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1. Introduction

IT may easily be shown that when radiation falls on a block of perfectly
homogeneous matter, there is no scattering of either the diffuse or the
specular type. The validity of this statement rests on our being able to
divide the entire block into a large number of volume elements which are
identical with each other in all respects and each of which is quite small
in comparison with the wave-length of the incident radiation. This result is,
however, considerably modified in actual application as it rests on a hypo-
thesis that can never be realized in practice. A perfect crystal, provided
the temperature is sufficiently low and the incident radiation has a wave-
length which is quite large in comparison with the interatomic distances,
has often been given as an example closely approaching such an ideal. A
little consideration will show that even this case falls short of the ideal in
several respects. Oneof these is intimately connected with the experi-
mental result that in crystals, Raman lines characterized by large frequency
shifts are easily recorded even at very low temperatures. This implies that
we cannot ignore the effect on radiation of the kinetic motions, even after
eliminaling them by reducing the temperature, because we have always to
reckon with the possibility of the incident radiation itself inducing them.

There have been some suggestions as regards the actual condition in
which the crystal should find itself, if it is to give rise to a scattered beam
of an appreciable intensity. Mention may be made here of a working hypo-
thesis, adopted by the author and Venkatarayudu (1939) in their earlier
investigations, which states that only those lines which correspond to the
mutual vibrations of the elementary lattices that coustitute the structure
have a chance of being observed in Raman scattering.

Raman and Nagendra Nath (1940) and Raman (1941) have, on the
other hand, given a slightly different picture in their recent investigations.
That the relation (1), originally enunciated by Brillouin (1922), is of
fundamental importance in this connection as well, is an important
feature of their work. A is the wavelength of the incident light and
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A* is the wave-length of the stratification that causes a scattered beam in a
direction which deviates from the incident direction by 2 8. In this picture,
all diffuse scattering by crystals isin the nature of specular reflection. If
X is large, a suitable A* is always available for any value of 8 and specular
reflection, because it is thus present in all directions, may be called diffuse

scattering.

In the present paper, it is proposed to briefly examine the relation
between these two ways of looking at the phenomenon and extend the
author’s earlier work to some crystals with special reference to certain aspects
that had not been dealt with in detail at that time.

2. The Dynamic Condition of a Crystal

If we are dealing with a crystal made up of N unit cells, there being
w atoms in each of these unit cells, the well-known work of Born shows
that the 3 7 N degrees of freedom may be distributed over the various normal
modes of oscillation of the crystal which fall into 3 n ‘'series. Of these 3 n
series, 3 are of the acoustic class and the rest belong to the optical class.
In all these cases, stratifications which are periodic both in time and in
space are caused in the medium.

In order to bring out the mutual relationships that exist between the
various parameters that characterize such stratifications, we consider, for
simplicity, a linear chain structure shown in Fig. 1. In this structure, each
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one of the atoms is confined to move along the chain and has only one
degree of freedom. The distance between two consecutive atoms is ¢ and
a is the restoring force called into play when this distance changes by one
unit. The unit pattern in this model has a length 2a and contains two
atoms, one of mass ¢ and the other of mass m. Fig. 2, taken from Born’s

LR




Raman E fFect in Relation to Crysial Structure : Latfice Oscillations 545

work, illustrates some of the important features. The angular frequency w

or 2m v 1s plotted against the parameter 2K*a ", X* is the wave-length of the

stratification. In this case, there is only one series of the optical type and one
of the acoustic type. In the neighbourhood of the origin, the optical series
shown by the upper curve in Fig. 2 is represented by equation (2) and the
acoustic series shown by the lower curve is represented by equation (3).
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The lowest acoustic frequency which is equal to zero and the highest optical

3
frequency which is equal to [2 a-n;q‘i“ ] correspond to a stratification whose

wave-length is the length of the chain itself and this may be regarded as
infinitély large in comparison with the interatomic distances. These modes
may conveniently be referred to as the limiting oscillations of the structure.
The limiting optical oscillation, in particular, may be described as a motion
of the whole chain of ¢ atoms against the whole chain of m atoms. Con-
fining ourselves to equations (2) and (3), which are strictly valid only in the
neighbourhood of the origin where A* is very large, it is easily seen from (3)
that the velocity of the acoustic waves in the medium is about 10% cm. per
second if the restoring force is assumed to be of the order of 10* dynes per
cm. extension. This is of the right order of magnitude. More important
than this, for our present purpose, is the fact that while the limiting optical
frequency is of the order of 102, the diminution caused in it, even as we
come down from A= o to A= 10-% cm.; is only of the order of 10'. This
result is easily obtained from (2) and implies that the upper curve in Fig. 2
is so flat in the neighbourhood of the origin that stratifications possessing
wave-lengths comparable to the wave-length of light in the visible region
are characterized by frequencies which differ from the limiting frequency
by only about one in a thousand.

