Enzymic Conversion of Agmatine to Putrescine in *Lathyrus sativus* seedlings

PURIFICATION AND PROPERTIES OF A MULTIFUNCTIONAL ENZYME (PUTRESCINE SYNTHASE)*

(Received for publication, November 21, 1980)

Kalkunte S. Srivenugopal[‡] and P. Radhakantha Adiga

From the Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India

The participation of a multifunctional enzyme (a single polypeptide with multiple catalytic activities (14)) has been demonstrated in the conversion of agmatine to putrescine in Lathyrus sativus seedlings. This enzyme (putrescine synthase) with inherent activities of agmatine iminohydrolase, putrescine transcarbamylase, ornithine transcarbamylase, and carbamate kinase has been purified to homogeneity and has $M_r = 55,000$. In the presence of inorganic phosphate, the enzyme catalyzed the stoichiometric conversion of agmatine and ornithine to putrescine and citrulline, respectively. The different activities associated with the enzyme copurified with near constancy in their specific activity. The enzyme catalyzed phosphorolysis and arsenolysis of N-carbamyl putrescine. The multifunctionality of putrescine synthase was also supported by 1) activity staining, 2) intact transfer of the ureido-14C group from labeled N-carbamyl putrescine to ornithine to form citrulline, and 3) the affinity of the enzyme toward structurally and functionally related affinity matrices. An agmatine cycle is proposed wherein N-carbamyl putrescine arising from the agmatine iminohydrolase reaction is converted to putrescine and citrulline, with the ureido group of N-carbamyl putrescine being transferred intact to ornithine. Preliminary results indicate that this series of reactions is also present in other plants.

Biosynthesis of putrescine, the obligatory precursor of spermidine and spermine involves different steps in different biological systems. In contrast to microorganisms and animals, in higher plants the principal source of putrescine is arginine (1, 2), although detection of ornithine decarboxylase has been reported in some plants (3-6). Earlier, Smith (7-9) and Smith and Garraway (10) proposed that in higher plants agmatine is converted to putrescine in two discrete steps, with N-carbamyl putrescine as the intermediate. It has been suggested that Ncarbamyl putrescine is probably an enzyme-bound intermediate and is rapidly degraded to putrescine (2, 11).

Earlier, arginine decarboxylase from *Lathyrus sativus* was purified to homogeneity (12). During the purification of agmatine iminohydrolase, we found that, only when the assay mixture contained inorganic phosphate, significant amounts of putrescine (besides *N*-carbamyl putrescine) were produced. On the basis of the obligatory involvement of inorganic phos-

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] Present address, Department of Biochemistry, University of Washington, Seattle, WA 98195.

phate in the N-carbamyl putrescine \rightarrow putrescine conversion, it was surmised that the N-carbamyl-putrescine amidohydrolase (producing putrescine, CO₂, and NH₃) might in fact represent phosphorolytic cleavage of this intermediate by a putrescine transcarbamylase-mediated reaction (functioning in the reverse direction) on lines suggested in *Streptococcus faecalis* growing on agmatine as the sole carbon source (13). Further experiments have revealed that the purified enzyme is in fact a versatile multifunctional enzyme (for reviews on this class of enzyme, see Refs. 14-17) with agmatine iminohydrolase, putrescine transcarbamylase, ornithine transcarbamylase, and carbamate kinase activities associated with a single polypeptide chain and that the metabolic conversion of agmatine to putrescine is apparently linked to citrulline production in *L. sativus*.

EXPERIMENTAL PROCEDURES¹

RESULTS

In terms of subcellular distribution (both total and specific activity), most of putrescine synthase² was associated with the cytosolic fraction and hence, the postmitochondrial supernatant was routinely used for enzyme purification (for details, see Miniprint). The different reactions catalyzed by the enzyme are represented in Table I.

Co-purification of the Different Activities Associated with Putrescine Synthase

The purification of putrescine synthase was monitored by assaying the different component activities, as well as the

¹ Portions of this paper (including "Experimental Procedures," part of "Results," Tables II, VII, and VIII, and Figs. 1, 3, and 10) are presented in miniprint at the end of this paper. Figs. 4 and 6 and Tables IV and X appear in the text in miniprint as prepared by the author. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are available from the Journal of Biological Chemistry, 9650 Rockville Pike, Bethesda, MD 20814. Request Document No. 80M-2469, cite authors, and include a check or money order for \$6.40 per set of photocopies. Full size photocopies are also included in the microfilm edition of the Journal that is available from Waverly Press.

² The abbreviations and trivial names used are: putrescine synthase, the multifunctional enzyme with associated activities of agmatine iminohydrolase (agmatine deiminase, EC 3.5.3.12), putrescine transcarbamylase (carbamoyl phosphate: putrescine carbamoyltransferase, EC 2.1.3.6), ornithine transcarbamylase (carbamoyl phosphate: ornithine carbamoyltransferase, EC 2.1.3.3), and carbamate kinase (ATP-carbamate phosphotransferase, EC 2.7.2.2). The terms multifunctional, polycephalic, and chimeric enzyme used in the text represent a single polypeptide with several catalytic activities (14). CH-Sepharose, carboxyhexyl Sepharose; NBT, nitrobluetetrazolium chloride; PMS, phenazine methosulfate; BSA, bovine serum albumin; SDS, sodium dodecyl sulfate; CNBr, cyanogen bromide.

overall reactions, leading to citrulline production with agmatine or N-carbamyl putrescine as substrates. It is clear from Table III that the activities associated with the chimeric enzyme co-purify through the four steps, with the specific activity ratios remaining more or less constant throughout the purification steps. However, the enzyme exhibited considerable difference in terms of ornithine transcarbamylase activity in the crude extracts vis-à-vis the final preparation. This may conceivably be due to more than one ornithine transcarbamylase activity in the plant cell-free extracts (45, 46) and the association of only one of them with putrescine synthase. Additional activities associated with the purified enzyme are 1) that related to the synthesis of N-carbamyl putrescine owing to the inherent putrescine transcarbamylase activity, which had a specific activity of 33 units; 2) carbamate kinase activity, assayed in the direction of ATP synthesis, with a specific activity of 2.5 units. Generation of ATP from agmatine + ADP + P_i and N-carbamyl putrescine + ADP + P_i combinations (i.e. the overall reactions linked to carbamate kinase) could also be demonstrated. However, these component activities of putrescine synthase were not quantitated during the purification.

Const	ituant activities of nutrosping comthand
-------	--

Reactions

Agmatine + $H_2O \rightarrow N$ -carbamyl putrescine + NH_3

2) N-Carbamyl putrescine + $P_i \rightleftharpoons$ putrescine + carbamyl phosphate

3) Carbamyl phosphate + ornithine \rightleftharpoons citrulline + P_i

Overall reaction

4) Agmatine + ornithine + $H_2O + P_i \rightarrow putrescine + citrulline + NH_3 + P_i$

Additional reaction

5) Carbamyl phosphate + ADP + $H_2O \rightleftharpoons ATP + CO_2 + NH_3$

Enzymes

1) agmatine iminohydrolase

- putrescine transcarbamylase
 ornithine transcarbamylase
- ornithine transcarbamylase
 putrescine synthase
- 5) carbamate kinase

1)

Physicochemical Properties

Purity of the Isolated Enzyme—The final preparation obtained by both purification procedures, *i.e.* the organomercurial-Sepharose step followed by fractionation on DEAE-Sephadex (procedure I) and the putrescine-CH-Sepharose affinity step (procedure II), showed a single sharp band on polyacrylamide gel electrophoresis at pH 8.3 (Fig. 2, a and b) and at pH 4.0 (Fig. 2c). The fast moving band in basic gel systems was coincident with the different enzyme activities associated with the protein as evidenced by activity scanning after gel

TABLE III

Co-purification of the different catalytic activities of putrescine synthase and comparison of their specific activities The putrescine-CH-Sepharose affinity step (procedure II) was employed for purification. Enzyme activity has been expressed in total enzyme units and the numbers within parentheses refer to the specific activity (μ mol of product/mg of protein/h). The specific activity of carbamate kinase in the final preparation was 2.5 μ mol of ATP formed/ mg of protein/h.

