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ABSTRACT

Northwest India is composed, in part, of complex Himalayan mountain ranges having different altitudes and
orientations, causing the prevailing weather conditions to be complex. During winter, a large amount of pre-
cipitation is received in this region due to eastward-moving low pressure synoptic weather systems called western
disturbances (WDs). The objective of the present study is to use the perfect prognostic method (PPM) for
probability of precipitation (PoP) forecasting and quantitative precipitation forecasting (QPF). Three observatories
in the western Himalayan region, namely, Sonamarg, Haddan Taj, and Manali, are selected for development of
statistical dynamical models for location-specific prediction of the occurrence and quantity of precipitation.
Reanalysis data from the National Centers for Environmental Prediction (NCEP), and upper-air and surface
observations from the India Meteorological Department (IMD), are used to develop statistical dynamical models
for PoP and QPF for winter, that is, December, January, February, and March (DJFM). Models are developed
with data from DJFM 1984–96 and tested with data from DJFM 1996–97. Four experiments are carried out
with four different sets of predictors to evaluate the performance of the models with independent datasets. They
are 1) NCEP–NCAR reanalysis data, 2) operational analyses from the National Centre for Medium Range Weather
Forecasting (NCMRWF) in India, 3) day 1 forecasts with a T80 global spectral model at NCMRWF, and 4)
forecasts from the regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) day
1 forecast. Forecast skills are examined for these four experiments and for direct numerical model outputs of
T80 day 1 and MM5 day 1 forecasts at these three stations. It is found that a best prediction is made with an
accuracy of 89% at Haddan Taj using the MM5 day 1 forecast as predictors in the PoP model. In the case of
the QPF model, a maximum 85% accuracy is achieved using the MM5 day 1 forecast variables as predictors.
Thus, use of numerical model output from MM5 as predictors in statistical dynamical models based on the PPM
concept provides definite improvements in the prediction of occurrence and quantity of precipitation as compared
to the direct numerical model output.

1. Introduction

The western Himalayas and adjoining Indian region
receive a high amount of precipitation during the winter
season, mainly in the form of snow. This precipitation
severely affects human activities due to cold wave con-
ditions and avalanches. Winter precipitation is mainly
attributed to the passage of weather systems called west-
ern disturbances (WDs). These are eastward-moving
low pressure synoptic weather systems that originate
over the Mediterranean Sea or mid–Atlantic Ocean and
travel eastward over Iran, Afghanistan, Pakistan, and
northwest India. These weather systems take their south-
ernmost tracks during winter and pass over northwest
India. These WDs yield large amounts of precipitation
during winter months, namely, December, January, Feb-
ruary, and March (DJFM), in the form of snow. Some-
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times the WDs also come from eastward-moving extra-
tropical cyclones penetrating far southward. Northwest
India has complex mountain ranges. Surface weather
elements like precipitation and temperature are highly
dependent upon local topography and local atmospheric
circulations. It is very difficult to simulate/predict such
surface weather elements over complex mountainous
region by even sophisticated state-of-the-art numerical
weather prediction (NWP) models. Precipitation is one
of the important weather elements that influence various
activities. Statistical relations are developed between
precipitation at the location of interest and nearby ob-
served values of surface and upper-air weather elements
by using carefully chosen predictors and suitable sta-
tistical techniques. Two prominent methods for produc-
ing statistical-based forecasts are the perfect prognostic
method (PPM) of Klein et al. (1959) and the model
output statistics (MOS) approach of Glahn and Lowry
(1972). Probability of precipitation (PoP) and quanti-
tative precipitation forecasting (QPF) at a specific site
and time can provide important guidance for human
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activity, preparations for natural hazards (such as ava-
lanches and floods), and forest management.

