
IEEE TRANSACTIONS ON COMPUTERS, VOL: C-20, NO. 5, MAY 1971

Complementary Two-Way Algorithms for
Negative Radix Conversions

E. V. KRISHNAMURTHY

Abstract-This paper describes two sets of algorithms in positive
radix arithmetic for conversions between positive and negative inte-
gral radix representation of numbers. Each set consists of algorithms
for conversions in either direction; these algorithms are mutually
complementary in the sense they involve inverse operations depend-
ing upon the direction of conversion. The first set of algorithms for
conversion of numbers from positive to negative radix (negative to
positive radix) proceeds serially from the least significant end of the
number and involves complementation and addition (subtraction) of
unity on single-digit numbers. The second set of algorithms for con-
version of numbers from positive to negative radix (negative to posi-
tive radix) proceeds in parallel starting from the full number (the
most significant end of the number) and involves complementation
and right (left) shift operations. The applications of these algorithms
to integers, mixed integer-fractions, floating-point numbers, and for
real-time conversions are given.

Index Terms-Algorithms, complementary two-way algorithms,
complementation, complement representation, left-to-right parallel
algorithms, negative radix, positive radix, pseudodivision and pseudo-
multiplication algorithms, radix conversion, real-time radix conver-
sions, right-to-left serial algorithms, shift operations, two-way
algorithms.

I. INTRODUCTION
P ECENTLY, Zohar [1] has described algorithms for

conversions between negative and positive integral
radix representations of numbers. Zohar points out

that there is an asymmetry in his algorithms regarding the
direction of conversion, if positive radix arithmetic is used.
It is the object of this paper to describe two different sets
of algorithms in positive radix arithmetic for conversions
between positive and negative integral radix representation
of numbers. Each set consists of algorithms for conversions
in either direction; these algorithms are mutually comple-
mentary in the sense that they involve inverse operations
depending upon the direction of conversion. In this sense,
these algorithms are not asymmetric and can be loosely
termed symmetric.
The first set of algorithms proceeds serially from the least

significant or right end of the number towards the most sig-
nificant or left end of the number; here the conversion of
numbers from positive to negative radix (negative to posi-
tive radix) involves complementation and addition (sub-
traction) of unity on single-digit numbers.
The second set of algorithms for converting numbers

from positive to negative radix (negative to positive radix)
proceeds in parallel starting from the full number (most
significant end of the number) and involves complementa-
tion and right (left) shift operations. As both sets of

Manuscript received May 18, 1970; revised December 7, 1970.
The author is with the Department of Applied Mathematics, Indian

Institute of Science, Bangalore 12, India.

algorithms use positive radix arithmetic, each will be useful
depending upon the facilities available in the computer.

Unlike the algorithms described by Zohar [1], the sim-
plicity and symmetry in our algorithms arise due to the
assumption that negative numbers in positive integral
radix are represented in true complement form. This helps
in simplifying the logical design considerably inasmuch as
the conversion algorithms for positive and negative num-
bers are alike except for a simple terminal step. It also turns
out that it is unnecessary to know the sign of the number in
positive radix (which is conventionally available only at the
most significant end) until the terminal step is reached.

In addition, the theory presented here shows a similarity
between the use ofnegative radix and complement notation
techniques for representing the negative numbers. This sug-
gests that there is no special advantage in choosing a nega-
tive radix representation over a true complement represen-
tation in positive radix, if the aim is to handle negative num-
bers conveniently.

It will be further noted by logical designers that the
algorithms described here are similar to those used for con-
version ofnegative numbers in true complement form, from
one positive radix to another. As a general introduction to
the subject of radix conversions, reference is made to excel-
lent surveys available: Sikdar [2], Knuth [3], and Cadden
[4]. (See also Dietmeyer [5].)

II. NOTATION AND DEFINITIONS
We will assume that the numbers used are integers in a

radix /3 or - /, where / is a positive integer. Let us denote
a number a in radix # by a(,B). Although our initial discus-
sion will confine to a(,B) integral, we will indicate in the last
section how the algorithms described here can be extended
to fractional and floating-point numbers.