Although the above arguments relate to the simple case of a chain, the
general conclusions relating to the division of the series into the optical and
the acoustic classes, the existence of the limiting oscillations corresponding
to A = oe characterized by special features and the flatness. of the curves
showing the variation of the optical frequencies with wave-length in the
neighbourhood of the origin remain unaffected when the analysis is extended
to three dimensional lattice structures, provided the interatomic forces con-
tinue to be of the order of 10* dynes per cm. extension. As a result of the
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temperature which the crystal may possess, there will be thermal energy
and this will be distributed amongst the various degrees of freedom in ac-
cordance with the Boltzmann law. As has already been remarked, we can-
not lgnore the degrees of freedom which have a low a priori probability as
per this law, because when radiation is incident, just those may be induced
if they happen to be the appropriate ones. Thus, incident radiation possess-
ing a large wave-length, 1s specularly reflected in all directions in accordance
with relation (1), irrespective of the temperature of the crystal being high
or low. It may, however, be noted that different stratifications possessing
different values of A* will be effective for different values of 26. As 26
ranges from being 0 in the case of forward scattering to being 180° in the
case of backward scattering, the effective value of A* will range from oo in

Al L/ . .
the former case to 5 in the latter. In this general case, there are 3 » series of

stratifications and one stratification possessing the required A* for a given
A and 6 can be picked up from each of the 3 # series. Three of these,
‘belonging to the acoustic class, give rise to six Brillouin components whose
positions are given by the well-known relation (4)

V .
dy= 12 vsin0 (4)

v, the velocity of sound in the medium, can take the three appropriate values
which are generally different from each other. Each of the remaining 3x-3
optical series will furnish one stratification having that particular value
A* which will fit in with the direction of observation and the wave-length
of the incident light used. In each case, provided consequent changes in the
optical properties of the medium are brought about, two Raman lines given

by (5) are produced

dv= £ v¥ | )
v* is the optical frequency corresponding to A* and will be quite different for
different series. The important point is that while d » in (4) depends very
much on 6, dv in (5) depends on # only inasmuch as A* depends on 6.
It has already been shown that even when the wave-length of the optical
stratifications changes from e to a dimension comparable to that of the
wave-length of light in the visible region—which is indeed the range of A*
as 0 goes through all possible values—the frequency changes only by about
one in a thousand. This enables us to overlook in practice, any possible
dependence of the frequency of a Raman line on the direction of observa-
tion. We are further enabled to state that, while the limiting oscillation
itself does not cause the diffuse scattering in any case, yet it may be chosen
as a representative of a whole series, different members of which cause the
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Raman line in question in practically the same position for different direc-
tions of .observation.

3. External and Internal Oscillations

Reasons have been given to show why the limiting oscillations in a
crystal may be studied as representative members of the various series. The
first problem that confronts us, when we attempt to interpret the Raman
spectrum of a crystal, is therefore, to find the correct unit cell.

For simplicity, let us consider in the first instance, a lattice and not a
'structure.j‘ One way of choosing the unit cell, which is commoenly employed
In the crystallographic literature, is to choose a cell whose axes coincide
with the crystallographic axes. Such a choice has the merit of clearly show-
ing up the crystal system to which the lattice belongs. There is, however,
a serious drawback in such a description because, the unit cell so chosen is
not always of the smallest possible size. When the uiit cell chosen is not
of the smallest possible size, the labour involved in putting down the normal
co-ordinates corresponding to the various limifing oscillations becomes
considerable. On the other hand, if the unit cell is so chosen that its axes
coincide with the primitive translations of the lattice, it is always of the
smallest possible size ana contains only one atom. It is immediately evident
that there are no oscillations of the optical type and that no Raman scatter-
ing will be exhibited by a simple lattice.