Various statistical techniques are available for pre-
dicting PoP and QPF. Glahn and Lowry (1969, 1972)
used outputs from NWP models to develop regression
models to forecast PoPs over different parts of the Unit-
ed States. Paegle (1974) compared the forecast of PoPs
over different parts of the United States derived from
equations stratified with respect to the synoptic weather
patterns and equations that were not stratified. It was
found that the stratified methods were more accurate.
Kriplani and Singh (1986) developed composite charts
of probabilities of 24-h rainfall amounts exceeding 2.5
and 65 mm, when a monsoon depression is over India.
Upadhyay et al. (1986) developed a method to forecast
precipitation by considering the fact that the precipi-
tation rates are directly proportional to the large-scale
vertical velocity. Using this method, precipitation rates
were computed for specific monsoon depression situa-
tions over central parts of India. Kruizinga (1982) com-
pared the forecasting of PoPs over the Netherlands using
an analog technique and logistic regression. At 1–3-day
lead time, the regression method performed better than
the analog technique. Carter et al. (1989) discussed the
performance of statistical forecasts that are routinely
issued by the U.S. National Weather Service for the
contiguous United States and Alaska. Kumar and Ram
(1995) developed a technique for quantitative precipi-
tation forecasting over the Rapti catchment region in
Uttar Pradesh, India. This is a synoptic-analog method
in which synoptic systems are classified according to
the observed rainfall rates in the ranges 11–25, 26–50,
and .50 mm. Mohanty et al. (2001) developed objective
methods to forecast PoP and QPF at Delhi using clas-
sical multivariate regression and discriminant analysis.
Maini et al. (2002) employed the perfect prognostic
method for precipitation and temperature forecasts dur-
ing the monsoon season.

Thus, the use of objective techniques to forecast pre-
cipitation for a specific location in the mountainous re-
gion of northwest India is limited. None of these studies
dealt with mountainous regions such as northwest India.
It may be noted that in mountainous regions mainly
synoptic, persistence, climatological methods are used
to predict the occurrence of precipitation. Forecasts
based on persistence show very poor results, as precip-
itation has a strong temporal and spatial variability over
the region. Further, over the mountainous region, the
meso-/microscale circulation plays an important role in
determining the amount of precipitation. In recent years
with the establishment of the National Centre for Me-
dium Range Weather Forecasting (NCMRWF) in New
Delhi, a direct numerical model output operationally
provides precipitation forecasts over the western Him-
alayas with a horizontal model resolution of 1.58 latitude
3 1.58 longitude. The performance of NWP models over
this region is severely constrained due to complex to-
pography as well as a lack of adequate observations.

Further, the surface heterogeneity of northwest India
generates numerous meso-/microscale circulations in
the narrow valleys and rugged hills, which dominate in
determining the precipitation patterns in the region. In
view of this, large-scale general circulation models with
coarse horizontal resolution can not properly simulate
the quantity of precipitation and its horizontal distri-
bution.

Therefore, there is a need for more skillful objective
methods to predict precipitation over mountains. It is
also desirable to introduce statistical–dynamical mod-
eling to downscale the numerical model outputs using
either the PPM or MOS method to produce PoP and
QPF guidance over the region. Developing statistical–
dynamical models for PoP and QPF is a difficult task
over rugged mountainous regions like the western Him-
alayas. This is mainly due to the highly heterogeneous
terrain and the nonavailability of adequate observational
datasets. The authors are unaware of any study on PoP
and QPF models for the western Himalayas and ad-
joining mountainous region of northwest India. Thus,
the prediction of the occurrence–nonoccurrence of pre-
cipitation is a challenging task over the western Him-
alayas.

In the present study, the PPM concept is preferred
over MOS because MOS requires a large sample of
numerical model output with a specific model. MOS
does not have flexibility with respect to the use of many
different models (such as a global circulation model,
regional model, and/or mesoscale model). In the region
under consideration NWP models are still under refine-
ment as better computing facilities and observations
from the western Himalayas become available. On the
other hand the PPM approach is quite flexible as it is
developed based on past observations/analyses. The per-
formance of the PPM with independent datasets will
depend upon the quality of the NWP output. Any re-
finement in the specific numerical model does not re-
quire redevelopment of the PPM model, which is not
the case with MOS.