Let us also assume that the negative numbers in positive
radix are represented in the true complement form, with the
sign available only at the most significant end ofthe number,
as is conventional.
Thus when a(,). 0,

n
a(,B) = E ai 13

i=O
(1)

where 0<ai< (/3 - 1), and when a(,B) <0, ai(,B) is the true or
radix complement form given by

n n

a(i) = /n3+I Z a<i/ = E ai/3 (2)
i=O i=O

543

IEEE TRANSACTIONS ON COMPUTERS, MAY 1971

Fig. 1. Algorithm 1.

where

0 < ai < (B- 1).

We will also assume that unless otherwise specified, the
numbers are normalized, i.e., if a(/3) >0, an 0° and if a(,B) <0,
an (/-1).

Let us denote a(/) in radix -, by
m

a(-/3) = E bi fl)
i=O

(3)

then for each i= (2j- 1)

[j = 1, 25 35,. etc..] ;

if

(a2j- 1 + C2j-2) = 0

then set

b2j_1 = 0 and b2j= a2j.
Otherwise, set

where

0 <bi<(-1)

and m > n depending upon whether or not there is overflow
in conversion. We also assume that unless otherwise speci-
fied bm 0.

III. RIGHT-TO-LEFT SERIAL ALGORITHMS
These algorithms aim to find bi's (i= 0, 1, -*. , m) given the

ai's (i =0, 1,<, n) (or conversely) starting from i=0 and
proceeding to i= n (or m).

A. Conversion from a(/3) to a(-7 /)

Algorithm 1 (seeflow chart-Fig. 1): Set

bo = aO; cO = 0;

=2j-1 2-j-

where

a2jc. = a2j_1 + C2j-2 (5)
and set

b2i = (1 + a2j) mod (6)

where

C2J = carry in forming b (7)

Then for the two cases n(odd) and n(even) carry out the
following terminal steps.

Case 1-n(odd): After the step for n=2j-1, namely
setting b = (/ -a*), do the following.

(4)

544

KRISHNAMURTHY: ALGORITHMS FOR NEGATIVE RADIX CONVERSIONS

Subcase a-a(fl) >0: Set

bm = bn+l = 1 (8)

and terminate. This would give one extra digit to a(-,/).
Subcase b-a(f3) < 0: If a-* # 0 terminate; otherwise set

bn+ =(- 1)

and

bn+ 2 = 1 (9)
and terminate.

This would give two more extra digits to a(- /3); see proof
below.

Case 2-n(even): After the step for n = 2j, namely setting
bn= an or bn= (1+ an) mod /3, do the following.

Subease a-a(/3) .0: If there is a carry from an to an +
set

TABLE I

P S C bn+ 1 bn+ 2

1 0 0 1 0
1 1 0 0 0
1 1 1 (fl-1) 1
O 0 1 (fl-1) 1
o 0 0 0 0
0 1 0 1 0

Case I-n(odd): Consider a function fi(/3) given by

fi(fl = ao + (#- a,)(-fli + (a2 + 1)(_)2 + *--

+ (/3 - a2j-1)(-_3)2j' + (a2; + 1)(_)2j + *

+ (an-1 + 1)(-_3)'n1+ (/3 - an)(- p)n ... (12)

which is derived from a(/) (or a(,B)) by the rules ofAlgorithm
1. We see that

bn+=(- 1)

and

bn+2= 1 (10)
and terminate. This would give two more extra digits to
a(-/); see proof below. Otherwise (no carry from an),
terminate.

Subcase b-a(/3) <0: If there is a carry from in (which
can arise only when in= (/3-1) and an* #0) ignore; other-
wise set

bn+ = 1 (11)

fi(/3) = a(/) - /"'+. (13)

Subcase a-a(/3) . 0: Comparing the coefficients of
(-,)' in (12) and (3) we obtain

a(-/ =i 1(/) + /fn+1 (14)

Thus a(- /) is obtained by setting bm= b1+31 = and
terminating. [Compare (8).]