If a crystal has a constitution which is to be regarded as a structure or
a set of inter-penentrating lattices, it is easily seen that the unit cell of the
smallest possible size will contain as many atoms in it as there are inter-
penetrating lattices in the structure. These points may be referred to as
the non-equivalent points of the structure, for no one of these points may
be reached from any other by performing the primitive translations character-
istic of the lattice. If there are n non-equivalent points in a structure, there
will be 31n— 3 optical series and in order to study the limiting oscillations
of the whole crystal, we merely have to study the 37— 3 normal oscillations
of the point group constituted by the n non-equivalent points. The three
excluded degrees of freedom relate to the translations of the group as a
whole.

We have now to classify the 3 n—3 optical oscillations as external and
internal ones. The external ones are sometimes referred to as the lattice

+ The word lattice is used to denote.an arrangement in which only one atom is located at
each of the lattice points. A structure, on the other hand, denotes an arrangement in which
a group of two or more atoms is located at each of the lattice points and has, therefore, to be
looked upon as made up of a set of interpenetrating lattices.
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oscillations. The distinction is not a very clear-cut one but the following
may serve as useful criteria in the two cases. The possibility of the oscil-
lations being classified in this manner rests on our being able to divide the »
non-equivalent points into s groups such that the forces between one group
and the other are comparatively fecble whereas the forces that exist between
the members of any one group, are quite strong. In such a case, all the
oscillations involving a movement of the s groups, only as entities, will
generally exhibit low frequencies and may be termed external. The others,
involving also movemsnts of the individual members in each of the groups
against themselves, will generally exhibit high frequencies and may be termed
internal. The external oscillations may further be sub-divided into two
classes, namely, rotational and translational, according as the movements of
the groups are of a rotatory type or translatory type. In complicated
crystals, where a full and detailed analysis is very difficult to carry through,
a classification in this manner is likely to be of great help in explaining the
results. In fact the purpose of the present paper is to show that the appli-
cation of the group theory to a study of the limiting oscillations in a crystal
enables us to classify them in the above manner and thus arrive at fruitful
results even when the crystal structure is somewhat complicated. The fore-
going sections constitute the necessary background and we shall now derive
some important theorems and apply them to specific cases of practical
interest.
' 4. Application of Group Theory

In all that follows, we need consider only the group of n non-equivalent
points that are contained in the unit cell formed by taking for its sides, the
primitive translations of a lattice or a structure as the case may be. The
covering operations constitute a group and the Character Table with the
irreducible representations of the group may easily be written out. Rela-
tion (6) enables us to find n;, the number of times a particular irreducible
representation I'; is contained in another representation I', if the group
characters in both the representations are known.

= 32 b Ry (R) ©)
x;: (R) and x/(R) are respectively the characters of the group operation
R in the representations I'; and I' and N is the order of the group and h;
is the number of group operations falling under the jth class. One of the
main results of the present investigation follows from the fact that by suit-
ably choosing the representation I" and utilizing the characters x; (R) appro-
priate to it, we can confine ourselves to one or other of the several types
of normal oscillations.
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) For exarr}ple, if I'is a representation defined by all the 3» cartesian co-
ordl_nates which account for the entire freedom possessed by the » non-
equivalent points in the unit cell, then

X (R)= wg ('+ 14 2 cos ¢g) (7N
and #n;, obtained by substituting (7) in (6), will include all types of normal
queS, nam;ly, translations, translatory and rotatory types of external oscil-
lations and internal oscillations. (7)1is a relation which is now well known

and the method of deriving it has been given in the earlier literature already
referred to. Tt will be evident from the linear transformation given below:

X—> xcos¢-+ysing; y-> —xsing+ycosé; z—> *z

wg 18 the number of atoms that remain invariant under the operation R and
the plus or. the minus sign is to be used according as R is a pure rotation
‘hrough ¢ or a rotation through ¢ accompanied by a reflection. The atoms
hat change position under the operation R do not contribute to the character.

If we want to confine ourselves only to translations (acoustic series),
it is clear that <y is to be put equal to unity for all R because the whole
yroup moves as one entity in these modes. In other words, I' is defined by
>nly three cartesian co-ordinates and it is easily seen that

x; (R)= & 1+ 2cos ¢z ' (8)

1; obtained by substituting (8) in (6) may be denoted as n; (T), as the results
1ow refer to translations or the acoustic series only.