The goal of the paper is to develop a statistical–dy-
namical model for PoP and QPF over the western Him-
alayas using the PPM concept. The data source, quality
control, and data preparation for the model development
are presented in section 2. Section 3 describes the de-
velopment of the PoP forecast model. QPF model for-
mulation is presented in section 4. Section 5 describes
the experiments carried out to evaluate the performance
of the PoP and QPF models. In section 6 the results and
discussion are presented. Finally section 7 contains the
broad conclusions of the study.

2. Data and analysis procedure

The precipitation distribution over the western Him-
alayas is very complex. Daily precipitation for the re-
gion 26.258–38.758N 66.258–78.758E is derived at 2.58
3 2.58 latitude–longitude grid points for the period
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FIG. 1. Averaged monthly precipitation (cm of liquid water equivalent) over the region of interest
(26.258–38.758N, 66.258–78.758E) in the western Himalayas.

FIG. 2. Locations selected for the study and
contoured topography (*103 m).

1958–97 from the National Centers for Environmental
Prediction–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis dataset and monthly aver-
ages are computed. The area-average monthly precipi-
tation plot is shown in Fig. 1. The precipitation distri-

bution shows two maxima. The primary maximum oc-
curs in summer (July–August), whereas the secondary
maximum occurs in March. Generally, winter precipi-
tation occurs in the form of snow over the hilly ranges
and glacier basins and accumulates throughout the win-
ter season to feed the river systems during the summer.

For the development of the PoP and QPF models,
three locations are selected in the western Himalayan
region of Jammu and Kashmir, and Himachal Pradesh:
Sonamarg (latitude 348189110N, longitude 758179570E,
and altitude 2745 m), Haddan Taj (latitude 348189430N,
longitude 748029420E, and altitude 3080 m), and Manali
(latitude 328199270N, longitude 778139270E, and alti-
tude 2192 m) (see Fig. 2). Long and continuous past
datasets are available at these sites, so they are con-
venient for the development of PoP and QPF models.
These three sites represent three distinct climatic zones
of the western Himalayas. Haddan Taj is situated at the
northwest part of the Pir Panjal range, while Manali is
situated in the northeast part of the same range. Sona-
marg is situated between them in the Great Himalayan
range. These three locations show different climatic
characteristics and their geographical locations and sit-
uations give rise to different local mesoscale weather
systems. Out of these stations, Sonamarg and Manali
are situated on a national highway and provide ava-
lanche warnings for remote areas. Wintertime precipi-
tation, in the form of snow, gives rise to numerous av-
alanches along the road. The climatology of mean
monthly snowfall amount and temperature for winter
months is presented in Table 1. Large amounts of pre-
cipitation pose a threat to lives and property in snow-
bound regions. Similarly, falling temperatures brings



JUNE 2004 523M O H A N T Y A N D D I M R I

TABLE 1. Climatological distribution of average monthly snowfall (cm of snow depth) and mean monthly dry-bulb temperature (8C).

Month

Avg monthly snowfall (cm)

Sonamarg Haddan Taj Manali

Mean monthly dry-bulb temp (8C)

Sonamarg Haddan Taj Manali

Dec
Jan
Feb
Mar

210
186
255
351

162
173
244
229

44
108
109

90

22.1
24.2
24.3
21.6

21.6
22.8
24.4
21.0

7.0
4.6
5.7
8.7

FIG. 3. The location of meteorological stations from which data
have been used in this study: PTL, Patiala; DLH, Delhi; JDH, Jodh-
pur; and SNM, Sonamarg, which is the selected location of the study
and is indicated by a plus sign (1). NCEP–NCAR reanalysis data
are interpolated at locations numbered from 1 to 5 along various
geographical directions and are marked by a shaded circle (●).

cold wind conditions in conjunction with eastward-mov-
ing synoptic weather systems.

