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Abstract. A method has been developed for determining the auto-correlation functions of 
the fluctuations in the transverse and the parallel components of hot carrier-velocity in a 
semiconductor by Monte Carlo simulation. The functions for electrons in InSb are 
determined by this method for applied electric fields of 50 V/cm, 75 V/cm, and 100 V/cm. 
With increasing value of the time interval the transverse auto-correlation function falls 
nearly exponentially to zero, but the parallel function falls sharply to a negative peak, then 
rises to positive values and finally becomes zero. The interval beyond which the auto- 
correlation function is zero and the correlation time are also evaluated. The correlation 
time is found to be approximately 1.6 times the relaxation time calculated from the chord 
mobility. The effect of the flight sampling time on the value of variance of the displacement, 
is investigated in terms of the low frequency diffusion constants, determined from the 
variation of the correlation functions. It is found that the diffusion constants become 
independent of the sampling time if it is of the order of one hundred times the relaxation 
time. The frequency-dependent diffusion constants are calculated from the correlation 
functions. The transverse diffusion constant falls monotonically with frequency for all the 
field strengths studied. The parallel diffusion constant has similar variation for the lower 
fields (50V/cm and 75V/cm) but it has a peak at about 44GHz for the field of 100V/cm. 

PACS: 72, 72.20, 72.70 

Solid-state microwave devices used in oscillators and 
amplifiers generally operate under hot-electron con- 
ditions, and the hot-electron thermal noise is a signifi- 
cant component of the total noise of these devices. The 
noise under hot-electron conditions have been studied 
experimentally by several workers [t-8]. Theory of 
hot-electron noise has been discussed by Price [9]. It is 
also known that the diffusion constant is directly 
related to the noise spectrum and the noise behaviour 
may be studied from the diffusion constant [10-]. Hill et 
al. [11] studied the frequency dependence of the 
diffusion constant in InP from the spectral density of 
the velocity fluctuations obtained by the Monte Carlo 
method and reported some interesting results. 

The spectral density of velocity fluctuations is, how- 
ever, directly related to its auto-correlation function 
[12]. Hence one may study the frequency dependence 
of the noise power or of the diffusion constant also 
from the correlation function. It is further expected 
that the study of the auto-correlation function will 
provide a better insight into the physical origin of the 
frequency dependence. The importance of choosing a 
proper sampling time for the Monte Carlo calculation 
of various transport parameters would also be evident 
from this study. 
We have developed a Monte Carlo program for ob- 
taining the auto-correlation function of velocity fluc- 
tuations under hot-electron conditions. The method 
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and the results obtained by applying the same to InSb 
are presented in this paper. 

1. Theoretical Background 

The relation between the spectral density of the fluc- 
tuations in velocity, its auto-correlation function and 
the diffusion constant are well discussed in the litera- 
ture [10, 12, 13]. However, as these relations are used 
in our calculations we quote, in this section, the 
relevant formulas. 
The spectral density Szv~(co ) and the auto-correlation 
function C~(s) of the fluctuations Av~(t) of the velocity 
v~(t) of an electron in the direction ~ are related 
according to the Wiener-Khintchine theorem [12] 

Sack(co ) =4  5 C~(s) coscosds, (1) 
0 

where 

C~(s) = <Ave(t). Av~(t + s)>, (2) 

and 

Ave(t) = v ~(t)- @~(t)>. (3) 

In (2) and (3) the angular brackets represent average 
values. The velocity function v~(t) may be taken to be 
ergodic so that the time and the ensemble-averages are 
identical. 
It follows from (1) that the spectral density of the noise 
current in the direction ~ in a semiconductor block of 
length L, area of cross-section A and electron density 
N is [10] 

S~z(co ) = 4e2AN ~ C~(s) coscosds (4) 
L o 

The diffusion constant D~(o~) at an angular frequency ~o 
in the direction ~ is also related to C~(s) as [13] 

D~(co)= 7 C~(s)cosoosds. (5) 
0 

Thus 

4e2AN 
Saz(c~) = L D~(c~). (6) 

The spectral density of the noise current is thus 
proportional to D~(co) which can be obtained from the 
auto-correlation function C~(s) of the velocity fluc- 
tuations'Av~(t) by using (5). Further the noise charac- 
teristics of a semiconductor device can be ascertained 
by studying D~(co). 
As co approaches zero, D,(~o) equals the low fre- 
quency diffusion constant D~ which is given by 