Subcase b-a(/3) <0: Here the number is denoted by
ai(,B) and indicated by the negative sign at the most significant
end. If an* #0 no carry arises from an* and we have

f1 (/3) = ai(,) -_ /n+ 1 = - a(/3) = a(-/3) (15)
and terminate. This would give one more extra digit to
a(-/); see proof below.
For the sake of convenience, in Table I we summarize

the rules for the terminal step. Here we assume that a(/3)
and a(/3) are normalized or a. #0 and dn, = (/3 - 1). Also we
denote by P the parity of n by setting odd = 1, even = 0, and
the sign S of a(/3) by setting positive = 0, negative= 1, and
the carry C arising from an (or an) by yes= 1, no = 0.

It is easily observed that the rules are: if C= 1, then
bn+1=(/-1) and bn+2=1; otherwise, if PfflS=1, then
bn+ 1 = 1 and bn+ 2 =0; otherwise (P(jS= 0), bn+ 1 = bn+2 =0.
Here (3 denotes EXCLUSIVE OR or sum modulo-2 operation.)
Note that the combinations P= 1, S= 0, C = 1 and P= 0,

S= 1, C= 1, which are missing from Table I, correspond to
the unnormalized cases an=0 and n-= (3 - 1), respectively.
In these cases we ignore the carry and set bn + = bn+2=0°

Proof: Consider
n

a(/3)= E ai/3 (1)
i=O

or
n

a(3) = E ai/3
i=O

and
m

a(-/3) = i bi(-,B)i.
i=O

the result being directly available. If a* = 0, we would have
set

= -a* =0
and the overflow digit-_n+ 1 in (12) has to be taken care of
by adding digits bn+1=(/3-1) and bn +2=1 so that (/3-1)
(_3)n+1 + 1 - (_)n+2(n odd) =-/n+ 1. [Compare (9).]
Case 2-n(even): Consider a function f2(/3) given by

f2(fl) = aO + (a,)(-#) + (a2 + 1)(_-#2 + ..

+ (/3-a2j_1)(-/3)2j + (a2i + 1)(/3)2J +
+ (/ - an1)(-O3)n + (an + 1)(_ on (16)

which is derived from a(/3) by the rules of the Algorithm 1.
It is easy to see that

f2(/3) = a(3). (17)

Subcase a-a(/3) . 0: If a13 < (/3 -1) carry does not arise
from (a13 + 1), and comparing the coefficients of (- /3)i in (16)
and (3), we obtain

f2(/3) = a(-/). (18)

Also, if a = (#-1) and a*1= 0, carry does not arise
(2) and the result is obtained directly (18).

If a1 = (3 - 1) and a*_1 #A0, then carry arises from (a1n+ 1)
which equals /1+1. If it arises it is to be replaced in radix
- / representation by the two digits bn, 1 = (3 - 1) in the

3 (.-../)n+1 position and bn+2 =1 in the (/3)n+2 position.
[Compare (10).]

545

IEEE TRANSACTIONS ON COMPUTERS, MAY 1971

Subcase b-a(/3) <0: If ain= (/3-1) (which is a super-
fluous digit) and n*_ 1 # 0, then a carry arises from ±1.

Since

f2(/3) = 13n+l - a(,B) = a(,)
-a(,B) = f2(3) - fn+1 = a(-f3) (19)

and we get the result by ignoring the carry. Otherwise
(if aci=(# -1) and a*_=0 or Zi <(# -1)) carry does not
arise from an + 1 or 3n + 1=0.

Thus

ai(10) = 9 1

a(-10) = 0 8
a(10) = -8

ai(10) =
a(-10) =

a(10) =

90852
190952
-9 1 4 8.

a(- /n+1 =-a(,B) = a(-,B)

f2(f3) + 1 .(/3n+1 (20)
and we obtain the result a(-/B) by setting bn+1 =1 in the
(-/3)n +1 position. [Compare (1 1).]
Remark 1: When a* 1 = 0, we set

b2j- 1= 0

b2j = a2j
and thus we do not modify a(,B) at a preceding step and cor-
rect at a succeeding step. This aspect has been omitted from
consideration in the proof, since it is trivial.
Remark 2: When a2j = (/3-1) a carry arises from b2j

= (a2j +1) mod and this is taken care of by setting

b= 0 (21)

and adding 1 to a2(j+ 1)-i ; thus at a subsequent step

b2j+1 = # - (a2j+1 + 1) (22)

and the carry is assimilated without further propagation
since a2j+ 1 ./- 1.
Example J-n(odd), a()>O, no carry from a*:

a(10)= 9 1 9 5
a(-10) = 1 1 2 1 5.