		Total enzyme units										
Purification step	Protein	Agmatine iminohydro- lase		Putrescine transcarba- mylase (N- carbamyl pu- trescine ar- senolysis)		Ornithine transcarba- mylase	Agma ornit citr	atine + nine → ulline	N-Ca putro ornit cita	arbamyl escine + thine → rulline	Purifica- tion ^a	Recov- ery ^a
	mg										-fold	%
Crude extract	4680	28	(0.01)	449	(0.10)	1220 (0.26)	267	(0.06)	330	(0.07)	1	100
						(1:16:4	4:9:11) ⁶	,				
MnCl ₂ treatment	3450	27.6	(0.01)	414	(0.12)	1000 (0.29)	214	(0.06)	270	(0.08)	1.3	91
						(1:15:3	36:8:9.6)					
Ammonium sulfate fractionation	1050	21	(0.02)	409	(0.39)	950 (0.9)	180	(0.17)	231	(0.22)	3.6	75
						(1:19:5:4	45:8.5:1	1)				
Putrescine-CH-Sepharose affinity step	5	7	(1.40)	110	(21)	140 (28)	59.5	(11.9)	70	(14.0)	230	25
						(1:15:2	0:8.5:10)				

^a Calculated for agmatine iminohydrolase.

^b Represents the ratio of relative specific activities with respect to agmatine iminohydrolase.

electrophoresis (Fig. 4). No additional component could be detected even when 100 μ g of enzyme were applied to the acrylamide gels and run under both acidic and basic conditions. Furthermore, the antiserum raised against the purified enzyme gave a single precipitin line on immunodiffusion analysis with the homogeneous preparation (not shown).

Electrophoresis on Denaturing Gels—Polyacrylamide gel electrophoresis of the enzyme in the presence of 0.1% SDS, 5% mercaptoethanol (40) reproducibly showed a single protein species (Fig. 5a) with an estimated M_r of 55,000 (Fig. 6).

Fig. 4. <u>Distribution of enzyme activities on polyacrylamide gel electro-phoresis of putrescine synthase</u>. After electrophoresis (pH 8.3) of the purified enzyme at 44°C, the distribution of different activities were monitored by sectioning the gels and extracting at 4°C with SomM imidazole buffer. The enzyme activities were determined in the supernatant after removing the gel pieces by centrifugation. Allase, PTCase and OTCase stand for agmatime ininohydrolase, putrescine transcarbamylase and ornithine transcarbamylase.

FIG. 5. Sodium dodecyl sulfate-disc gel electrophoretic pattern of putrescine synthase. a, purified enzyme $(30 \ \mu g)$ electrophoresed for 2 h and b, the enzyme protein $(100 \ \mu g)$ subjected to guanidine hydrochloride, sodium dodecyl sulfate, and urea treatment and electrophoresed for 4 h. The protein treated with 8 M guanidine hydrochloride and 2-mercaptoethanol was alkylated with iodoacetate (41). The sample was then dialyzed against 8 M urea, 0.1% sodium dodecyl sulfate in Tris-HCl buffer (pH 8.0) and subjected to gel electrophoresis. O, origin.

FIG. 7. Activity staining to demonstrate ATP synthesis in the carbamate kinase-linked overall reaction catalyzed by putrescine synthase. a, agmatine + ADP + P_i; b, N-carbamyl putrescine + ADP + Pi; c, purified putrescine synthase stained with Coomassie brilliant blue. Polyacrylamide gel electrophoresis of putrescine synthase was carried out in the cold (4 °C) at pH 8.3. Following the equilibration of the gels in 50 mm imidazole-Cl (pH 7.5) buffer, they were transferred to a solution (2.5 ml) containing 1 mm dithiothreitol, 5 mm agmatine, or N-carbamyl putrescine, 3 mm ADP, 5 mm Na₂HPO₄, 20 mm glucose, 5 mm MgSO₄, 0.5 mm NADP⁺, 0.5 MM KCl, 150 units of hexokinase, 100 units of glucose-6-phosphate dehydrogenase, 0.5 mg of phenazine methosulfate, 1.5 mg of nitrobluetetrazolium chloride and were dissolved in 50 mm imidazole-Cl buffer and incubated at 37 °C for 1 h along with corresponding blank gels (i.e. minus substrate). The gels were stored in 7% acetic acid after development of the formazan band. O, origin.

ent with the view that the four different enzyme activities assayed reside in a single polypeptide, thereby substantiating the multifunctional nature of putrescine synthase.

Activity Staining—ATP formation in situ was detected by coupling with hexokinase + glucose-6-phosphate dehydrogenase + NADP and the NADPH thus generated was in turn reacted with neotetrazolium chloride and phenazine methosulfate to give rise to formazan. A blue formazan band corresponding to the protein stain was observed on gels when incubated with either agmatine + ADP + P_i or N-carbamyl putrescine + ADP + P_i (Fig. 7, a, b, and c). This finding further strengthens the polycephalic property of putrescine synthase, since it demonstrates that agmatine iminohydrolase, putrescine transcarbamylase, and carbamate kinase activities (Table I) (generating ATP as one of the products) reside in a single protein species. The formazan band was not detected in the incubation mixtures from which the substrates were omitted (not shown).

Molecular Weight—The purified enzyme migrated with an apparent $M_r \cong 56,000$ on Sephadex G-200 (data not shown). The M_r determined by gel filtration is in close agreement with that from SDS-gel electrophoretic analysis (Fig. 6). Furthermore, it is significant that all of the component activities of putrescine synthase were recovered as a single protein peak when eluted from the molecular sieve (Fig. 8), thus providing additional evidence for the chimeric nature of the enzyme.

Stoichiometry of the Reactions

Among the various partial reactions catalyzed by putrescine synthase, the following were shown to occur stoichiometrically.

1) Agmatine Iminohydrolase Reaction—The new assay developed for agmatine iminohydrolase earlier by us (20) facilitated the quantification of N-carbamyl putrescine as the reaction product. Parallel estimation of ammonia was also carried out for comparison. As the purification progressed, the relative amount of NH_3 produced decreased proportionately, finally reaching approximately 1:1 stoichiometry of both the products.

2) Overall Reaction I (Agmatine + Ornithine + $H_2O + P_i$ \rightarrow Citrulline + Putrescine + $NH_3 + P_i$)—The stoichiometric conversion of metabolites in the above overall reaction could

0.3

be easily demonstrated (Table IV). Paper chromatographic analysis of the amine fraction isolated from the above reaction mixture revealed the presence of residual agmatine and the other product, putrescine. Omission of inorganic phosphate led to accumulation of significant amounts of N-carbamyl putrescine as revealed by chromatographic analysis.

3) Overall Reaction II (Agmatine + $ADP + P_i + H_2O \rightarrow Putrescine + ATP + 2NH_3 + CO_2)$ —In the carbamate kinaselinked reaction, ATP synthesis was stoichiometrically coupled to the amount of agmatine degraded. Fig. 9 shows the formation of ATP in the reaction mixture containing agmatine (or N-carbamyl putrescine) + $ADP + P_i$. Since the commercial ADP sample (Sigma) was contaminated with ATP to a small extent, a small increase in absorbance at 340 nm was observed with ADP alone. The ATP accumulated in the incubation mixture resulted in a steep increase in $A_{340 nm}$ in the coupled assay used to measure ATP (Fig. 9). These observations were confirmed with the more sensitive luciferase procedure (27).