D~= ~ C~(s)ds. (7) 
0 

D= is also related to the variance <(Ae)~> of the 
displacement of the electron in the direction c~ in the 
interval T provided T is chosen much larger than the 
correlation time ~ .  This relation is obtained as follows 

T T - t  

C (s)ds. (S) 
0 --t 

If T>>Yo, where Y-o is the value of s beyond which 
C~(s) is zero, then 

T - t  

--1~ - - o 0  

cX3 

0 

=2Da (9) 

and 

<(Aa)2> =2TD~. (10) 

Equation (8) shows that D~ calculated by using (10) 
depends on T unless T>>~-- 0. 

2. The Method 

A Monte Carlo program [14-16] was set up to study 
the trajectory of a single electron in the semiconductor 
in the presence of an electric field F in the Z direction. 
The trajectory is followed for 1000 real collisions and 
the following quantities are stored in the computer: 
(i) the instant at which each collision takes place, 
(ii) the components of the velocity vx, vy, and v z imme- 
diately after each collision, and (iii) the average accel- 
eration due to the electric field during the interval 
between two successive collisions (inter-collision 
period). 
The effective mass of the electron, however, is de- 
pendent on its energy due to the non-parabolic energy- 
band structure. As the electron accelerates under the 
influence of the field, its energy changes and so does its 
effective mass. Thus the acceleration does not remain 
constant during the inter-collision period. To simplify 
calculations we have computed the average accelera- 
tion during the period on the basis of an average mass 
given by 

m* 
* - (11) 

maY- 1 +~(E 1 +E2) '  

where E 1, E 2 are the energies of the electron at the 
beginning and at the end of the period. The com- 
ponents of the initial velocity vx, vy, and v Z have also 
been evaluated from the initial values of the wave 
vector using this average effective mass. The error 
introduced by this procedure has been found to be less 
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than 1% in the case of InSb for the fields considered by 
US. 
The average values (Av,(t),  Av~(t + n. At) for ~ = x, y, z 
and 0<n_<100 are analytically computed from the 
stored data by the steps explained below. Let T~ be the 
instant at which the ith collision takes place. From the 
series of instants T~ another series T[= Ti+s, where 
s = n . A t ,  is obtained. Against a common coordinate 
axis of time these two series appear, as shown in 
Fig. 1. 
If T o is taken as the origin of the time axis the points on 
the lower straight line represent t, while those on the 
upper line give (t+s).  The interval (0 to T) over 
which the average is taken, can be divided into 
smaller intervals like (T~ to T2), (T 2 to T1), (T~' to 
T3), (T 3 to T4) .... Over each of these periods both 
v~(t) and v~(t+ s) are given by simple expressions and 
~v~(t).v,(t+s)dt can be obtained analytically. Thus 
during the period (T o to T2) 

Vz(t ) = v=l + a 1 t (12) 

and 

v~(t + s) = Vz2 + a2(7[ ) -  T 1) + a2t, (13) 

where v~ and ai, respectively, are the component of the 
initial velocity and the average acceleration during the 
inter-collision period immediately preceding the ith 
collision. 

P u t t i n g  T 2 - ]r~ = A T, and T~ - T 1 = A T' 

T2 
v~(t), v=(t + s)dt = v~l(v=2 + azA T'). A T 

Tb 

+ [al(v=z + a2A T') 

(AT) ~ 
+a2v~l]" 2 

(AT) 3 
+ ala2 3 (14) 

For e = x, y the terms containing a{s do not appear in 
(12)-(14) and subscripts z are replaced by x or y. Over 
the period (0 to T) 

<v~(t).v~(t+s)> 

1 [~v~(t).v~(t +s)dt 
T LT~ 

+ ~ v~( t ) .v~( t+s)d t+. . i .  (15) 
T2 

The auto-correlation functions are given by 

(A  v,(t). Av~(t + A ) )  = (v,(t) .  v~(t + s))  - (v , ( t ) )  z . (16) 

