www.rsc.org/chemcomm

ChemComm

From hydrocarbons to polyols. Cyclooctatetraene to novel cyclooctitols†

Goverdhan Mehta* and Kotapalli Pallavi

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India. E-mail: gm@orgchem.iisc.ernet.in

Received (in Cambridge, UK) 12th September 2002, Accepted 11th October 2002 First published as an Advance Article on the web 28th October 2002

Cyclooctatetraene (COT) derived bicyclo[4.2.1]nona-2,4,7-trien-9-one has been recognized as a cyclooctane carbasugar equivalent and elaborated to a range of cyclooctane polyols (cyclooctitols) through a flexible strategy with moderate regio- and stereo-control.

There is considerable current interest in the design of molecules that can mimic carbohydrates associated with important signalling and recognition events with improved efficacy, stability and specificity.¹ One of the commonly followed tactics in this regard has been the replacement of the ring oxygen atom in the monosaccharide residue by a methylene group. Thus, through a change from a aldopyranoside 1 to a carbasugar 2, the vulnerability of the former to glycosidases is eliminated while retaining the core structure and essential network of hydroxyl functionalities for receptor recognition. Diverse synthetic strategies have been devised in recent years to access a range of carbasugars 2 and their structural variants to evaluate their biological properties, particularly the glycosidase inhibition profile.^{2,3} In the last couple of years, higher analogues of carbasugars based on polyhydroxylated seven- and eightmembered rings have attracted a lot of attention as new types of potential glycomimics.^{4,5} An advantageous feature of the cycloheptane⁴ and cyclooctane polyols 3^{5,6} is that they offer

opportunities for new distributions of hydroxyl functionalities for biological interactions in a conformationally flexible environment compared to the classical conformations present in 1 and 2. In particular, Sinay and coworkers^{6c,h} in the year 2000 have reported the first synthesis of a cyclooctane homologue 4 of carbasugar 2 from glucose. In concurrent efforts in our laboratory, we have developed a versatile synthesis of cyclooctane based polyols (cyclooctitols) ranging from tetrahydroxy 5 to octahydroxy 6 from the commercially available hydrocarbon cyclooctatetraene 7 (COT) and these results form the theme of this letter.

Our synthetic approach to cyclooctitols emanated from COT 7 which was readily elaborated to bicyclo[4.2.1]nona-2,4,7-trien-9-one 8 in essentially a single-pot operation through the reaction of dilithium cyclooctatetraenide with dime-thylcarbamoyl chloride as described by Shechter and cowork-

† Electronic supplementary information (ESI) available: spectroscopic characterization. See http://www.rsc.org/suppdata/cc/b2/b208918a/ ers.7 We visualized 8 as a 'functionally locked' COT with differentiated olefinic bonds and a 'masked' C-9 cvclooctacarbasugar from which the eight-membered ring can be extracted through oxidative C1-C9 bond scission. Baeyer-Villiger oxidation in 8 was smooth and led to the formation of δ -lactone 9, Scheme 1.⁸ Catalytic OsO₄ dihydroxylation in 9 proceeded with complete regio- and stereo-selectivity to furnish the *exo*-1,2-diol **10**.⁸ Attempted acetylation of the diol **10** led to an unanticipated but interesting rearrangement to the γ -lactone 12 having exo-1,3-diacetate functionality.⁸ The stereospecific rearrangement of 10 to 12 can be rationalized as proceeding through the intermediacy of the tetrahedral intermediate 11, Scheme 1. Reduction of 12 with LiAlH₄ and peracetylation of the resulting product for convenient isolation led to the 1,3-diene-tetraacetate 13, Scheme 1.8 Base hydrolysis of 13 furnished the all-cis-diene tetrol 14, which could also be obtained directly from 10 through hydride reduction. Catalytic hydrogenation of 13 to 15 and hydrolysis furnished 16 the first of the desired cyclooctane polyols, Scheme 1.8 Bicyclic ylactone 12 was further elaborated to amplify the network of hydroxyl functionalities. On controlled catalytic hydrogenation 12 furnished a 1:1 mixture of the dihydro- and tetrahydro-ylactones 17 and 18, respectively, Scheme 2.8 While LiAlH₄ on 17 furnished the unsaturated tetrol 19 and on further acetylation the tetraacetate 20, the fully reduced γ -lactone on hydride reduction led to the above-described tetrol 16. Scheme 2. Protection of the vic-diol functionality in 19 led to acetonide 218 whose X-ray crystal structure⁹ not only revealed an open α -face of the olefinic double bond but also secured all the earlier stereochemical assignments.

Hydroboration-oxidation of **21** and acetylation of the products furnished acetonide-triacetates **22**, **23** and **24**

10.1039/b20891

ЫÖ

(63:30:7), Scheme 3.8 The stereostructure of the major product 22, having a 'skipped methylene' hydroxyl pattern, was established through X-ray crystal structure determination.⁹ The stereostructure of the next major product 23 followed from the incisive analysis of the ¹H NMR (COSY) data and more specifically from the *trans* coupling $(J_{H_a-H_b})$ of 9.6 Hz and was also confirmed by X-ray crystal structure determination.⁹ The minor product 24 was readily recognized as the diastereomer of 22.8 The three acetonide-triacetates 22-24 were readily hydrolysed to furnish the pentahydroxy-cyclooctanoids 25-27, Scheme 3. Interestingly, pentahydroxy 26 is a eight-membered carba analogue of α -talose. It is to be noted that the hydroboration of 21 proceeds with high stereoselectivity but with only 2:1 regioselectivity. Tetraacetate 20 was a suitable substrate for accessing the higher order cyclooctane polyols. OsO₄-mediated dihydroxylation of 20 followed by acetylation led to a 1:1 diastereomeric mixture of hexa-acetates 28 and 29 Scheme 4.8 Stereostructures of 28 and 29 were determined through high-field 2D NMR experiments. For example, $J_{H_a-H_b}$ = 10 Hz in **28** was highly diagnostic of their *trans* disposition and was further confirmed by X-ray crystal structure determination.9 Base hydrolysis of 28 and 29 furnished the hexahydroxycyclooctanes 30 and 31, respectively, Scheme 4.8 Interestingly, all the six oxygen functionalities in **29** are disposed on the β face, imparting it a dipolarofacial character.