Relation (9) gives the value of x, (R), if we confine ourselves to the trans-
atory type of external oscillations. As has already teen explained in
section 3, s is the number of groups into which the non-equivalent points
nay be divided, with due regard to the magnitudes of the forces that exist
between them.

x; (R)= [wg ()~ 11 (= 1+ 2cos ¢g) €

op (5) represents the number of such groups that remain invariant out of
he number s under an operation R. The derivation of (9) is guite simple.
Each one of the groups s has 3 degrees of translatioral freedcm ard the
-epresentation I in this case is defined by 3 s cartesian co-crdirates. «g (s)
'+ 142 cos ¢g) will be the character of an operation R in such a repre-
entation. If the pure translations that have already been taken account
f in (8) are to be excluded from this, we have to subiract = 1+ 2 ccs o
Tom wg (s) (£ 1-+2cos #5) and we get (9).

Relation (10y gives  the value of x/ (R), if we -conﬁne
jurselves to the rotatory type of external oscillations. p in (1C)
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stands for the number of groups in s, which are constituted by
x; (R)= [og (s— p)] (1 &+ 2 cos ¢z) (10)
single atoms only. Such monatomic groups have no rotational degrees of
freedom and s— p is, therefore, the number of groups with each of which
we have to associate three degrees of rotational freedom. wg (s— p) repre-
sents the number that remain invariant out of the number s— p under an
operation R. The derivation of (10) is also quite simple. It has already been
shown by Rosenthal and Murphy (1936) that the character of an operation
R, in a representation defined by the three components of an angular
momentum vector, is 1 + 2 cos ¢y according as R is a pure rotation through
¢ or a rotation through ¢ accompanied by a reflection. This is evident from
the transformations given below:
" lo— £l cosd+l,sing; [, >F [;sind+cosd; LI,

I., 1, and [, are the components of the angular momentum and the series
of signs given on the top are to be taken when the operation R is a pure
rotation around the Z axis. The alternative set relates to the case where
R is a rotation accompanied by a reflection. If there are wy (s— p) separate
units, each of which has three degrees of rotational freedom, the representa-
tion will be that defined by 3 wg (s— p) components of angular momentum
and the character of an operation R in such a representation is that given
by (10). Those groups which are not invariant under the operation R do
not contribute to the character.

In order to get n/, the number of internal oscillations under each repre-
sentation, we merely have to eliminate those given under the categories (8),
(9) and (10) from »; obtained by using (7). This is formally achieved by
writing out the character as given by (11) and using it in the formula (6).
The result may also be obtained by direct subtraction of the numbers under
the categories of translation and translatory and rotatory types of external
oscillations from the total number under each representation.

X' (R)= [wg — wr ()] (£ 1+ 2cos ¢g)— wp (s—p) (1 £ 2cos ¢5)  (11)
5. Calcite and Sodium Nitrate

In order that the utility of the above method may be fully appreciated,
we shall first apply it to the well-known cases of calcite and sodium nitrate
in this section. These two substances have the same crystal structures and
their space group is DS, Exactly similar considerations apply to both.
The unit cell which is shown in Fig. 3 is an elongated rhombohedron and
contains two molecules. The lattices are ionic and the co-ordinates of the
atoms in the case of calcite are given below,




In the notation of the present paper, n=10, s=4 (two CO; groups

and two Ca atoms) and p= 2 (two Ca atoms).

The operations of this group may be expressed as follows:
E (Identity)

M@ G HEG097,8,6 10
25t &chﬁﬂim@&n%

5 C1 (D@ (3) @ G, 10,9157, 6
{(1) 23 @G 9 105,67

i 1) 2 G, 4 6,8 69 3,10
(1, 2) (3, 4) (5, 8) (6, 10) (7, 9)
3o, (glide) {(1 2) (3, 4) (5, 10) (6, 9) (7, 8)
(1, 2) (3, 4) (5, 9) (6, 8) (7, 10)

{(1 2) 3) @ (5 ®) (6, 7) (9, 10)

(1,2) (3) (4) (6) ©) 5, 7) (8, 10)

(1,2) (3 @ () (10) (5, 6) (8, 9)
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The Character Table and the values of n;, ,/, etc., are given below :

External

D E 28120 i 3oy 3G, m; T T R’ n7 Raman Infrared
A, 1 1 11 1 111 0 0 0 1 P f
A, 1 1 1t 1 -1 -=-1{3 o0 1 1 1 f f
B, 1 -1 1 -1 1 —=1{4 1 1 1 1 S P
B, 1 -1 1 —1 -1 12 o 1 o 1 f f
E,; 2 1 —-1 =2 0 0] 6 1 2 1 2 f P
E, 2 =1 -1 2 o0 04 0 1 1 2 P s
wr(n) .1 10 2 4 2 0 4
wer(s) .. 4 2 4 2 0 2
wr (5= p) 2 0 2 0 0 2
Bixs(n) ..|30 0 0 ~6 0 -—I2
hixi (T) ..| 3 0 0 -3 3 =3
By (T ..| 9 0 0 -3 —3 =3
hy/®R)... 6 0 0 0 0 —6