For ~ = x , y  

(v~(t)) =0  (17a) 

i ' i  i TO IT1 rl T 2 '  ,' T3T/* II I , ] TS] 1' IT6 

,T:, ', :Ir~ ITj ' , '  ' - - -  �9 c ~ I , ,  , t , [T~', T~ I 
S 

Fig. 1. Instants of collisions for the velocity functions v.(t) and 
v~(t + s) 

and for c~ = z 

(v~(t)) =va, (17b) 

where v e =the  drift velocity, 
For the period (0 to 7) 

vd=~ v=(t)dt+ ~ vz(Odt+ . . . .  (18) 
L Tb T2 

The drift velocity is also calculated from the displace- 
ment of the electron in the z direction which in the ith 
inter-collision period is 

(Az),- (~e)i F ' (19) 

where (AE)i is the change in the energy of the electron 
during the period and F the intensity of the applied 
electric field. 
Thus 

1 ~ (Az ) i  (20) Vd= y 

Comparison of the values of v e obtained by (18) and 
(20) provides a check on the correctness of the 
computation. 
It may be noted that for determining the correlation 
functions over the period 0 to T, the values of v~ and a~ 
for the period 0 to ( T + s )  for the highest value of s 
required, must be available. For this reason the aver- 
ages for the period covering the first 500 collisions are 
computed from the stored data for 1000 collisions. 
T i, v~i, and a i for 1001 < i<  1500 are then computed and 
the averages for the period covering the first 1000 
collisions are obtained by combining the previous 
results with the data stored for 500_< i<  1500. 
The process is continued till the average values con- 
verge to give the auto-correlation functions Ct(s ) and 
Cp(s). The frequency-dependent diffusion constant 
Dr(co ) and Dp(co) are obtained from these functions 
using (5). 
The method of calculation described above has the 
advantage of reducing the computation time com- 
pared to that required in the method using Simpson's 
rule for obtaining the integral ~v~(t).v~(t+s)dt. The 
approximation regarding the effective mass given by 
(11) enables us to carry out these integrations analyti- 
cally. On the other hand, in the method using 
Simpson's rule for integration it is necessary to cal- 
culate the components of the velocity at the beginning 
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Fig. 2. Autocorrelation function of fluc- 
tuations in electronvelocity in n-InSb trans- 
verse to the applied electric field (I 50 V/cm, 
2 75V/cm, 3 100V/cm) 
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of intervals 6t which are required to be taken so small 
that there are about ten such intervals in the average 
inter-collision period. This calculation at so many 
instants of time makes the over-all computation time 
much longer than that for the proposed method. 

3. Results 

The above method has been used to calculate the auto- 
correlation function and the frequency-dependent 
diffusion-constant of electrons in n-InSb as an example 
for studying their nature. A non-parabolic energy- 
band structure has been assumed and scattering by 
ionized impurity atoms, polar optic and acoustic pho- 

12 

Fig. 3. Autocorrelation function of fluc- 
tuations in electronvelocity in n-InSb par- 
allel to the applied electric field 
(1 50V/cm, 2 75V/cm, 3 100V/cm) 

nons has been considered. The following values of  the 
parameters for the material n-InSb have been used 
[17] 
Eg = 0.225 eV, m * / m  e =0.014, K s = 16.00, K~ = 18.70, 

Q = 5.79 x 103 kg/m 3, velocity of sound : 3.7 x 103 m/s, 

polar optic phonon energy: 0.025 eV, 

concentration of ionized impurity atoms : 
1.6 x 1020 m -  3. 

The acoustic deformation potential has been taken as 
20eV [18]. The'values of s have been chosen at 
intervals of 0.6 picosecond so that the correlation 
functions are evaluated at a reasonably large number 
(40-50) of points on the s-axis within the limits of 
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Fig. 5a-c. Typical plot of electron-velocity against time: 
(a) transverse component, (b) parallel component, (c) fluctuations 
in the parallel component 

2l+ 

Fig.& Autocorrelation function of fluc- 
tuations in electronvelocity in n-InSb in 
logarithmic scale. For the transverse com- 
ponent of velocity (1 50V/cm, 2 75V/cm, 
3 100 V/cm and for the parallel component 
of velocity (4 50V/era, 5 75V/era, 
6 100 V/cm) 

integration for determining Dr(co ) and Dp(~o) by 
Simpson's rule. Averages have been taken in each case 
over 50,000 real collisions which gave satisfactory con- 
vergence. Computations have been made for three 
values of the applied electric field, namely, 50, 75, and 
i00 Wcm. 
We discuss below the characteristics of the auto- 
correlation functions and the frequency- dependence of 
the diffusion constant as obtained from these 
studies. 

