r -  ¢'h)" (B.8) 

For the Gurson yield function tl) given by (2.1), there are two plastic variables xl = a,~ and 
x2 = f. The normal to the yield function in stress space v u and plastic variable space {1 and {2 is 
given by, 

c~  2 ( e  o fl~ak'~ 

~2 ~f - 2qi 
- -  - -  J qiJ~f \ \2,~mJ 

,. (B.9) 

The variables fl and 02 that occur in the above equations are defined as follows: 

fl =f*~ sinh (~rkk ~ 

3SuSij 
0 2 -  2~,2.. 

(B.10) 
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The plastic flow direction tensor rij = v u and the plastic moduli are given by: 

hi = (1 - ~ j ~ \  + am/ . 

h2 - 6fl(1 - f )  + A h 
am H m  1 

Here, 

(B.1 l) 

dam 1 1 
H m -  d e ~ - E t  E (B.12) 

represents the hardening modulus of the tensile flow stress-plastic strain curve of the matrix 
material. 

The following Box summarizes the stress update algorithm. This is a modified version of the 
explicit integration procedure with subincrementation employed by Narasimhan and Rosakis 

P and xx+ corresponding [21]. The task here is to compute the state variables ~n+l, ~n+l, an+l, 1 
P to the load step n + 1, given the values of these variables 8., , , ,  a, ,  and x, at the load step n 

along with the displacement increment u. 

BOX 1: Stress update  a lgor i thm 

1. Perform geometric update: 

~.+1 = ~. + ~ g u  + Vru)  

ASn + l = ~n + l - -  8n" 

2. Obtain elastic predictor: 

~P(E) P. o.(E). = Xn; 
n + l  ~ ~n~ ~ n + l  

~r(E) . +1 = O n +  C : A ~ n + I .  

3. Check for yielding: 

Yes: v o P ( E )  . ~ ( E )  8n+ 1 = On+l~ 0"n+l  ~ Vn+ 1 

No:  Go to Step 4. 

4. Compute contact stress state: 

¢ .  = 0(0., x . )  = O? 

Yes: p = O. 

x. + 1 = x~.~ 1 : Exit. 
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No: Calculate factor p(O < p < 1) such that: 

O(tr. + pC:A~.+l)  = O. 

A Newton-Raphson iteration scheme is used to compute p from the above non-linear 
equation. Calculate the following: 

. (0)  
n + l  = a n  -Jr- pC:Ae,+ l, 

A ~ m + l  = (1 - p)An,+l/m, 

ee<o) e a n d  ..~o) 
n +  1 ~ gn A n +  1 ~-  X n "  

Here m is the number of subincrements. Set i = O. 

Compute: 

r ( i )  , , l~ . ( i )  ~.(i) ~. ~(i) ~4~(i )  ~.(i) 1),  
n + l  ~ V V J n + l ~  "~n+l ]~  " n + l  = ~13"n+ 1~ ~ n +  

~(i)  .~ l . ( i )  . . ( i )  / .(i) / d ~ ( i )  ~.(i) 
1); 1)~ n + l  ~ ~ l ,  V n +  1~ -~n+ " l n + l  ~ " S ~ V n + l ~  "~n+ 

v(i)  . . m 
n + l . f .  A g n + l  

,.(i) . f , .  ,,(i) .r(i) . l.(i) " 
V n + l ' ~ . - ~ ' r n + l  - -  ' ~ n + l  " S n + l  

O b t a i n  state variables for the (i + 1 ) t h  subincrement: 

~,P(i + 1) ~P(i) A ~ , , ( i )  
n + l  ~ ° n + l  "-I- z -~"~n+  1~ 

a ( i +  1) ~ ( i )  C : ( A g m +  1 A2r~.i)+ 1) '  n + l  = U n + l  @ 

x ( i  + 1) : X(i)  A2h(ni)+ n + l  qt_ I "  

7. Return stress state to updated yield surface. Compute factor ? (by Newton-Raphson method) 
such that: 

( I ) ( 7 a ( i +  1 )  x ( i +  1)) = 0 .  

o . ( i+  1) . . . .  ( i+  1) 
n + l  ~ V n + l  - 

8. i ~ ( i +  1). If i < m go to step 5. 

9. The final updated state variables are: 

~(i)  . ...(i) P ~P(i) 
O'n+l  = V n + l ~  X n + l  ~ -~n+l~  /~n+l  = ° n + l .  

The above algorithm was tested by performing a number of simple tests such as uniaxial 
tension, hydrostatic tension and simple shear. The results from these studies were compared 
with exact integration of the rate equations for the corresponding cases and were found to be in 
very good agreement. 
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