Note one extra digit arising here.
Example 2-n(odd), a(/3) <0, a-* =A0, no carry from a*:

a(10)= 8 1 9 5
a(-10)= 2 2 1 5
a(10)= -1 8 0 5.

Example 3-n(odd), a(/3) <0, ai* = 0, carry from ai*:

a(10)= 8 9 9
a(-10) = 1 9 0 9 1 9
a(10)= -9 1 0 1.

Note the extra two digits arising here.
Example 4-n(even), a(/3) >0, carry from an:

a(10)= 9 1 0 9 0 9 2 9 7 1
a(-10) = 1 9 0 9 1 8 0 9 0 7 0 3 1.

Note the extra two digits arising here.
Example 5-n(even), a(3)>0, no carry from an:

a(10) = 9 0 0 1 9 0 9 2 9 7 1
a(-10) = 9 0 1 8 0 9 0 7 0 3 1.

Note one extra digit arising here.

B. Conversion from a(-,/) to a(/3)
Let

m

a(-/3) = E bi(-3)'
i=O

where

bm 0

and
n

a(B) = i ai#B.
i=O

(3)

(1)

The following algorithm finds ai's (i= 0, 1, 2, * , n) given
bi's.

Algorithm 2 (seeflow chart Fig. 2): Set

ao = bo; cO = 0;

then for each i=(2- 1)

[j = 1, 29 3, - etc.] .
If

(b2j_1 + C2j-2) = 0 (23)
then set

a2j- 1 = 0 (24)
and

a2j = b2j. (25)
Otherwise, set

(26)
where

b2j = b2j-1 + C2j-2 (27)
and set

a2j= (b2j- 1) mod (28)
where

c2j = borrow in forming a2j. (29)
Then for the two cases m(odd) and m(even) carry out the

following terminal steps.
Case I-m(odd): After the step for m = 2j- 1, namely

setting am = (/3 - b*), terminate; the result is negative and in
the complement form (note bm =0 by assumption).

Example 6-n(even), a(f3) <0, carry from a-n:
9 5 2
0 5 2
0 4 8.

Example 7-n(even), a(,B) <0, no carry from an:

546

a2j- 1 = (# b* -1)

KRISHNAMURTHY: ALGORITHMS FOR NEGATIVE RADIX CONVERSIONS

Fig. 2. Algorithm 2.

Case 2-m(even): After the step for m = 2j, namely setting
am= bm or am = (bm-1) mod ,B, terminate; the result is posi-
tive (note bm =0 by assumption).
The proof is omitted here as it is similar to Algorithm 1.
Example J-m(odd):

a(-10)= 1 0 0 0 7 5 4 8

a(10)= 8 9 9 9 3 4 6 8
a(10) =-1 0 0 0 6 5 3 2.

Example 2-m(even):

a(-10) = 1 9 0 9

a(10) = 0 0 9 1

1 8090703 1

0 1 9 0 9 2 9 7 1.

Example 3 m(odd):

a(-1) = 1 9 0 1 8 0 9 0 7 0 3 1

a(10)= 9 9 0 0 1 9 0 9 2 9 7 1
a(10) =-0 0 9 9 8 0 9 0 7 0 2 9.

Note the redundant digits in a(10) in the two most sig-
nificant positions.

IV. LEFT-TO-RIGHT PARALLEL ALGORITHMS OR PSEUDO-
DIVISION-MULTIPLICATION ALGORITHMS

A. Principle of the Algorithms
It is well known [2]-[4] that while converting integers

from a positive radix to another positive radix 7, one can
employ a division technique in radix or a multiplication
technique in radix y. The division technique employs a
recursion

Xi = Xj+1y + ri (30)
for i = 0, 1, 2, , m with X0 = a(/3); the procedure obtains a

quotient Xi+ 1 and a remainder ri each time by dividing Xi by
y. This recursion terminates when Xi = 0.