Evidence for the Intact Transfer of the Carbamyl Group from N-Carbamyl Putrescine to Ornithine and Requirements for the Overall Reaction

Availability of synthetic [*ureido*-¹⁴C]*N*-carbamyl putrescine permitted demonstration of the transfer of the carbamyl group of carbamyl phosphate to ornithine to form citrulline during the overall enzyme reaction (Table V). No liberation of ¹⁴CO₂ could be detected when the above reaction was performed in a closed Warburg flask. Furthermore, both Mg^{2+} and P_i are required for this reaction. The requirement for these components in the enzymatic production of citrulline was also evi-

TABLE IV Stoichiometry of the overall reaction

The assay was performed in a reaction mixture containing agmatine, Na2HPO4, ornithine, MgSO4 and purified enzyme at pH 8.8 (see Experimental Procedures) under standard conditions. Agmatine was quantitated by Sakayuchi reaction (58). Putrescine was estimated after paper chromatography and ninhydrin spray (30). Ammonia and citruline were estimated by Nesslerization (18) and the colorimetric procedure of Prescott and Jones (28) respectively. Gitruline as one of the reaction products was conclusively identified by paper chromatography as well as by its exclusion behaviour during chromatography on Amberlite CG-50 (MH4) column (32).

Agmatine utilized	Products (µmols) in the reaction mixture					
(19972)	Putrescine	NH ₃ released	Citrulline			
Experiment I (0.20)	0.16	0.18	0,21	_		
Experiment II (0.25)	0.21	0.23	0.24	_		

linked overall reaction catalyzed by putrescine synthase. The assays were carried out under standard conditions ("Experimental Procedures") using the purified enzyme, with agmatine or N-carbamyl putrescine (NCP) as substrates. The reaction was terminated with 0.1 ml of 10% perchloric acid followed by neutralization of the solution with 3 N KOH. ATP in an aliquot of the supernatant was quantitated using the hexokinase-glucose-6-phosphate dehydrogenase coupled assay procedure (26).

dures." AIHase, agmatine iminohydrolase; PTCase, putrescine transcarbamylase; CKase, carbamate kinase. FIG. 9 (right). Generation of ATP in the carbamate kinase-

thase on Sephadex G-200. Gel filtration of the purified enzyme was

carried out on a Sephadex G-200 column (1.8 × 89 cm), using 50 mM

Tris-Cl buffer (pH 8.0) containing 0.1 M KCl. Fractions of 3 ml were

collected and the constituent activities associated with putrescine

synthase were assayed as described under "Experimental Proce-

TABLE V

Requirements for the overall reaction and the demonstration of transcarbamylation from N-carbamyl putrescine to ornithine catalyzed by putrescine synthase

The complete reaction mixture (1.0 ml) containing Tris-Cl (pH 8.8) 50 μ mols, [*ureido*-¹⁴C]*N*-carbamyl putrescine, 1 μ mol (50,000 cpm), ornithine, 5 μ mol, Na₂HPO₄, 1 μ mol, MgCl₂, 5 μ mol, BSA, 100 μ g, and pure enzyme with appropriate blanks was incubated at 37 °C for 1 h. Citrulline was separated from labeled *N*-carbamyl putrescine in the reaction mixture by elution from NH₄OH from a Dowex 50-H⁺ column as described under "Experimental Procedures." The amino acid fraction was evaporated in *vacuo* and the residue was counted for radioactivity. The identity of the labeled citrulline formed in this experiment was confirmed by paper chromatography.

	010	
Component omitted	Citrulline	
	cpm	
None	7800	
$MgCl_2$	500	
Na ₂ HPO ₄	250	
Enzyme	50	

dent when the colorimetric assay procedure was used. These results indicate that phosphorolytic cleavage of *N*-carbamyl putrescine in the first step is followed by the transfer of carbamyl phosphate generated *in situ* to ornithine and are consistent with the data regarding the stoichiometry of the ornithine transcarbamylase-linked overall reaction.

Demonstration of Phosphorolysis and Arsenolysis of N-Carbamyl Putrescine by the Putrescine Transcarbamylase Component of Putrescine Synthase

Since the presumed role of the putrescine transcarbamylase component in this multifunctional enzyme is to catalyze the phosphorolysis of N-carbamyl putrescine, it was of interest to examine whether the enzyme can function in the reverse direction. For this purpose, the enzymic conversion of the *ureido*-¹⁴C-labeled intermediate to putrescine and carbamyl phosphate was investigated (13). It is clear (Table VI) that negligible phosphorolysis was observed in the absence of P_i. Replacing P_i with arsenate resulted in the enhanced release of ¹⁴CO₂ showing that arsenolysis has occurred. The observed inhibition of arsenolysis by Pi is apparently competitive (Table VI) and agrees well with earlier observations regarding arsenolysis of citrulline (24, 47). The liberation of ${}^{14}CO_2$ in the presence of ADP, P_i, [*ureido*-¹⁴C]N-carbamyl putrescine and the enzyme is indicative of the operation of the overall reaction linked to carbamate kinase.

Stability of the Enzyme

The purified enzyme was highly unstable even in the presence of glycerol, dithiothreitol, and Mg²⁺; it lost all the component activities within 48 h after purification when stored at 4 °C. Prolonged dialysis and freeze-thawing also led to a considerable loss of activity. The carbamate kinase activity was the most labile, since dialysis of even the crude extracts for more than 10 h rendered this activity unstable. However, with the purified preparations, $(NH_4)_2SO_4$ at 1 M concentration preferentially stabilized the carbamate kinase activity. This observation is in agreement with that recorded with the purified carbamate kinase from S. faecalis in which case the SO_4^{2-} ion was shown to be responsible for the stabilization (50). It was consistently found that all of the component activities associated with putrescine synthase were stabilized in dilute solutions ($<50 \ \mu g$ of protein/ml) for about 3-4 h at 37 °C by bovine serum albumin at a 250 μ g/ml concentration.

TABLE VI

Phosphorolysis and arsenolysis of N-carbamyl putrescine by putrescine synthase

The reaction mixture (1.0 ml) contained imidazole-Cl buffer (pH 7.5) 100 μ mol, [*ureido*-¹⁴C]*N*-carbamyl putrescine (50,000 cpm) 2 μ mol, BSA, 250 μ g, and purified enzyme, 25 μ g. The assay was carried out in Warburg flasks and the ¹⁴CO₂ liberated after an incubation period of 1 h at 37 °C was determined.

Additions	¹⁴ CO ₂ re- leased
μmol	cpm
None	120
Na ₂ HPO ₄ (10)	950
ADP $(1) + Na_2HPO_4$ (5)	2050
Sodium arsenate (50)	7560
Sodium arsenate $(50) + Na_2HPO_4$ (5)	5050
Sodium arsenate $(50) + Na_2HPO_4$ (10)	3050
Sodium arsenate (50) + boiled enzyme	70

Interaction of Putrescine Synthase with Different Affinity Matrices: Additional Evidence for its Polycephalic Nature

Further evidence for the multifunctionality of putrescine synthase was obtained by affinity chromatography. During the preliminary studies on putrescine biosynthesis in L. sativus, the specific affinity of agmatine iminohydrolase toward homoarginine- and citrulline-Sepharose was repeatedly observed. Furthermore, in view of the presence of a nucleotide (ADP) binding site ascribable to the inherent carbamate kinase activity, the affinity of this chimeric enzyme to blue Sepharose was expected. These observations were exploited and the (NH₄)₂SO₄ fraction (step 3) was adsorbed onto homoarginine-, citrulline-, organomercurial-, and blue Sepharose affinity columns (10×1 cm). This was followed by extensive washing with 50 mM imidazole-Cl buffer (pH 8) to remove unadsorbed proteins. The proteins held with high affinity were eluted with their respective ligands in imidazole buffer (i.e. 4 mm homoarginine or citrulline in cases of the first two affinity columns, 5 mm ATP in the case of blue Sepharose and 20 mM 2-mercaptoethanol in the case of organomercurial affinity matrix). The eluates were dialyzed against 20 mM imidazole buffer thoroughly to remove the respective soluble ligands. This ligand-specific elution resulted in the recovery of all the component activities inherent in putrescine synthase, with an identical elution profile. The specific interaction of this chimeric protein toward the affinity adsorbents possessing structurally related ligands (homoarginine and citrulline) is consistent with an association of the different enzyme activities with a single protein. Binding of the enzyme to homoarginine-Sepharose could be possibly related to the structural analogy between homoarginine and agmatine, particularly with regard to guanido function and hydrocarbon backbone. The ureido group of N-carbamyl putrescine, a transient intermediate in the overall reaction, and ornithine transcarbamylase activity inherent in the protein are probably responsible for the affinity of putrescine synthase to citrulline-Sepharose. It is significant to note that the dialyzed eluates from all affinity matrices exhibited ratios of specific activity of the different component activities, similar to that corresponding to the purified enzyme, while still reflecting the different degrees of enzyme purity achieved by these affinity procedures (Table IX).