At least 5–6 yr of data are required for the devel-
opment of statistical models (Carter 1986). Due to the
complex geographical situation of the Himalayas, 12 yr
are used here for developing stable statistical–dynamical
models for PoP and QPF. The model equations are de-
veloped using surface and upper-air data for DJFM for
the 12-yr period 1984–96. The models are then tested
with independent datasets for DJFM for the period
1996–97. Upper-air and surface observations at and
around the selected locations are considered, so that
advection effects can be taken into account. As an ad-
equate number of surface and upper-air stations are not
available in and around the data-sparse western Hima-
layas, long-period large-scale global analyses of mete-
orological fields such as the NCEP–NCAR reanalysis
(Kalnay et al. 1996) are also used.

Before selecting potential predictors, care was taken
to carry out quality control of observational data and
to fill data gaps. In order to detect and correct errors,
the mean ( ) and standard deviation (s) of all the pa-x
rameters were calculated. All observations of individual
parameters that lie outside ( 6 3s) were isolated andx

examined. After examining previous and subsequent
meteorological observations and synoptic weather con-
ditions, outliers were replaced by suitable values. Once
the errors were identified and corrected, the next step
was to identify the missing data and fill the data gaps
using suitable interpolations. The individual data gaps
were filled using linear interpolation. Observations at
nearby observatories were also given some consider-
ation, while filling the individual data gaps. By doing
so, quality control checks and consistency checks on
the space, time, and synoptic condition were made.

The NCEP–NCAR reanalyzed global dataset (Kalnay
et al. 1996), along with surface and upper-air data of
Patiala, Jodhpur, and Delhi from the India Meteorological
Department (IMD), at 0000 and 1200 UTC, are used for
the development of the models (Fig. 3). For the devel-
opment of statistical–dynamical models, initially all pos-
sible basic as well as derived meteorological fields/pa-
rameters are utilized and are subjected to an objective
screening procedure to select the most appropriate pre-
dictors. Therefore, initially a total of 3306 predictors, as
listed in Table 2, were considered for development of
statistical–dynamical models based on the PPM concept.
The NCEP–NCAR reanalysis is global with horizontal
resolution of 2.58 latitude 3 2.58 longitude and 18 vertical
pressure levels. For the development of the model equa-
tions, geopotential height (gpm); dry-bulb temperature
(TT); u and y components of wind; vertical velocity and
specific humidity at 850-, 700-, 500-, 300-, and 200-hPa
levels from NCEP–NCAR reanalysis fields; and IMD up-
per-air datasets are utilized. Further, derived parameters
are also considered such as vorticity, advection of various
meteorological fields, and various meteorological indices
(Table 2) etc. In addition, as the grid is coarse, from the
topographic and terrain conditions’ point of view, the
NCEP–NCAR analysis data are interpolated at selected
sites and around each site in five concentric circles with
increasing radii from 0.58 to 2.58 at an interval of 0.58.
Then six equidistance points on each circle around these
sites are selected by starting at the east and proceeding
counter-clockwise at 608 intervals, as shown in Fig. 3.
Such an interpolation of this coarse-resolution dataset to
finer grid points of concentric circles does not reflect
much physical significance. However, the use of numer-
ical model output at finer grid points as predictors for
the PoP and QPF models plays a very significant role in
the incorporation of the mesoscale features. While these
predictors do not bring much additional information into
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TABLE 2. List of potential predictors and their notations used in the present study. The total number of predictors is 3306.