The remainders ri, each being less than y, form the digits
bi(i= 0, 1, -

, m) of the converted number a(y) given by
m

a(y) = I bi i.
i=O

(31)

Note that if B >y then m > n and the valid digits of y are
subsets of those of ,B, and hence no facility for translating the
individual digits r. are needed.

If /<7 then m< n, and in order to carry out the arith-
metic in radix /B, y has to be expressed in radix ,B; then during
division each one of the remainders ri(<7-1) would only
be obtained in the coded form. Therefore the ri's will
have to be finally translated into radix y. The multiplication
technique for converting from radix to radix employs
arithmetic in radix y. For /3> y, is expressed in radix y,

say /,,, and each one of the coefficients ai in a(/3) is expressed
as ai., and each one of the coefficients ai in a(/) is expressed
as ai, in radix y, and the polynomial a(/3) is evaluated as a
nested multiplication by the recursion

Xi=Xi-,ly +a(n-i)y

for i= 1, 2, , n with

xO = any-

This recursion terminates at the nth step yielding

Xn = a(y).

(32)

(33)

(34)
Naturally the evaluation of (32) demands facilities for ex-
pressing ai as ai, and facilities for arithmetic in radix y. For
< y, the a,'s are valid digits in y; so the facility for translat-

ing ai to ai is not needed.
Now let us consider the application of these schemes to

conversion between numbers expressed in positive and
negative radices of equal magnitude. First, let us consider
the multiplication scheme (note asymmetry arises here due

547

IEEE TRANSACTIONS ON COMPUTERS, MAY 1971

to the fact that while conversion from a(---:) to a(/3) is
possible using radix ,3 arithmetic, conversion from a(,B) to
a(-,) is possible only by using radix -, arithmetic and
not in radix /3 arithmetic). Since the valid set of digits for #
and -, remain identical, conversion from a(- /3) to a(/3)
does not involve translation of the digits bi of a(-,3) in
radix ,B; also, since the multiplication by -,B can be re-
placed by complementation and a left shift by one digit in
radix /, this technique is very convenient.
As mentioned, conversion from a(/) to a(-,B) in radix

,B arithmetic is possible only by employing division tech-
nique. In this case we have to divide a(/3) by - /3 and obtain
the remainders ri. Since division by - / involves only right
shift and complementation, this technique is very conve-
nient. Also, since the valid set of digits for /3 and - / remain
the same, facility for translating the digits bi= ri (which are
actually in (- /) coded form) in radix / are not needed.
Thus the scheme for conversion from a(/3) to a(- /3) and

the scheme for conversion from a(- /3) to a(/3) are inverses of
each other inasmuch as the former proceeds with a sequence
of right shifts and complementation and the latter proceeds
with a sequence ofcomplementation and left shifts. From the
nature ofthe operations involved, one can call these schemes
pseudodivision and pseudomultiplication algorithms, re-
spectively.

It is in fact possible to use circular shift registers and
implement the algorithms so that a(/) [or a(- /3)] is replaced
by a(-#/) [or a(/3)] at the termination of the operations.
(See Examples.)

B. Conversion from a(/3) to a(- 3)
Algorithm 3 (seeflow chart-Fig. 3): Set

XO = a(,B) (35)
and use the recursion (30) setting y=-,/; thus

Xi = Xi+,(-#) + ri (36)
for i=0, 1, 2,.. , m. Here we restrict that ri>O, and the
corresponding quotient Xi + 1 is chosen. The recursion termi-
nates when Xi= 0.

Since division by (-,/) is equivalent to a right shift of Xi
through a single digit and then complementing the right
shifted Xi, we can rewrite the above recursion (36) thus:

i *n+2?2> Stop)

Fig. 3. Algorithm 3.

start with two guarding zero digits (or (/-1) digits) for
a(/3) >0 (fora(/3) <0 expressed in true complement form).
Example 1: The computations for converting from

a(10)=009001 90toa(-10)=1 1002 1 Oareshownin
Table II.
Example 2: The computations for converting from

a(10)=0 8 9 9 to a(- 10)= 1 9 0 9 1 9 are shown in Table III.
Remark 3: Note that a left circular shift register can be

used conveniently in the above examples such that bi enters
each time the vacant leftmost position of the Xi register so
that at the last step a(10) is replaced by a(- 10).