Polyacrylamide gel electrophoresis of the above four eluates revealed the presence among others of a fast moving protein band corresponding in position on gels to the purified putrescine synthase (not shown). Evidence for the presence of putrescine synthase in the eluates from the four affinity matrices was also obtained immunologically. The antiserum raised

TABLE IX

Specific activities of the component reactions of putrescine synthase in the eluates from different affinity Sepharoses The enzyme activities were assayed under the standard conditions described under "Experimental Procedures," using the dialyzed enzyme eluates from different affinity Sepharoses. The values represent the specific activities of constituent activities of putrescine synthase.

	Specific activity							
Affinity Sepharose	Agmatine im- inohydrolase	Putrescine transcarbamyl- ase (N-carba- myl putrescine arsenolysis)	Ornithine transcarba- mylas e	Putrescine transcarba- mylase (N- carbamyl pu- trescine syn- thesis)	Agmatine + ornithine → citrulline	N-Carbamyl putrescine + ornithine → citrulline		
	μmol product formed/mg protein/h							
Citrulline-Sepharose	1.20	19	23.5	39	9.6	11.4		
				(1:16:19:3)	$2.5:8:9.5)^a$			
Homoarginine-Sepharose	0.80	11.2	15.2	24	6.4	7.3		
				(1:14:19)):30:8:9)			
Blue Sepharose	0.42	5.46	7.8	12.6	3.4	3.8		
				(1:13:18.	5:30:8:9)			
Organomercurial Sepharose	0.54	8.0	10.8	17.3	4.7	5.4		
				(1:14:20:3	32:9.9:10)			
Putrescine-CH-Sepharose (pure enzyme) ^b	1.40	21	28	47	11.9	14		
				(1:15:20:3	33:8.5:10)			

^a Represents the specific activity ratio of various activities relative to agmatine iminohydrolase.

^b Procedure II (Table III).

The crude extracts (step 1) from the sticlated seedlings of various plants were dialyzed against 50mM imidatole buffer and used as enzyme source for assaying the overall reaction linked to ornithine transarbamy set Experimental Procedures). Citzulline was quantiable on 00wers-00(H*) columnreaction products, sites isomessimple of the set of the set

Plant	nmols citrulline formed/mg protein/h with				
	Agmatine	N-carbamyl putrescine			
Pisum sativum (pea)	25	36			
Cucumis sativus (cucumber)	10	15			
Zea mays (maize)	30	45			
Lathyrus sativus (grass pea)	17	25			

against putrescine synthase cross-reacted with the protein fractions eluted from the different affinity matrices, exhibiting a single precipitin line in each case (not shown).

Evidence for the Association of Putrescine Biogenesis with Citrulline Production in Other Higher Plants

The data described above show that the conversion of agmatine to putrescine in *L. sativus* is interlinked with the production of citrulline and is mediated by a multifunctional enzyme. The question then arose whether this series of reactions also occurs in other plants. For this purpose, the overall enzymatic reaction catalyzing the agmatine \rightarrow putrescine conversion, namely agmatine (or *N*-carbamyl putrescine) + ornithine + P_i \rightarrow citrulline + putrescine was assayed in the dialyzed crude extracts of seedlings of different plants. The results obtained clearly indicate the occurrence of similar reactions in other plants examined (Table X).

DISCUSSION

The most significant feature of the present study is the evidence for a novel multifunctional enzyme involved in agmatine to putrescine conversion in L. sativus and its functional significance. Two highly reproducible purification procedures, one involving an organomercurial affinity step followed by DEAE-Sephadex chromatography and the other employing affinity chromatography on putrescine-CH Sepharose, were used to purify the enzyme to a homogeneous state. In contrast to a two-step hydrolytic scheme proposed earlier for the conversion of agmatine to putrescine, involving ag-

matine iminohydrolase and N-carbamyl putrescine-amidohydrolase in plants (9, 10), the present study demonstrates that putrescine transcarbamylase rather than N-carbamyl putrescine-aminodohydrolase catalyzes putrescine production. The most likely explanation for this discrepancy is that a crude extract prepared in phosphate buffer was incubated for long periods in the earlier studies (9); consequently, putrescine transcarbamylase acting in the reverse direction might have degraded N-carbamyl putrescine into putrescine and carbamyl phosphate, the latter undergoing further hydrolysis to CO_2 and NH_3 (52). The detection of putrescine transcarbamylase activity in the pea (49) and the phosphorolytic cleavage of N-carbamyl putrescine in S. faecalis (13) are consistent with our findings.

Several lines of evidence prove the multifunctionality of putrescine synthase from the plant system: (a) the purified enzyme exhibits a single protein band on SDS-polyacrylamide gel electrophoresis, with $M_r = 55,000$; (b) co-purification of the different constituent activities with near constancy of specific activity ratios; (c) the stoichiometric conversion of the metabolites in the overall reactions catalyzed by the enzyme: (d) all the constituent activities band in a single region corresponding to the protein stain on polyacrylamide gel electrophoresis and co-elute as a single protein peak from Sephadex G-200; (e) activity staining (Fig. 7) for ATP synthesis is a result of interaction between the constituent activities; (f) the intact transfer of the ureido group from N-carbamyl putrescine to ornithine as a result of interaction between the two transcarbamylase components of the enzyme (Table V); (g) the affinity toward different functionally and structurally related affinity matrices and recovery of all of the activities during elution (with similar ratios of specific activities as found with the pure enzyme + immunological and electrophoretic evidence for the enzyme protein in these eluates.

One of the basic features of the reaction catalyzed by putrescine synthase is the intact transfer of the carbamyl moiety of *N*-carbamyl putrescine to ornithine, due to coupled activities of the two transcarbamylase components of the enzyme. In the absence of ornithine, the putrescine transcarbamylase component acting in the reverse direction can conceivably catalyze the phosphorolytic cleavage of *N*-carbamyl putrescine to putrescine and carbamyl phosphate, provided carbamyl phosphate is depleted from the catalytic site to drive

TABLE X <u>Citrulline production coupled with putrescine synthesis in the crude</u> extracts of some higher plants

the reaction in favor of putrescine synthesis. That the higher plant efficiently uses ornithine transcarbamylase activity for this purpose to channel carbamyl phosphate generated in situ to citrulline production is clearly evident from the data presented. Of relevance in this context is that, in S. faecalis, ornithine transcarbamylase activity is intrinsic to the purified putrescine transcarbamylase (48). Thus, it would appear that an "agmatine cycle" (Fig. 11) functions in the higher plants; one of the essential tenets of this cycle is the intact transfer of the carbamyl group from N-carbamyl putrescine to ornithine. thus sparing two ATP molecules otherwise needed for the de novo synthesis of carbamyl phosphate. The coupling of these novel, highly organized enzymatic reactions would readily explain the nonaccumulation of N-carbamyl putrescine (1, 2, 11) as well as the choice of such a carbamyl intermediate by the higher plants. Preliminary data indicate that these reactions comprising the agmatine cycle are functional in other plants also. The above series of reactions are similar to those of the arginine dihydrolase pathway in microorganisms although three separate enzymes catalyze the latter reactions (53)

The higher catalytic efficiency (approximately 10 times) of putrescine synthase in the overall reaction compared to agmatine iminohydrolase assayed in isolation (Table III) is in line with the cooperativity in multienzyme systems (15). The requirement of Mg²⁺ in the ornithine transcarbamylase-linked overall reaction is also consistent with its known stabilizing influence on carbamyl phosphate (54). It is intriguing that the putrescine synthase with $M_r = 55,000$ harbors four functionally discrete reaction domains on its single chain polypeptide backbone. This is not suprising since several such multifunctional proteins with similar molecular size were reported earlier (14). While a subunit structure for the purified putrescine synthase can be ruled out, the possibility of an oligomeric form functioning in vivo is to be considered. To test whether proteolytic cleavage during purification accounted for the relatively smaller size of the enzyme (55), purification of the synthase was attempted in the presence of 1 mm phenylmethvlsulfonyl fluoride. Under these conditions, the enzyme showed a considerably slower mobility during gel electrophoresis at pH 8.3 (Fig. 2 d) vis- \hat{a} -vis the protein purified in the absence of phenylmethylsulfonyl fluoride (Fig. 2, a, b, and c). The relatively larger size of the enzyme prepared in the presence of the proteolytic inhibitor was also evident during gel filtration on Sephadex G-200 since the activity was eluted in the void volume itself.