In this and other tables that follow, n;, T, T', R’ and n;” stand for the total
number of oscillations, translations, translatory type of external oscillations,
rotatory type of external oscillations and the internal oscillations respectively.
x; (), %7 (1), x/ (T) and x;* (R’) have been obtained in accordance with
the values given for them in the relations (7), (8), (9) and (10) respectively.
The method of finding out whether the lines coming under a certain repre-
sentation are Raman active or infra-red active has been described in the
earlier literature and we need not go into it here. p denotes that all the
oscillations coming under that representation are permitted to appear and
f denotes that they are forbidden. The following features may now be
noted. Because there are two COj ions in the unit cell, each internal oscilla-
tion of the free CO; ion splits into two in the crystal. The extent of splitting
will naturally depend upon the forces that are present in the crystal. Since
s=4, besides the translations which represent the acoustic series, there are
present a large number of external oscillations, both of the rotatory type
and the translatory type. If we are not immediately interested in the internal
oscillations, it is quite easy to picture the external modes coming under each
representation in them, because all thé four groups are to be regarded as
entities. Ounly the CO; ions take part in the rotatory type of external
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osilliitioong as the calcium ions (monatomic groups) come under the p class.
AN exoy mple, we give below the symbolic representation of the two external
modes Coming under the representation E, and which are Raman active.
' T (@)= X~ %, )

T (D)= 33— ¥4

R’ (@)= [, + I4, SRR E,
o R’ (b)=I* +1¢, j
F(u) annd T’ (b) and similarly R’ (a) and R’ (b) are degenerate. Z axis is
taken alon g the trigonal axis and the X and Y axes may lie anywhere in the
plane perpendicular thercto.  x, indicates that the group containing atom
Fundergroes a displacement of one unit in the direction of the X axis. X,

Vo ¢l Occeurring in the normal co-ordinates relating to the T type are to

be similiarly interpreted. [3, indicates that the group containing atom 3
underpores a rotation such that it possesses unit angular momentum around
the X axis. M, P, etc., occurring in the normal co-ordinates relating to
the R"  type are to be similarly interpreted. The method of writing down
these normal co-ordinates is quite easy and is explained elsewhere.  With
the helpr of the group operations and the transformation matrices for x, y
samd 1., /., 1, already given in a foregoing section, it may be verified that
the characters of the normal co-ordinates given above for various R are just
thowe riven under the irreducible representation E,.  One of these modes is
represennted diagrammatically in Fig. 4. They are identical with the modes
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obtained by a more elaborate method and described in an earlier paper by

the author and Venkatarayudu (1939) as Q5 and Q.

In a similar manner, we can write down the normal co-ordinates relat-
ing to all the external oscillations without much labour and without reference
to the internal modes. Such an investigation need not be pursued for this
case as the results are already well known. . In fact, if only the external
modes and their classification are needed, the group operations also could
have been written in a much simpler manner as will be evident from the
cases that are dealt with in the following sections.

6. Some Special Cases

Such a simplification will be particularly useful, when experimental
results show that the intermolecular forces in the crystal are not very
important. This may easily be inferred, especially in cases” where there is
no degradation of symmetry from the free molecule to the crystal, if we
find that the Raman lines obtained in the liquid exhibit a general one to one
correspondence with those obtained in the same substance in the crystalline
state even though there may be two or more molecules per unit cell in the
latter.* In such cases, no more information will be obtained by making a
detailed study of the internal frequencies for a group of molecules than that
available from a study of the single molecule. On the other hand, much of
the interest will centre round the lattice oscillations and the special methods
outlined in the foregoing pages will be particularly useful. The classification
of the lattice oscillations into the translatory and the rotatory types is also
of some help, if the following principles are borne in mind in interpreting
the experimental results. The translatory type of oscillations are likely to
give rise to relatively low frequencies in most cases and even these will be
of low intensity in Raman scattering as the changes caused in the polar-
izability of the crystal cannot be appreciable. On the other hand, the
rotatory type of oscillations will result in intense Raman lines, if the rotating
groups are strongly optically anisotropic.