Finally, diene tetraacetate **13** was the substrate of choice for elaboration to the fully oxy-functionalized cyclooctane polyol

through stereoselective double *cis*-dihydroxylation of the diene moiety in **13**. Prolonged exposure of **13** to catalytic OsO₄– NMMO milieu and base hydrolysis led to an octahydroxy compound **32**⁸ through sequential stereoselective dihydroxylations, Scheme 5. The structure of cyclooctitol **32** was deduced through incisive high-field ¹H NMR (COSY) analysis and in particular the J_{H2-H3} and J_{H1-H8} trans coupling of 9.5 and 8.5 Hz, respectively, were decisive in securing its structure, Scheme 5. In addition the H-5 proton appeared as a broad singlet indicating that it is flanked by *cis* protons on either side. To our knowledge, a cyclooctane derivative bearing eight oxygen atoms has been prepared for the first time.

In summary, utilizing the commercially available cyclooctatetraene we have accomplished the synthesis of a range of cyclooctane based polyols (cyclooctitols) in a short and flexible sequence with moderate regio- and stereo-control. These new entities, homologues of carbasugars, have now become available for further transformations and biological evaluation.

K. P. thanks CSIR for the award of a Research Fellowship. We thank SIF and CCD facilities at IISc for help We acknowledge helpful correspondence with Professor Shechter, the Ohio State University, regarding the preparation of bicyclic ketone $\mathbf{8}$.

Notes and references

- 1 (a) Carbohydrate Mimics: Concepts and Methods, ed. Y. Chapleur, Wiley-VCH, Weinheim, 1997; (b) P. Sears and C-H. Wong, Angew. Chem., Int. Ed., 1999, **38**, 2300.
- (a) Recent reviews: T. Suami, *Top. Curr. Chem.*, 1990, **154**, 257; (b) R.
 J. Ferrier and S. Middleton, *Chem. Rev.*, 1993, **93**, 2779; (c) D. I. Dalko and P. Sinay, *Angew. Chem., Int. Ed.*, 1999, **38**, 773.
- For our recent efforts towards the synthesis of carbasugars, see: (a) G. Mehta, N. Mohal and S. Lakshminath, *Tetrahedron Lett.*, 2000, 41, 3505; (b) G. Mehta and S. Lakshminath, *Tetrahedron Lett.*, 2000, 41, 3509; (c) G. Mehta, P. Talukdar and N. Mohal, *Tetrahedron Lett.*, 2001, 42, 7663.
- 4 Selected examples of synthesis of polyoxygenated cycloheptanes (cycloheptitols): (a) C. R. Johnson, Acc. Chem. Res., 1998, 31, 333; (b) J. Marco-contelles and E. de Opazo, Tetrahedron Lett., 1999, 40, 4445; (c) J. Marco-contelles and E. de Opazo, J. Org. Chem., 2000, 65, 5416; (d) J. Marco-contelles and E. de Opazo, J. Org. Chem., 2002, 67, 3705.
- 5 Recent review on the synthesis of cyclootanoids: G. Mehta and V. K. Singh, *Chem. Rev.*, 1999, **99**, 881.
- 6 Recent reports on the synthesis of cyclooctitols: (a) B. Werschkun and J. Thiem, Angew. Chem., Int. Ed., 1997, 36, 2793; (b) J. Armbruster, F. Stelzer, P. Landenberger, C. Wieber, D. Hunkler, M. Keller and H. Prinzbach, Tetrahedron Lett., 2000, 41, 5483; (c) W. Wang, Y. Zhang, M. Sollogoub and P. Sinay, Angew. Chem., Int. Ed., 2000, 39, 2466; (d) I. Hanna and L. Richard, Org. Lett., 2000, 2, 2651; (e) J. Marco-contelles and E. de Opazo, Tetrahedron Lett., 2000, 41, 5341; (f) F-D. Boyer, I. Hanna and S. P. Nolan, J. Org. Chem., 2001, 66, 4094; (g) P. A. V. Van Hooft, G. A. Van der Marel, C. A. A. Van Boeckel and J. H. Van Boom, Tetrahedron Lett., 2001, 42, 1769; (h) W. Wang, Y. Zhang, H. Zhou, Y. Bleriot and P. Sinay, Eur. J. Org. Chem., 2001, 1053; (i) C. G. Gravier-Pelletier, A. Olivia and Y. Le Merrer, Tetrahedron Lett., 2002, 43, 245.
- 7 T. A. Antkowiak, D. C. Sanders, G. B. Trimitsis, J. B. Press and H. Shechter, J. Am. Chem. Soc., 1972, 94, 5366.
- 8 All new compounds reported here were racemic and characterized on the basis of spectroscopic data (IR, ¹H and ¹³C NMR, mass).
- 9 Details of the X-ray crystal structure determination of 21, 22, 23 and 28 are given as ESI.[†] CCDC 193886–193889. See http://www.rsc.org/suppdata/cc/b2/b208918a/.