FIG. 11. Agmatine cycle and its relation to arginine synthesis in higher plants. The scheme proposed is based on the sequence of reactions investigated in the present study. *N*-Carbamyl putrescine arising from agmatine iminohydrolase reaction is converted to putrescine and citrulline due to the interaction between putrescine transcarbamylase and ornithine transcarbamylase components of putrescine synthase.

Thus, it is clear that the putrescine synthase of L. sativus is another example of a highly organized chimeric protein. catalyzing a set of sequential reactions (14). The coexistence of both the coupling activities (carbamate kinase and ornithine transcarbamylase) in putrescine synthase is not easily understood at present. Both of these activities catalyze reversible reactions, with their K_{eq} favoring useful anabolic reactions and thus are ideally suited for coupling mechanisms, which in turn enhance the catalytic efficiency in a multistep reaction. The transfer of the carbamyl group in the series of reactions leading to citrulline synthesis (Table V) is one of the few examples of its kind; the other two instances are (a) generation of citrulline from carbamyl oxamate and ornithine in Streptococcus allantoicus cell-free extracts (56) and (b) synthesis of arginine from carbamyl aspartate and ornithine in the crude extracts of wheat seedlings (57).

REFERENCES

- 1. Smith, T. A. (1971) Biol. Rev. Camb. Philos. Soc. 46, 201-241
- 2. Smith, T. A. (1975) Phytochemistry 14, 865-890
- Hasse, K., Ratych, O. T., and Salnikow, J. (1967) Hoppe-Seyler's Z. Physiol. Chem. 348, 843–851
- 4. Yoshida, D. (1969) Plant Cell Physiol. 10, 393-397
- Bagni, N., and Spernaza, A. (1977) in *Plant Growth Regulators* (Kudrev, T., Ivanova, I., and Karmov, E., eds) pp. 75-78, Bulgarian Academy of Sciences, Sofia
- Heimer, Y. M., Mizrahi, Y., and Bachrach, U. (1979) FEBS Lett. 104, 146-148
- 7. Smith, T. A. (1970) Ann. N. Y. Acad. Sci. 171, 988-1001
- 8. Smith, T. A. (1969) Phytochemistry 8, 2111-2117
- 9. Smith, T. A. (1965) Phytochemistry 4, 599-607
- 10. Smith, T. A., and Garraway, J. L. (1964) Phytochemistry 3, 23-26
- 11. Smith, T. A. (1977) Prog. Phytochem. 4, 27-81
- Ramakrishna, S., and Adiga, P. R. (1975) Eur. J. Biochem. 59, 377–386
- 13. Roon, R. J., and Barker, H. A. (1972) J. Bacteriol. 109, 44-50
- 14. Kirschner, K., and Bisswanger, H. (1976) Annu. Rev. Biochem. 45, 143-166
- 15. Gaertner, F. H. (1978) Trends Biochem. Sci. 3, 63-65
- 16. Welch, G. R. (1977) Prog. Biophys. Mol. Biol. 32, 103-191
- 17. Stark, G. R. (1976) Trends Biochem. Sci. 2, 64-66
- Suresh, M. R., Ramakrishna, S., and Adiga, P. R. (1976) Phytochemistry 15, 483-485
- Gerhart, J. C., and Pardee, A. B. (1962) J. Biol. Chem. 237, 891– 896
- Srivenugopal, K. S., and Adiga, P. R. (1980) Anal. Biochem. 104, 440-444
- 21. Smith, L. H. (1955) J. Am. Chem. 77, 6691-6692
- Williams, D. L., and Ronzio, A. R. (1952) J. Am. Chem. Soc. 74, 2407
- Savage, C. R., Schumer, J. A., and Weinfeld, H. (1973) Anal. Biochem. 53, 431-440
- Krebs, H. A., Eggleston, L. V., and Knivett, V. A. (1955) Biochem. J. 59, 185–193
- Raijman, L., and Jones, M. E. (1973) in *The Enzymes* (Boyer, P. D., ed) Vol. 9, pp. 97-119, Academic Press, New York
- Lamprecht, W., and Trautschold, I. (1974) in Methods of Enzymatic Analysis (Bergmeyer, H-U., ed) Vol. 4, pp. 2101-2110, Academic Press, New York
- 27. Kimmich, G. A., Randles, J., and Brand, J. S. (1975) Anal. Biochem. 69, 187-206
- 28. Prescott, L. M., and Jones, M. E. (1969) Anal. Biochem. 32, 408-419
- 29. Inoue, H., and Mizutani, A. (1973) Anal. Biochem. 56, 408-416
- Ramakrishna, S., and Adiga, P. R. (1973) J. Chromatogr. 86, 214– 218
- Suresh, M. R., and Adiga, P. R. (1977) Eur. J. Biochem. 79, 511– 518
- 32. Schimke, R. T., and Barile, M. F. (1963) J. Bacteriol. 86, 195-206
- Hartman, W. W., and Dreger, E. E. (1931) Organic Synthesis, Vol. 2, pp. 150-151, John Wiley & Sons, New York
- March, S. C., Parikh, I., and Cuatrecasas, P. (1974) Anal. Biochem. 60, 149-152
- 35. Cuatrecasas, P. (1970) J. Biol. Chem. 245, 3059-3065
- 36. Sluyterman, L. A. A. E., and Wijdenes, J. (1974) Methods En-

zymol. 34, 544-547

- Suresh, M. R., and Adiga, P. R. (1979) J. Biosci. (India) 1, 109– 124
- 38. Davis, B. J. (1964) Ann. N. Y. Acad. Sci. 121, 404-427
- Reisfeld, R. A., Lewis, V. J., and Williams, D. E. (1962) Nature (Lond.) 195, 281–283
- 40. Laemmli, U. K. (1970) Nature (Lond.) 227, 680-685
- Weber, K., Pringle, J. R., and Osborne, M. (1972) Methods Enzymol. 26, 3-27
- 42. Andrews, P. (1964) Biochem. J. 91, 222-233
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275
- Ouchterlony, O. (1967) in Experimental Immunochemistry (Weir, D. M., ed) pp. 655-656, Blackwell Scientific Publications, Oxford
- 45. Eid, S., Waly, Y., and Abdelal, A. T. (1974) Phytochemistry 13, 99-102
- 46. Glenn, E., and Maretzki, A. (1977) Plant Physiol. 60, 122-126
- 47. Knivett, V. A. (1954) Biochem. J. 58, 480-486

- Wargnies, B., Lauwers, N., and Stalon, V. (1979) Eur. J. Biochem. 101, 143-152
- Kleckzkowski, K., and Wielgat, B. (1968) Bull. Acad. Pol. Sci. Ser. Sci. Biol. 16, 521–526
- Ravel, J. M., Sund, R. F., and Shive, W. (1959) Biochem. Biophys. Res. Commun. 1, 186–190
- 51. Reichard, P. (1957) Acta Chem. Scand. 11, 523-536
- Tabor, H., and Tabor, C. W. (1972) Adv. Enzymol. Relat. Areas Mol. Biol. 36, 203–268
- 53. Abdelal, A. T. (1979) Annu. Rev. Microbiol. 33, 130-168
- Allen, C. M., Jr., Richelson, E., and Jones, M. E. (1966) in Current Aspects of Biochemical Energetics (Kaplan, N. O., and Kennedy, E. P., eds) pp. 401-412, Academic Press, New York
- 55. Pringle, J. R. (1975) Methods Cell Biol. 12, 149-184
- Valentine, R. C., Bojanowski, R., Gaudy, E., and Wolfe, R. S. (1962) J. Biol. Chem. 237, 2271-2277
- 57. Kleckzkowski, K., and Grabarek-Bralczyk, J. (1968) Acta Biochim. Pol. 15, 283-291
- 58. Akamatsu, S., and Watanabe, T. (1961) J. Biochem. 49, 566-569