C. Conversion from a (- /) to a(/3)
Algorithm 4 (seeflow chart-Fig. 4): Let

m

a(-,B) = E bi(-/)' with bm # 0.
i=O

(39)

Set

Xo = bm (40)

Xi+1 = R(Xi) (37)
and

bi = shifted out digit of Xi = Xio (say) (38)

with

bo = aO

where

R(Xi) = Xi shifted right through one digit

Xi = true complement of Xi.

Since the conversion of a(/) to a(-f/) may result in an

overflow of two digits (see Section III-A), it is necpssary to

and use the equivalent recursion (41) derived from (32):

Xi = L(Yi-1) + bm-i, i = 12,..,~m (41)

where

L(Xi- 1) = shift Xi- 1 left by one digit
Xi- 1 = true complement of Xi- 1.

The recursion terminates when i= m.
Case I-m(odd): The result is negative and in true com-

plement form.
Case 2-m(even): The result is positive and in the desired

form.
Proof: The proof follows from the explanation offered

earlier in this section and the recursion (32) and the equiva-

548

KRISHNAMURTHY: ALGORITHMS FOR NEGATIVE RADIX CONVERSIONS

TABLE II

i Xi bi

0 0 0 9 0 0 1 9 0
1 9 9 0 9 9 8 1
2 0 0 9 0 0 2
3 9 9 1 0 0
4 0 0 9 0
5 9 9 1
6 0 1
7 0

TABLE III

i Xi bi

0 9 9 0 8 9 9
1 I0 0 9 1 1
2 9 9 0 9
3 0 1 0
4 9 9
5 1

positie 4sign

Fig. 4. Algorithm 4.

lent recursion (41). However, since complement notations
are involved, we will add a short proof for the sake of clarity.

Since we set

Xo = bm (40)
X1 = L(XO) + bm I

= l2 - bm + bm-1 (42)

2 = p2bm - flbm-, + bm-2 (43)

TABLE IV

i Xi

0 9
1 1 0
2 9 0 1
3 0 9 9 8

TABLE V

i Xi

0 9
1 1 1
2 8 9 1
3 1 0 9 8
4 8 9 0 2 8

Example 1: The computations for converting from
a(-10)=9 0 1 8 to a-(10)=0 9 9 8 are shown in Table IV.
Example 2: The computations for converting from

a(-10)=9 1 1 % 8 to a(10)=8 9 0 2 8 are shown in Table V.
Remark 4: Note that a right circular shift register can be

used conveniently in the above examples, so that the left-
most digit of a(- 10) enters the vacant position at the right-
most position of Xi register so that at the last step a(- 10)
is replaced by a(10).

V. FRACTIONS AND FLOATING-POINT NUMBERS
All the above algorithms can be used with practically little

or no modifications to convert fractions, mixed integer-
fractions, and floating-point numbers.

A. Conversion of Fractions and Mixed Integer-Fractions
from Radix ,B to Radix-13

Let
n

a(f,) = E ai43
i= -k

(48)

with k fractional digits and (n+1) integral digits. Then
Algorithm 1 can be used as such except for the initial starting
step. At the initial step instead of setting bo=a0 as in
Algorithm 1, we make the following choices.

Case 1-k(odd): If

a-k 0 0

set

and in general,

Xi(odd) = (- 1)i+1f1i+1 + (- 1) fl bm + + bm-i (44)

Xi(even) = (- 1)'P3bm + (-)i- 1li'- b.bm 1 + * * * + bm- j; (45)
thus

(46)Xm(odd) = Pf+1 + a(-13) = d(13)
and

Xm(even) = a(-1) = a(13)
as was to be proved.

(47)

bk = (1 - a_k) (49)
Otherwise set

b-k = 0 (50)

and proceed with recursions (4) and (5) or (6) and (7) as the
case may be.

Case 2 k (even): Set
b_k = a_ k (51)

and proceed with recursions (4) and (5) or (6) and (7) as the
case may be.

549

IEEE TRANSACTIONS ON COMPUTERS, MAY 1971

The proof is omitted here.
Remark 5: A fraction in ft representation can assume a

mixed integer-fraction form in -, representation.
Example 1:

a(10)= 29-7846

a(-10) = 1 7 0 3 9 6 6.