1. If there is only one molecule per unit cell and if centre of inversion
is a covering operation of the structure, the crystal may exhibit three lattices
oscillations of the rotatory type if there is no degeneracy.

This statement is almost self-evident and follows from the fact that
the three oscillations of the rotatory type are symmetric to the operation of

* The resemblance referred to is of a general nature. One or two of the lines that occur in
the crystal may not appear in the liquid and vice versa on account of the different symmetries in
the two cases. The essential point is that there is no splitting of the majority of the lines as we
pass from the liquid to the crystal, :
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inversion.

I For crystals of trigonal, tetragonal and hexagonal classes, this
num

wr reduces to two and for crystals of the cubic class, it reduces to one
merely as a result of the symmetry. As the intensity will also be governed
by the optical anisotropy of the molecule, the only lattice line in the case
of cubic crystals will have zero intensity because the molecule itself should
possess cubic symmetry and one of the lattice lines (non-degenerate one)

fn the trigonal, tetragonal and hexagonal classes will also have zero
intensity.

2. If there are two molecules per unit cell and if the centre of inversion,
av a covering operation of the structure, is located at one of the molecules,
all lattice oscillations of the translatory type will be Raman inactive. Some
of them may be infra-red active.

‘ This follows from the fact that the normal co-ordinates relatin g to such
oscillalions, are always anti-symmetric to the operation of inversion.

3. If in the above case, the centre of inversion is located midway between
the two molecules, all lattice oscillations of the translatory type will be sym.-
metric to the operation of inversion and some of them may be Raman active.
All of them will be infra-red inactive.

7. Naphthalene, Diphenyl, Anthracene, etc.

All the substances discussed in this section crystallize in the mono-
clinic prismatic class having the space group C,;.  The unit cell in each
case contains two molecules. They have been specially chosen here with a
view to bring out the fact that the crystal structure plays a major part in
determining the character of the low frequency Raman spectrum while the
exact chemical nature of the substance has no appreciable influence on it.
We start by stating that these crystals melt at comparatively low temperatures
and that the Raman lines of naphthalene in the liquid state show a one to
one correspondence with those obtained in the crystal (Nedungadi, 1941).
Lines do not show any systematic doubling even though there are two
molccules in the unit cell. A study of the internal oscillations may, therefore,
be confined with advantage to the free molecule. We shall now apply the
methods of the foregoing sections to these cases and obtain the results that
arec to be expected in the low frequency region of the Raman spectrum.
Fig. 5 represents the unit cell for naphthalene which is a typical representative
of this class. The two molecules are numbered 1 and 2. In the notation
of the present paper, s=2 and p=0. These molecules have their lengths
roughly paralle] to the C axis and their planes making angles of about + 65°
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FiG. 5
and — 65° with the (010) plane. The group operations may be written out
as
E (Identity)
Cy(screw) - - - - (1, 2)
P e e e (1) (2)
op (glide)y - - - -(1,2)
The Character Table and other relevant features are given below :—
. . c, ; o, External
T T R’ Raman Infra-red
A A 1 1 1 0 0 3 p f
A, o -1 1 -1 0 0 3 ) f
B, L 1 -1 -1 1 2 0 S p
B, 1 -1 -1 1 2 1 0 S 14
ws () 2 0 2 0
ws (5— p) 2 0 2 0
Rixy(T) ..| 3 -1 -3 1
By (T) .. 3 1 -3 -1
ki, (R) | 6 0 6 0 {

Centre of inversion in this case is located at the molecule 1 and it comes
under special case number 2 of the previous section. We do not get any
Raman active lattice oscillations of the translatory type. We should, however,
expect six oscillations of the rotatory type. The corresponding normal
co-ordinates may easily be written out in the following manner:—

lxl - sz . le -+ lxz ,

lyl_lyz SRICIR- VIR SRRy A S A,
lzl + 1. lsl _lsz
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confined hitherto, to the internal oscillations although prominent changes
are not to be expected in that region but should be looked for only in'the
low frequency region. In order to illustrate this point, we shall consider
here the cases of aragonite and potassium nitrate. The crystal stru_ctl'Jre
of aragonite bears to that of calcite, the same relationship as that existing
between the structures of potassium nitrate and sodium nitrate. Unfortu-
nately, the lattice oscillations of these substances have not been studied in
detail in their Raman spectra and only meagre and conflicting results are
available. Hence it is not proposed to compare the conclusions with the
experimental data. Nevertheless, the analysis is given here as the structures
are of great importance.