MINIPRINT SUPPLEMENT TO

ENZYMIC CONVERSION OF AGMATINE TO PUTRESCIME IN LATHYRUS SATIVUS SEEDLINGS: PURIFICATION AND PROPERTIES OF A MULTIFUNCTIONAL ENZYME (PUTRESCIME SYNTHASE) K.S. Srivenugopal and P.R. Adiga

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE <u>Materials - Lathyrus sativus seeds were procured from the plant</u> breeding Section of Indian Agricultural Research Institute, New Delhi. The germination of seeds and grath conditions Research Institute, New Delhi. The stolated seedlings have been describtions light and the 3 day old chemicals were puchased from Sigma Chemical Company: mains acids alignatic amine hydrochlorides, 1,3(dimethylaminopropyl)carbodimide, MADP, ADP, ATP, dithiothreitol, p-aminophenylmercuric acctate, NGT, PMS, diacetyl monoxime, antipyrene, p-diphenylamine sulfonic acid (Na salt), ion exchange media Sephader G-200, Sepharose CL-40, Blue Sepharose, beef liver catalase, yeast hexokinase, glucose-6-phosphate dehydrogenase and firefly luciferase. I'l ion exchange resins - Dowex-50 and Dowes-1 and Amberlite CG-50 were procured from Biorad Laboratories, Richmond, CA, whereas acrylamide and bisacryiamide were the products of Eastman Organic Chemicals, Rochester, NY, [1-4,14C]-putrescine dihydrochloride (54 mCi/mmol) was purchased from the Radio Chemical Center, Amersham, U.K. (14C]Ures (38 mCi/mmol) was purfied on a Dower-50(H') column using a HCI gradient (0>44M to remove putrescine contamination. Carbamyl phosphate was purfied as described (19). Synthesis and purfication of N-carbaspyl putrescine was accomplished by the new proce-dumedetailed elsewhere (22). Synthesis of [ureido-14C]N-carbamyl putrescine - [¹⁴C]KCNO prepared by

Synthesis of [ureido-14C]N-carbamyl putrescine - $[^{14}C]KCNO$ prepared by reacting [14C]urea (2 mmols) and %2CO3 (1.2 mmols) (21,22) was mixed with putrescine.HCl (100 µmols). Further procedures for synthesis and separation of N-carbamyl putrescine by paper chromatography were the same as outlined in the ref.13. The purified product had a sp.act. of 50 µC2/mmol.

in the ref.13. The purified product had a sp.act. of 50 μ CJ/mmol. Enzyme assays — The different catalytic activities associated with putrescine synthese, namely agmatime iminohydrolase, putrescine transcarb-maylase, conthine transcarbamylase and carbamate kinase were monitored by assaying the individual reactions as well as the overall reactions linked to either ornithine transcarbamylase and carbamate kinase. All the assays were conducted at 37°C unless otherwise stated, with an incubation period of 1h using the enzyme protein in the range of 0.02-2mg in a final volume of 1.0ml. In cluded in the reaction mixtures, for stabilization purpose. Brief descript-ions of the different assays employed are given below.

(i) Agmatine imployed are given below. (i) Agmatine implohydrolase - The activity was measured by quantitating either of the two products, hamely, NH3 in case of enzyme preparations devoi of diamine oxidase (for which agmatine is also a good substrate (18)) and N-carbamy putrescine in other vurification steps. NH3 liberation was followed in microdiffusion vials (18) containing 100mM Tris-Cl buffer (pi 8-8), 3mM dithiothretiol, 0.5mM MnCl2, 5mM agmatine and the enzyme. The NH3 released was estimated by Nesslerization (18). The procedure for N-carbamyl putrescine estimation was the same as detailed earlier (20), except that N-esthyl maleimide was used to obviate the thiol interferences in the color reaction (23). N-ethyl maleimide reaction (23).

(ii) <u>putrescine transcarbamylase in the direction of N-carbamyl putrescine synthesis</u> - The product was quantitated by the radiometric assay procedure (20) or colorimetrically by the method of Gerhart and Pardee (19) after removing the thiol interference (23). The reaction mixture contained 0.5ml imidazole-bora-glycyl qlycine (10:10:50mk) buffer (pH 7.5). ZmM di-thiothreitol, 5MM putrescine and the enzyme and was incubated at 30°C. The reaction was initiated by the addition of 10MM corbamyl hopshate and terminate with 0.1ml of 20% perchloric acid. Substrate and enzyme blanks were routinely included and the amount of N-carbamyl putrescine formed was quantitated by the carbamyland putrescine formed was quantitated by reference to a standard curve.

tated by reference to a standard curve.
(iii) Putrescine transcarbamylass in the reverse direction (arsenolysis).
- The enzymic cleavage of M-carbamylass in the presence of arsenate degrades into CO2 and NHy (13,24). The argenolysis of M-carbamyl putrescine was measured by quantitating the NHy produced in a reaction mixture containing 50mM indiazoie-cl boffsr (pf 7.3); N-carbamyl putrescine, 5mM; sodium arsenate (pf 7.5), 50mM and NH; enzyme. The reaction mixture was incubated in the microdiffusion vlais and NH; estimated (18). For calculating the equilibrium of putrescine transcarbamylase reaction, the assay was conducted using luredic-M-QD.K-carbamyl putrescine, 14CO2 released under acidified conditions was determined (13).
(iv) Carbamate kinase - This activity was assayed in the forward

uncer aclothed conditions was determined (13). (iv) Carbamate kinsse - This activity was assayed in the forward direction by measuring ATP formed (25). The components of the reaction mixture were: inidarial for (pdf 7.5), 50mM; ADP, 2mM; carbamyl phosphate was replaced by either agnatine (5mM) plus Na2HPO4 (2mM) or N-carbamyl phospitrescine (5mM) plus Na2HPO4 (2mM) in the overall reactions catalyzed by putrescine synthese to demonstrate AIP synthesis with concomitant conversion of the substrates to putrescine. ATP generated in these reactions was determined by the hexokinase-plucose-foreboshete dehydrogenesse coupled assay (26) or by the sensitive luciferase procedure using the Beckman LS-100 scintillation spectrometer (27). (v) Ornithine transcarbamylase - This catalytic activity was deter-

ion spectrometer (27).
 (v) <u>Ornithine transcarbamylase</u> - This Catalytic activity was deter-mined in a reaction mixture containing SOMM triethanolamine-Ch buffer (pi 8,0), ZmW dithiothreitol, SmW ornithine and the enzyme. The reaction was initiated by the addition of IOAM carbamyl phosphate. Appropriate blanks laking either the enzyme or substrates were always included. After termi-nating the reaction and adding N-ethyl maleimide to remove interference by sulfhydryl compounds (23), citrulline was estimated by the colorimetric procedure of Prescott and Jones (28).
 (vi) Assay for yoursal

Summy Grant Compounds (23), circuitine was estimated by the colorimetric procedure of Prescott and Jones (28).
(vi) Assay for overall reaction linked to armithine transcarbamylase - The overall reaction catalyzed by putrescine synthase (namely the combined activities of agmatine iminohydrolase, putrescine synthase (namely the combined activities of agmatine minohydrolase, putrescine as the substrate (reaction 4, Table 1). The assay components were: SOAM Tris-Cl (DH 8.8), SaM dithio-threitol, 10mM MgSQa, 5mM ornithine, 2.5mM NagHPQ, agmatine or N-carbamyl putrescine (combined (SoMM) and the enzyme. During each assay, appropriate blanks containing the boiled enzyme were regularly included. Following the termination of the reaction with 2004 pertoins acti (Olah) and removal of denatured proteins, the sample was applied on to a Dower-SOA12(H*) column (4xicm). After washing the column throroughly with distilled water, the amino acid fraction containing citruline was selectively eluted with Sal Olaw NigOK. The amine substrates which interfere in the color reaction by producing excess of chromogen, are preferentially retained on the lon exchange reguined to produce impolyme was an liquot of NigOH late was subjected to color reaction [28) and the difference between the reaction due to active enzyme unit - One unit of activity is defined as the amount of enzyme required to produce timely product (Nig on N-carbam) putrescine or citrulline) per h under the standard assay conditions described above. Specific activity is represented by units/mg protein.