Example 2:

ai(10) = 9 1 9 5 2
a(- 10) 1 2 1 6 8

a(10) =- 8 0 4 8.

B. Conversion of Fractions and Mixed Integer-Fractions
from Radix - ft to Radix ft
Let

m

a(-ft)= E bi(-f)' (52)
i= -k

with k fractional digits and (n +1) integer digits. Then
Algorithm 2 can be used as such except for the initial starting
step. At the initial step instead of setting ao= bo as in
Algorithm 2 we make the following choices.

Case 1-k(odd): If

b-k # 0

set

a-k = (f b_ k); (53)
otherwise set

a-k = 0 (54)
and proceed with recursions (23) to (29) as the case may be.

Case 2-k(even): Set

k= ak (55)
and proceed with the recursions (23) to (29) as the case may
be.
The proof is omitted here.
Remark 6: A mixed integer-fraction number in - f repre-

sentation can assume a fractional form in +,f form.
Example 1:

a(-10) = 1 9 2 4

a(10)-= 1 1 6.

Example 2:

a(-10) = 1 9 * 9 2 4

a(10) = 9 8 I 1 6
a(10)=- 1 8 8 4.

Remark 7: Note that Algorithms 3 and 4 can work with
similar minor modifications for fractional and mixed num-
bers.

C. Floating-Point Numbers
It is clear that in the floating-point representation, if the

exponent is even, it is sufficient to convert only the mantissa
and retain the same exponent.

If the exponent is odd, the mantissa is shifted left by one
digit and the exponent is reduced by one so as to make it
even, and the conversion of the mantissa is carried out by
one of the above algorithms.
D. Real-Time Conversions
Algorithms 1 and 2 suggest that conversion of a number

from radix ft to radix -# as well as from radix - f to radix ft
is possible in real time, in the sense that for every digit of
a(ft) spelled out, beginning from the least significant end,
the corresponding digit of a(-,B) can be spelled out, and
conversely. It is interesting to note that such a real-time
conversion is impossible between any two general radices.
In our case it is possible because of the fact that the allowed
set of digits in radix # and radix - f remain identical. Note,
however, Algorithms 3 and 4 do not permit a real-time con-
version due to the fact division or nested multiplications
and additions are involved.

It is interesting to note from Table I that essentially the
negative radix representation would need two bits of infor-
mation to denote PGjS and C, instead of single sign bit S
used in the positive radix representation. It is also clearly
seen from Algorithm 2 that the parity of number of digits
in the negative radix representation plays the same role as
the sign bit in the positive radix representation. In addition,
note that Algorithms 1 and 2 essentially constitute a one-to-
one mapping of individual digits of radix ft to those of - /3,
and conversely. In this way the conversion is more a code
translation in one-to-one correspondence. This, as pointed
out earlier, is due to the fact that the number of information
symbols used in both representations are equal and minimal
or nonredundant.

ACKNOWLEDGMENT
The author wishes to thank the Department ofComputer

Science, Technion, Haifa, Israel, for their hospitality
during the course of this work. Thanks are also due to the
referees for their remarks in improving the presentation of
this paper.

REFERENCES
[1] S. Zohar, "Negative radix conversion," IEEE Trans. Comput., vol.

C-19, Mar. 1970, pp. 222-226.
[2] K. Sikdar, "A comparative study of algorithms for multiple-precision

radix-conversions," Sankhya: Ind. J. Stat., vol. 30 B, pts. 3 and 4,
1968, pp. 315-334.

[3] D. E. Knuth, The Art of Computer Programming, vol. 2. Reading,
Mass.: Addison-Wesley, 1969.

[4] W. J. Cadden, "Binary numbers, codes and translators," in A Survey
of Switching Theory, E. J. McCluskey and T. C. Bartee, Eds. New
York: McGraw-Hill, pp. 15-30, 1962.

[5] D. L. Dietmeyer, "Conversion from positive to negative and imaginary
radix," IEEE Trans. Electron. Comput. (Corresp.), vol. EC-12, Feb.
1963, pp. 20-22.

550