The space group is V!¢ and the unit cell of the smallest size, a projection
of which is shown in Fig. 6, contains 4 molecules of CaCO,. Since we are
interested only in the lattice oscillations, we need consider 8 groups (s= 8)
on the whole, of which 4 (p=4) are monatomic.*

Y
I
RO @ @

%

Fic. 6

The groups are numbered as follows :

Ca .. 1,2 3 and 4
CO; .. 5,9,13 and 17

Atoms numbered, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20 are the oxygens

and they need not be considered separately as they go with the correspond-
ing carbons.

* The internal oscillations in this case have been considered in an earlier paper.
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The operations of the group are:

B (Jdentity)

Co(serew o7y L. co (L2V B (5,9 (13,17
G, o(erew oYY L o LD 20 (51T (9, 13)
Coserew TNy L co (L) (20D (5,130 (9, 17)
i . . co (L 2) (30 (5,9) (13, 17)
oy .. .. RN C AN INCIN RN VA
a, Aelide) L . o) 204 (5,13 9,17
o (ulide) L. .. (L4 (2,3) (5,17 (9, 13)
The Character Table and other relevant features are given below:
v, Booto¢, oy ; Ch o om a [xternal
T T R’ Raman Infra-red
Ay 111 11 1 1[0 4 1 /
Agg 1 =1 S S S [ -1 {0 2 2 P f
By, 11 =1 =1 & 1 =1 =110 4 I p f
By I -1 =1 1 1 =1 -1 1|0 2 2 op /
Ay 11 I 1 =1 =1 =1 =1 0 2 2 f !
A ] 1 -1 11 =1 1 = S S f P
B,, Lot 1 1wl =1 1 1|t U 2 f P
By 1o Lot S S L U T N / P

wels) |8 0 0 0 0 8
wels-p) | 4 0 0 0 0 4 0 0
by (O | 3 1 o1 -1 -3 1 11
By Ty 120 1 1 1 3§ =1 =1
By Ry (12 0 0 0 0 —~4 0 0

s o R s

We see from the table that, besides a large number of translatory type of
oscillations, we should expect to get in the Raman spectrum, six oscillations
of the rotatory type under different classes. These six normal co-ordinates
are casily written down in the following manner:
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1§+/§—-lf“‘/1¢7 ...... A]g
A e e Vo A
I 1y + Pa I f §
12 + [3 + l1zs+ 1127 o« 4 e e Blg
iyt 18+ B } ...... B,
B+ =017 ’

Normal co-ordinates coming under A,, and B,,, although Raman-active,
involve rotations of the CO; groups about the Z axis and since the XY plane
is nearly a plane of optical symmetry, we can confidently conclude that
these modes will not produce appreciable intensities in Raman scattering.
Under A,, and By, we should expect four lines appearing as two close
doublets or two broad bands covering the whole series. Their behaviour,
under directional excitation, will be markedly reciprocal to that of the total
symmetric internal oscillations. Besides these, we may expect a few lines
arising from the translatory type of oscillations. They will be characterized
by comparatively low frequencies and possibly in some cases a behaviour
which is not reciprocal to that of the total symmetric oscillation.

9. Crystals Containing Linear Molecules

As a typical example of this class, we shall choose mercurous chloride.
This substance crystallizes in the tetragonal system under the space group
D'7,;. The tetragonal unit cell contains two molecules of Hg,Cl, and the
lattice is molecular but the unit cell of the smallest possible size contains only
one molecule. The formule given in the foregoing sections do not apply
to this case as the molecule is linear and is a special type of group having
only two degrees of rotational freedom. It is, however, clear that there will
be no lattice oscillations of the translatory type and there will be only one
doubly degenerate external oscillation of the rotatory type. The crystal
structure of this substance is shown in Fig. 7. The group operations,

<
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Character Table, etc., are given below in full* so as to cover the internal

oscillations also.