3.1. Auto-Correlation Functions 

Figures2 and 3 show the variation of the auto- 
correlation functions C~(s) and Cv(s), respectively, with 
the time interval s. Figure 4 depicts the same variation 
with Ct(s ) and Cp(s) plotted on a logarithmic scale. As 
expected both correlation functions fall with increasing 
s but while Ct(s ) fall nearly exponentially; as indicated 
by its linear variation in the logarithmic plot, the rate 
of fall of log C,(s) increases with s. Figure 3 shows that 
C,(s) falls sharply, attains negative values after passing 
through zero, reaches a negative maximum, becomes 
positive again and finally becomes zero. 
The nature of variation of the correlation functions can 
be explained by considering the way in which the 
respective component of velocity changes with time. In 
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Table 1. Computed values of correlation time, relaxation time and diffusion constant for n-InSb 
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Jo Y~ J .  

Field 1st 3rd D t [m 2 s 1] 
[V/cm] zero zero from 

s 1 for Z t s 3 for Cp 
[ps] [ps] [ps] [ps] 

Dp [m 2 s-1] 
from 

C,(s) 4(~)~) C,(s) ((d~) ~) 

50 31.8 33.6 5.04 3.10 0.406 0.362 0.272 0.270 
75 27.0 29.4 4.20 2.59 0.325 0.310 0.215 0.210 

100 21.0 26.4 3.60 2.24 0.307 0.275 0.202 0.179 

J-o: The interval bayound which the auto-correlation functions become zero 
~-c: Correlation time 
~-.: Relaxation time 
Dp: Diffusion constant in the direction parallel to the applied electric field 
Dr: Diffusion constant in the direction transverse to the applied electric field 

Fig. 5a and b the transverse and the parallel com- 
ponents of the electron-velocity are plotted against 
time. Figure 5c shows the fluctuations in the parallel 
velocity Avp(t) against the same time axis. The trans- 
verse component of the velocity may be assumed to be 
approximately constant during the inter-collision peri- 
ods. The auto-correlation function for such velocity is 
known [19] under certain simplifying conditions, 
namely, (i) the probability that the electron does not 
suffer a collision for a time t c after last collision is 
Proportional to exp(-tJ~ and (ii) the velocity after 
the collision has a Gaussian distribution. In this case 
the autocorrelation function is proportional to 
e x p ( - s / ~ ) .  The observed exponential fall of Ct(s ) 
confirms that these conditions are reasonably satisfied 
in the case of the transverse component of the 
velocity. 
The abrupt changes in the parallel velocity being 
caused by the same randomizing collisions (Fig. 5b), 
the conditions (i) and (ii) mentioned above are equally 
applicable to this case as well. So the interval ~-o 
beyond which the correlation function becomes zero is 
likely to be nearly the same in both cases. The 
monotonic increase in the parallel velocity during each 
inter-collision period due to the applied electric field 
leads to a finite value of its average which is called the 
drift velocity v d. 
The nonlinear variation of log Cp(s) against s (Fig. 4) 
may be explained by referring to Fig. 5c. It is seen that 
for a number of inter-collision periods Avp(t) starts 
with a negative value but ends up with a positive one. 
These intervals make a negative contribution to Cp(s). 
The interval s over which such negative contribution is 
made can at most be Td2, where T~i is the inter- 
collision period under consideration. These negative 
values are added to the positive exponentially falling 
values arising in the manner similar to the transverse 
case. In both cases the positive values fall to zero in a 

period approximately five times the correlation time 
~ .  The negative contributions, however, persist at 
most for one half of the longest inter-collision period. 
Thus compared to the positive values the negative 
values fall to zero for smaller values of s. So the 
superposition of the negative values makes Cv(s ) fall 
more sharply t h a n  Ct(s ) and become negative. 
Thereafter the positive values predominate to make 
Cv(s) positive again and finally zero. This explanation 
is confirmed by the fact that the third zero s 3 of Cp(S) 
and the first zero s 1 of Ct(s ) occur for nearly the same 
values of s as shown in Table 1. These values of s give 
J-0 the interval beyond which the correlation function 
may be taken as zero and these have been taken as the 
upper limit of integration in calculating Dr(e) ) and 
Dp(co) from the respective correlation function. 
It may be noted from the above discussion that the 
correlation time ~-c can be obtained from the slope of 
the logarithmic plots of Ct(s) against s as these are 
nearly linear. Values of ~ as obtained from these 
slopes for different field strength are given in Table i 
along with the relaxation time )-, calculated from the 
chord mobility given by Deb Roy and Nag [17]. It is 
found that ~ is approximately 1.6 times J-,. 
We give in Table 1 the values of ~-0, the interval 
beyond which the autocorrelation functions C~(s), Cp(S) 
are zero. These are found to lie in the range 20-30 ps. 
We note that while calculating D t and Dp for electrons 
in n-InSb using (10) in our earlier work [17] wecould 
get satisfactory convergence in their values for the time 
of flight T >  250 ps. It may therefore be concluded that 
the sampling time T for determining the diffusion 
constants D t and Dp from the variance of the displace- 
ments is required to be about 10 times 9-0 or 60 times 
the correlation time ~ or 100 times the relaxation time 