Identification of the reaction products by paper chromatography - The amino acid and/or amine fractions of the reaction mitures were purfied on Dower-SO(H*) columns (29) and resolved by circular paper chromatography using phenolio.0560m HGI-KGL buffer (pHC2) (4:1 v/v) as described (30). The ratio-activity associated with amines was measured as detailed earlier (31) after making quenching corrections. Amberlite CG-50 (NHa+) resin was used to characterize circuline fraction with concomitant retention of ornithine (32) in the overall reaction.

Preparation of affinity <u>Sepharoses</u> - CNBr was synthesized according to Hartman and Dreger's procedure (33). The method followed to prepare putrescine-CH Sepharose is as follows: The activation and washing procedu described by March et <u>al</u>. (34) were carried out to obtain CH-Sepharose by edures reacting 6-amino hexanoic acid with CNBr-activated Sepharose. The free carboxyl groups were coupled to putrescine by carbodimide condensation (35) at pH 4.8 with two additions of 1,3(dimethylaminopropyl)carbodimide. The coupling of the diamine was confirmed by picrylsulfonate test (35).

Organomercurial Sepharose - The coupling of p-aminophenylmercuric acetate to CNBr-activated Sepharose and the determination of its capacity were carried out by the established procedure (36). The affinity matrix had a capacity of 3.5µmol/ml gel.

Other affinity Sepharoses - Citrulline and homoarginine were linked through their a-amino groups to CNBr-activated Sepharose (34). The immuno-sorbent [10] fraction specific to <u>1</u>, sativus diamine oxidase coupled to Sepharose) used to remove the dimmine oxidase in earlier steps of purificat-ion was prepared as described earlier (37). Blue Sepharose was regenerated by washing with 2M NaCl solution prior to protein purification.

<u>Disc del electrophoresis</u> – Dayacrylamide gel electrophoresis at pH 6,3 and 4.0 were carried out according to Davis (38) and Reisfeld <u>et al.</u> (39) respectively. The procedure of Leemli (40) was utilized for SDS-gel electro-phoresis. To ensure complete denaturation, the protein was treated with guanddine hydrochloride followed by urea and SDS before electrophoresis on denaturing gels, as described previously (41).

Determination of Mr by gel filtration - Gel filtration of putrescine synthase was conducted on a Sephadex G-200 (coarse; 40-100µ) column (1.8x89cm) pre-equilibrated with 50mM Tris-Cl buffer (pH 8.0) containing 2mM 2-mercaptorethanol and 0.1M KCl. The mixture of standard proteins and enzymes (oval bumin,45000; BSA monomer, 66000; dimer, 136000; alcohol dehydrogenase, 150000 and catalase 240000) was applied and the column eluted with the above buffer at a flow rate of 20ml/h. Fractions of 2ml were collected. The Mr was determined by the method of Andrews (42). Other methods - Drotain was artimated by the content of the content of the second

was betermined by the method of Andrews (42). <u>Other methods</u> - Protein was estimated by the procedure of Lowry et al. (43) with BSA as standard. Antibodies to putrescine synthase were raised in rabbits by administering 0.5-ling of pure enzyme protein in phosphate-buffered seline emulaified with an equal volume of Freund's complete adjuvant (Difco) (by injecting subcutaneously at 10 day intervais). Following three injection: a booster shot of img protein in saline was given and after 6 days, the animal was bled and serum prepared. Ourtherlony double diffusion analysis was carried out on 1.25% agar gels (44). ections, animal

RESULTS

Purification of putrescine synthase

<u>Procedure I</u> - All the steps were carried out at 4°C and centrifugation at 25000xg for 30min, unless otherwise indicated. <u>Step 1: Preparation of crude extract</u> - Fresh 5-day old <u>L</u>. <u>sativus</u> seddlings were washed and homogenized in a chilled Waring blendor with one volume of 50mM imidazole-Cl buffer (pH 8.0) containing 5mM 2-mercaptoethanol The homogenate was passed through four layers of cheese cloth to remove the fibrous material and centrifuged. 01.

Step 2: Precipitation of nucleoproteins - The crude extract from first step was adjusted to 7.5mM MnCL2 concentration. After stirring 30mLin, the precipitated nucleoproteins were removed by centrivgation.

summary, the precipitated nucleoproteins were removed by centrifugation. Step 3: Annonium sulfate fractionation - The step 2 supernatant fraction was brought to pH 7.0 with addition of 2M MH_QH. Precoded solid (NH_4)2S04 was added in shill amounts with the precipitation of Affatied The supernatant was adjusted to BDY saturation with (NH_4)2S0 and stirred for In. The precipitate obtained after centrifugation was disolved in 5mM andazie buffer (PH 7.5, containing 2mM 2-mercaptoethanol) and dialyzed against two changes of 2L of the same buffer.

against two changes of 2L of the same buffer. Step 4: Organosarcurial Sepharose affinity step - Taking advantage of the sulfhydryl nature of agasting iminohydrolase (3) and the total absence of cystelse residues in the diamine oxidates of L satiyus (37), a group specific affinity step for the purification of sulfhydryl profess was employed. The regenerated p-mainophenylmercuric acetate column (3,5x25cm) was equilibrated with 50mW imidatole buffer (without mercaptoethanol) and the dialyzed (Mid) 520 (fraction (step 3) was applied at a slow flow rate (0, Canl/min). After washing off all the unadsorbed proteins, until the effluent had a A_{200} of (0,00°, the proteins held on the column were eluted with 50mM imidazole buffer (pH 7.5) containing 20mM 2-mercaptoethanol and fractions of 2ml were collected. This fraction was dialyzed against 20mM imidazole buffer (2L). Sten 5: Chromatorzaphy on DEAE-Sephare - The concentrated protein

overnight to remove mercaptoethanol. Step 5: Chromatography on DEAE-Sephadex - The concentrated protein fraction from the organomercurial-Sepharose step was fractionated on a column of DEAE-Sephadex. The elution and activity profiles clearly show that the different catalytic activities associated with purescine synthase emerged with the single protein peak eluted with 0.5M KCl (Fig.1). At this stage of purification, polyacrylamide gel sectrophoresis of the protein showed a single fast moving component (Fig.2a). The protocol employed has been summar-ized in Table II which shows a 157-fold purification and 15% recovery with respect to agmatine iminohydrolase activity.

Fig.1. <u>DEAE-Sephadex chromatography of putrescine synthese</u>. The protein fraction eluted from organomercurial Sepharose with 2-mercapter ethanol was applied on a column (2.2x30cm) of DEAE-Sephadex (ASO-medium) preculificated with 50mM imidazole buffer (pH 7.5). column was washed with the same buffer and the proteins eluted step-wise with 0.1, 0.2, 0.3, 0.4 and 0.5M KCl in the above buffer. The activity of agmatine iminohydrolase in the eluent was followed by estimating amonia liberated with the vereil reaction was asayed by quantifying citrulline formed. Allase represents agmatine imino-hydrolase.