Predictors and their notations Stations Time* Total

Surface data
Dry-bulb (TT) and dewpoint (TD) temperature, saturation mixing ratio (SM),
relative humidity (rh), and zonal (u) and meridional (y) components of wind

Delhi, Patiala, Jodhpur 21200 and 0000 UTC 36

Upper-air data
Dry-bulb and dewpoint temperature; saturation mixing ratio; relative humidity;
zonal and meridional components of wind at 850, 700, 500, 300, and 200 hPa;
dry-bulb and potential temperature (u) differences between different levels from
surface to 300 hPa; mean of the relative humidity and saturation mixing ratio
between various levels; and derived wind shear terms between various levels

Delhi, Patiala, Jodhpur 21200 and 0000 UTC 474

Stability indices
Showalter index (SI), Rackliff’s index (RI), Jefferson’s modified index (JMI),
convective index of REEP (CIR), George index (GI), vertical total index (VTI),
Cross total index (CTI), total totals index (TTI), Modified George index (MGI),
modified vertical total index (MVTI), modified cross total index (MCTI), mod-
ified total totals index (MTTI), potential wet-bulb index (PWBI), lifted index
(LI), potential instability index (PII), severe weather threat index (SWTI)

Delhi, Patiala, Jodhpur 21200 and 0000 UTC 96

NCEP interpolated data
Geopotential height (gpm), dry-bulb temperature, zonal and meridional com-
ponents of wind, vertical (w) component of wind, and specific humidity (q) at
850-, 700-, 500-, 300-, and 200-hPa levels

30 stencil points 21200, 0000, and
11200 UTC

2700

Total 3306

* In the time column, 21200 and 0000 UTC observations are recorded before forecast issuing time, i.e., 0300 and 11200 UTC observations
are after forecast issuing time, i.e., they are numerical analyses.

the development of the PPM prediction equations, it is
valuable to have these terms in the equation when ap-
plying them to the outputs of the high-resolution me-
soscale model. These predictors provide a way of making
use of the model forecast distinction on this scale.

Precipitation is treated as a binary predictand for PoP.
If measurable precipitation is observed, the binary pre-
dictand value is set to 1; if no measurable precipitation
is observed, the predictand value is set to 0. The thresh-
old value of precipitation is taken as 0.1 cm, which is
the least measurable snow depth. The 24-h accumulated
snow depths are found to be highly variable. The pre-
cipitation reported on a particular day is the accumulated
snow depth in the 24 h ending at the reporting time,
that is, 0300 UTC. Snowfall depths are classified into
four groups: 0.1–12.0, 12.1–24.0, 24.1–48.0, and $48.1
cm. This classification is used for avalanche forecasting
in India. But for the rest of this work snow depths are
converted into the corresponding water equivalent and
then compared with the model’s precipitation fields. It
may be noted that while converting snow depth into the
water equivalent, snow density is taken into consider-
ation by computing the standard volume, density, and
mass relation.

The PoP model is initiated at 0300 UTC to generate
a forecast for the next 24 h. The QPF model is initiated
at the same time only if the PoP model indicates the
precipitation occurrence as yes. This gives consistently
better results than including zero precipitation as a cat-
egory in the discriminant procedure of the QPF model.

As 24-hourly accumulated precipitation amounts are
observed only at 0300 UTC, the PoP and QPF models

are initiated at 0300 UTC to generate a forecast for the
next 24 h (day 1 forecast). The predictors at three time
levels—0000 UTC, 1200 UTC prior to the initiation
time of the forecast (0300 UTC), and future time level
1200 UTC—are utilized for the development of the PoP
and QPF models based on PPM.

3. Formulation of the probability of precipitation
forecast model

Predictors that explain the maximum variance for 24-
h PoP forecasts are selected from the set of potential
predictors by using the stepwise regression technique
following Draper and Smith (1996). The stepwise pro-
cedure requires a stopping criterion for the selection of
predictors. In this study, the process of selection of pre-
dictors is stopped if the new predictor contributes less
than 0.5% to the percentage of variance explained by
its inclusion as a predictor in the model. Nine significant
predictors are selected and then subjected to the devel-
opment of the PoP model.