since Y o ~ 6 ~  and ~ 1 . 6 ~ .  
It is also clear that if T is chosen to be smaller, the 
values of D t and Dp obtained will be different from the 
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Fig. 6. Diffusion constant transverse to the applied electric field for 
electrons in n-InSb for different frequencies (1 50V/cm, 2 75 V/cm, 
3 100 V/cm) 
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Fig. 7. Diffusion constant paTallel to the applied electric field for 
electrons in n-InSb for different frequencies (1 50V/cm, 2 75 V/cm, 
3 100 V/cm) 

low frequency values of the diffusion constants and the 
calculated values may be smaller or larger depending 
on the nature of variation of the correlation functions 
C,(s) and Cp(s) with s. Since Ct(s) does not have 
negative values D t will increase monotonically with T 
towards its convergent value. But as Cv(s ) has negative 
values for some values of s, D~ will first increase with T, 
reach a maximum, then decrease and finally increase to 
reach a constant value. The variation of Dp with T, as 
reported by Hill et al. [11], may be explained by the 
observed nature of variation of the correlation 
function. 

3.2. Frequency Dependence" of Diffusion Constant 

Figures 6 and 7 show the variation of the transverse 
and the longitudinal diffusion constant Dr(co ) and 
Dp(CO) with frequency for three different values of the 
applied electric field (50, 75, and 100V/cm). It is 
observed that for all the values of the applied field 
Dr(CO) falls monotonically with frequency. Dp(co) varies 
similarly for the lower fields (50 and 75 V/cm) but for 
100 V/cm it has a peak at a frequency of about 44 GHz. 
The peak in the curve for Dp(~o) was observed for InP 
by Hill et al. Ell]. The appearance of the peak is 
caused by the negative values of Cv(s). For the lower 

fields (50 and 75 V/cm) the effect of the negative values 
of Cv(s) is relatively small and so the peaks are 
absent. 
As the frequency approaches zero, Dr(CO ) and Dp(co) 
reduce to the low frequency diffusion constants D t and 
Dp. Figures 6 and 7 show that both D t and D v decrease 
as the field strength is increased and that for each field 
strength D t is greater than D v. These characteristics 
follow directly from the nature of variation of Ct(s ) and 
Cv(s ) with s. 
In Table 1 the values o l d  t and D v given in Figs. 6 and 7 
are compared with their values calculated from the 
variance of the displacement of the electron under 
similar conditions [17]. They agree within 10%. This 
discrepancy may be attributed to the different values of 
the acoustic deformation potential (30 eV) taken in this 
reference. 

4. Conclusion 

The results of our Monte Carlo calculations show how 
the autocorrelation functions of the fluctuations in 
transverse and parallel velocity of electrons in n-InSb, 
Ct(s ) and Cv(s), vary with the interval s and how the 
diffusion constants Dr(co ) and Dp(co) depend on the 
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frequency. The nature of variation of Ct(s) and Cp(s) 
has been explained on the basis of the nature of 
velocity fluctuations in the respective direction. The 
variation of D~(co) and Dr(co ) has been found to follow 
directly from the nature of variation of the respective 
correlation function with s. An estimation of the 
smallest sampling time T for determination of the low 
frequency diffusion constants D t and Dp from the 
variance of the displacements of the electrons has been 
made. It has been found that for satisfactory results T 
should be at least 10 times Jo, the interval beyond 
which the correlation function is zero, or 100 times ~--,, 
the relaxation time calculated from chord mobility. 
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