	TAB	LE II			
Purification	of putresc:	ine synt	hase (Proc	edure I)	
The purification was monitored of the multifunctional enzyme.	by assayi	ng agmat	ine iminob	ydrolas#	component
Dumi fi sati na stan	Destain	Total	So ant	Fold	Recovery

Purification step	Protein Total		Sp.act.	Fold	Recovery	
	ang	units		cation	×	
1. Crude extract	9360	56.4	0.007	1.0	100	
MnClo treatment	6898	68.9	0.01	1.4	120	
3. (NH ₄) ₂ SO ₄ fractionation 4. Organomercurial Sepharose	1944	58.3	0.03	4.2	102	
affinity	72	25.2	0.35	50.0	45	
5. DEAE-Sephadex chromstography	7.7	8.5	1.10	157.0	15	

Purification of putrescine synthese by affinity chromatography using putrescine-CH Sepharose (Procedure II)

A specific putrescine-CH Sepharose affinity step was later developed for the rapid purification of the chimeric enzyme with good recovery of all associated activities, in lieu of the more laborious orgenomercurial affinity step plus DEAE-Sephadex chromatography (Procedure I, steps 1-5).

The dialyzed protein fraction (step 3) was subjected to affinity chromatography on the putrescine-CH Sepharose column. It is clear from Fig.3 that 2mM putrescine effectively eluted the protein as a single peak which had different component activities associated with putrescine synthase. The pooled, dialyzed and concentrated protein fraction of this step showed on polyacrylamide gel electrophoresis, a single protein species (Fig.2B) coinci-dent with and inseparable from the one obtained by the procedure I. Therefore, interfore, but the single protein species (Fig.2B) coinci-tion with and inseparable from the one obtained by the procedure I. Therefore, interfore, but the single protein species (Fig.2B) coinciin further st purification.

Fig. 3. Affinity chromatography of putrescine synthese on putrescine-CH <u>Sepharoze</u>. The dialysed asmonlum sulfate fraction (step 3) was adarbed on the affinity column [10 ml bed vol.), preculiibrated with 50 mM imidatole buffer. The unadeorbed proteins were removed by usehing with the same buffer, and then with 0.2M KCl in this buffer, which however failed to dislodge the enzyme activity. The enzyme was eluted specifically by the addition of 2 mM putrescine the dismine. AlHase, PTCase and OTCase stand for agmathe iminohydrolase, putrescine transcerbamylese and ornithine transcerbamylese res-pectively.

General properties

The pH optime for the different activities of putrescine synthese are listed in Table VII along with the buffers used. Phosphate buffers (Na or K) were found to be inhibitory to all the component activities, to different extents. In general, an incubation temperature of 37°C was found optimal for the assay of different reactions, however, putrescine transcarbawjues gasay in the direction of N-carbamyl putrescine synthesis was performed at 30°C to

minimize the nonenzymatic destruction of carbamyl phosphate.

TABLE VII

Optimal pH conditions for the different catalytic activities of putrescine synthas

Component activity	pH optimum	Buffer used
Agmatine iminohydrolase Putrescine transcarbamylase	8.8*	Tris-Cl Imidazole-borax-glycyl
(N-carbamyl putrescine synthesis)	7.5	glycine (10:10:50 mM)
Putrescine transcarbamylase (arsenolysis)	7.5	Imidazole-Cl
Carbamate kinase and the overall reactions linked therewith	7.5	Imidazole-Cl
Ornithine transcarbamylase	8.0	Triethanolamine-Cl
Overall reaction linked to ornithine transcarbemylase	8,8*	Tris-Cl

• pH values have not been corrected for temperature effect.

Substrate specificity - Arginine, arcain and creatinine failed to serve as subtrates for agmetine innohydrolase activity. Apart from putweys and putraidine with activity and the serve are activity of the serve pectively, compared to putrescine. The broad subtrate specificity observed for putrescine transcarbamylase is consistent with the findings with other systems (48,49). However, putrescine innectance/passies due to tatek cituline and N,N'-dicathamyl putrescine in the areenolysis assay. Aspartic acid could not replace ornithine in the ornithine transcarbamylase-linked overall reaction.

overall reaction. <u>Effect of metal ions, sulfhydryl reagents and other compounds</u> - Among the monovalent cations K⁺ was found to be essential for carbamate kinase activity, while metal ions like Mg⁺⁺ did not affect either argenolysis or carbamylation of putrescine. It is also clear from the data presented in Table VIII, that among divalent cations tested, Mn⁺⁺ enhanced the agmentine iminohydrolase activity to a considerable extent. Mn⁺⁺ and enplaced Mg⁺⁺ to some extent in the overall reactions I and II. The thiol nature of the agmatine iminohydrolase activity is as remplified by its profound inhibiton by all sulfhydryl blockers used, and also by its affinity to organomercurial

Sepharose referred to earlier. However, influence of sulfhydryl blockers on other individual activities were not tested. Arcain, the diguanido analogue of agmatime exerted a 30% inhibition of agmatime iminohydrolase at 0.5mM concentration, which is in agreement with the previous observat-ion (8).

	TA	BLE VIII	
Effect of different co	mpounds on agr	matine iminohydrolase componer	nt_of
putrescine synthase Agmatine iminohydrolas by quantitating the NH of any test compound w in terms of \times relative	e activity was 3 released. T as taken as 10 activity.	assayed under standard assa The enzyme activity without t NOX and the results have been	y conditions he addition expressed
Compounds tested (mM)	Relative activity ↓	Compounds tested (mM)	Relative activity ≠
Divalent cations		Sulfhydryl blockers	
Mn ²⁺ (0.5)	400	p-Hydroxymercuri- benzoate (0.2)	65
Mn^{2+} (2.0)	350	Iodoacetate (1.0)	50
Mg^{2+} (1.0)	110	N-Ethyl maleimide (0.5)	30
Fe^{24} (1.0)	105	Other compounds	
Hg ²⁺ (0.5)	70	Arcain (0.5)	70
Thiol compounds		Purideval shotshate	
Dithiothreitol (2.0)	150	(0.2)	100
2-Mercaptoethanol (2.0) 120	Semicarbazide (0.1)	100
GSH (2.0)	125		

Initial velocity studies on <u>Agmatine iminohydrolase</u> - The enzyme exhibited a typical Michaelis-Menten kinetics, when the velocity of the reaction (NN jliberation) was plotted against the concentration of agmatin The highest activity was observed in the range of 3-5mN of the guanidommin and significant substrate inhibition was observed. When agmatine concent-ration was 55mN. From the Linewesver-Burk plot, a K_m value of 1 mM for agmatine was obtained.

Equilibrium of the putrescine transcarbamylase reaction - It has been earlier noted that the bacterial putrescine transcarbamylase exhibits a reaction equilibrium highly favourable in the direction of N-carbamyl putrescine synthesis and is thus analogous to ornithine transcarbamylase in this respect (13). To examine whether this observation is applicable to the putrescine transcarbamylase excision exactly and the putrescine transcarbamylase reaction is applicable to the putrescine transcarbamylase reaction in backward direction was followed by measuring the formation of carbamyl phosphate from (ureido-M4C)N-carbamyl putrescine and Pi at short intervals. From the Fig. 10, it can be seen that there was a progressive increase in the $^{14}\text{CO2}$ released during the first 15 min, which was followed by a relatively slower increase thereafter. The end of initial rapid phase presumally represents the statement of the equilibrium. The carbamyl phosphate formed could be expected to undergo a slow non-enzymid decomposition during incubation at 37°C, which in turn would drive the reaction forward, resulting in a decreased production of carbamyl phosphate during school slower phase (Fig. 10). A Keg of 10° was obtained for the putrescine transcarbamylase (13) and ornithine transcarbamylase of rat liver (51).

Fig.10. Equilibrium of putrescine transcarbamylase reaction. Formation of 14C carbamyl phosphate from [ureido-14C]N-carbamyl putrescine and Pi was determined. The assay was carried out in closed Warburg flakks, in a reaction mixture (1.0al) containing potassium phosphate buffer (pH 6.2), 200 µmois; [ureido-14C]N-carbamyl putrescine (2x10²cpm), 4µmois; ESA, 500 µg and 100 µg of homogeneous putrescine synthese. From the above data, an equilibrium constant (N-carbamyl putrescine)(Pi) - = 10⁵ K_{eq} = (putrescine)(carbamyl phosphate)

was calculated.