Mercury atoms are numbered 1 and 4. Chlorine atoms are numbered 2 and
3. 6 and 7 are equivalent to 1 and 4. 5 and 8 are equivalent to 2 and
3. In this case s=1 and p=0. The operations of the group are:

E (Identity)
2C ) @) (3) @)
c HAB@
2C, (14) (23)
2C) (14) (23)
i (14) (23)
28t (14) (23)
o (14) 23)
20, M ) B4
20, ORVECIC)
External
D7 | E 2Ct C* 2Cy2C, i 28! o; 205 209 b TT R n Reman In
frared
Ay 1 t 1 t 1t 1 1t 1t 1t 120002 p f
Aggy 1 1 1 -1 -1 1 1 1 -1 -1{000 00
Byg 1 -1 1 1 -1 1t -1 1 1~1j00000
By 1 -1 1 -1 1 -1 1-1 1j00000
Eyg 2 0 -2 0 0 2 0-2 0 0j20011 p f
Ay 1 1 1 1 1 -1=-1—-1~-1-1}{00000
A 1 1 1 -1 -1 -1 -1 -1 1 121001 f p
Byre 1 -1 1 1 -1-1 1 ~-1-1 1]/00000
By 1 -1 1 -1 1 -1 1t -1 1-=1100000
Eqr 2 0 -2 0 0-2 0 2 0 o0j21001 f P
we 4 4 4 0 0 0 O 0 4 4
wr () .. 1 1 1 1 1t 1 1 1 1 1
by () |12 8 -4 0 0 0 0 0 8 8
hixs’ (T) | 3 2 -1 =2 =2 -3 =2 1 2 2
by’ | o o o o o 0 0 0 0 0

* Although, in this paper, we are mainly dealing with the lattice oscillation§, this case . is
considered in some detail with a view to correct some of the mis-statements made in the uea\rher
paper (Reference 1), These have arisen on account of the fact that a larger unit cell than

is proper had been wrongly chosen at that time.
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Corresponding to the 12 degrees of freedom of the four atoms in the
unit cell, we get three translations (acoustic series), three single and ﬂ.lree
doubly degenerate limits (optical series) of which one is an external oscilla-
tion of the rotatory type and is Raman active. The normal co-ordinates are
given below:

Q) (i) =my (z,— zg) + My (25— Z3) ] _____ A

Q' () =z,— 24— 2+ 73 g

Q. (T) = x4 Xp+ X3+ X4

QM =yi+ya+ystye | ... B

Qu, (1) =my (1 + x9) — My (%5 + X3) ' at

Qu (i) =my 1+ yd— my (ot y3)
By altering the signs of terms with suffixes 2 and 4 in the normal co-
ordinates occurring under A,,, we obtain Q, and Q" (i) coming -under Ag,.
Similarly, we obtain Qg,’ (i), Qg (L) and their b-components coming under
E,, from those given under Ei,

Q' (L) and its b-component represent the rotatory type of external
oscillation. This is likely to give rise to an intense Raman line but prob-
ably of a very low frequency. It has not so far been recorded. Besides
this, we should expect three Raman lines of the internal type, two of which
are of the total symmetric class and the third is of the degenerate class.
Three strong lines at 165 (6), 273 (4) and 295 (1) have been observed in the
Raman spectrum of Hg,Cl, crystals. The two higher frequencies may be
identified with those coming under A,, whereas the one at 165 may be
identified with the degenerate oscillation. An additional weak line at 320
has also been recorded and this is probably the overtone of the forbidden
fundamental v, whose value, by analogy with the case of acetylene and such
other molecules, may be expected to lie close to 165.

10.  Summary

In spite of what has occasionally been stated in the literature (Sirkar,
1937), it is believed that there are no special reasons to assume that the low
frequency lines that occur in the Raman spectra of crystals have an origin
that is essentially different from that ascribed to the high frequency lines.
They are all regarded as representatives of the various optical series into which
the normal oscillations of a crystal may be divided. Reasons have been
given to show why the limiting oscillation in each series may be selected. as a
representative of that whole series and its characters studied. For con-
venience in description, these are divided into three classes, namely, the
internal, the rotatory type of external and the translatory type ‘of external
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ones. Formule, which help us to classify the normal oscillations in the above
manner, are developed and applied to some typical cases.

In interpreting the results, two guiding principles are to be borne in
mind. All the oscillations coming under the translatory type, especially,
in organic crystals and others of low melting point, will be characterized
by low or vanishingly small frequencies and the corresponding Raman
lines, if they occur at all, will be weak. On the other hand, those coming
_ under the rotatory type will be characterized by relatively large frequencies
and generally give rise to strong Raman lines if the rotating group
has a marked optical anisotropy. Since the region under investigation is,
however, very crowded, we should expect several complications such as
overlapping, splitting, etc., to set in, and these make the interpretation of the
experimental results somewhat difficult.

The author desires to express his thanks to Prof. Sir C. V. Raman and
Dr. N. S. Nagendra Nath with whom he had the opportunity of discussing
some of the ideas contained in this paper.
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