In the development of the PoP model, the value of
the predictand, Y, is taken as 1 if precipitation occurs
and 0 if it does not. Thus, the value of Y varies from 0
(0%) to 1 (100%). Using this philosophy, the values of
Y are recalculated for all observations of the develop-
mental sample. If the reestimated value of Y is greater
than 1, it is made equal to 1 and if it is less than 0, it
is made equal to 0. The recalculated values of Y are
grouped into intervals of 0.1. For each group, the ob-
served probabilities of occurrence and nonoccurrence
of precipitation are evaluated. The results for one site,
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FIG. 4. Reliability diagram for the probability of occurrence–nonoccurrence of precipitation events at
Sonamarg using the regression method.

Sonamarg, are presented in the reliability diagram in
Fig. 4 for the PoP model along with the best-fit curve.
A cutoff point (where curves representing occurrence
and nonoccurrence intersect) is chosen between 0 and
1 as given in the reliability diagram (Fig. 4) for Son-
amarg. The purpose is to find the threshold value of Y
for converting the probability forecast into a categorical
forecast of the occurrence or nonoccurrence of precip-
itation. For Sonamarg, if Y is less than 0.55, nonoc-
currence of precipitation is forecast and if Y is greater
than or equal to 0.55, occurrence of precipitation is fore-
cast. Similarly the cutoff values for Haddan Taj and
Manali are 0.60 and 0.54, respectively. It may be noted
that the PoP on the occurrence of precipitation can be
predicted as such in terms of a probability percentage.
However, as the precipitation is recorded only categor-
ically—that is occurred/not occurred as an amount of
precipitation—for the evaluation of the PoP model the
probabilistic percentage prediction is converted into a
categorical forecast as stated above. Thus, the PoP mod-
el can be used either for probabilistic prediction or a
categorical forecast.

The predictors that are selected for PoP forecasting
are given in Table 3 for Sonamarg, Haddan Taj, and
Manali, respectively. Letters and numbers (prefix to the
notation of the selected predictor) in the notation of the
predictor represent the geographical direction toward
which that station is located and the number of the circle
in which that predictor belongs, respectively (shown in
Fig. 3). The superscript represents the time at which that
candidate predictor is observed and the subscript rep-
resents the level at which that candidate predictor is
observed or levels between which the mean/difference
of that candidate predictor is computed. These are in-
terpolated from the NCEP–NCAR reanalysis data. For
example, E3(w) indicates the vertical component of00UTC

850hPa

wind (w) from the NCEP–NCAR reanalysis interpolated

at circle point 3 toward the east. The superscript shows
that this predictor comes from 0000 UTC, and the sub-
script shows that it is for 850 hPa. Predictors only hav-
ing a letter as a prefix to their notation are station data
from IMD and that letter is the first letter of that station
name. For example, P(TT) represents the dry-bulb00UTC

Surface

temperature (TT) at the surface that is observed at 0000
UTC at Patiala. The cumulative variance explained, cor-
relation coefficients, and multiple correlation coeffi-
cients explained by the selected predictors at three sites
are also presented in Table 3.

Vertical velocity at station E3 is negatively correlated
to the occurrence of precipitation at all three stations.
Rising motion leads to the condensation of the available
moisture and hence improves the chances of the oc-
currence of precipitation. Therefore, this component
supports cloud formation and hence precipitation. Fur-
ther, the surface dry-bulb temperature at Patiala also
shows a significant contribution toward the occurrence
of precipitation at Sonamarg and Manali. Most of the
time, high temperatures and specific humidities at the
surface, high values of specific humidity at 500 hPa,
and warm air between 500 and 850 hPa are conducive
to the occurrence of precipitation. All of the predictors
selected for the PoP model have a physical basis for the
occurrence of precipitation. The correlation between the
occurrence–nonoccurrence of precipitation and its fore-
cast at Sonamarg, Haddan Taj, and Manali are 0.58,
0.55, and 0.43, respectively.

4. Formulation of the quantitative precipitation
forecast model

Precipitation at the three selected sites is mainly due
to WDs. The amount of precipitation is extensively
modulated due to the existing orography. Mesoscale cir-
culation contributes immensely toward defining the type
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and amount of precipitation. Due to the high spatial and
temporal variability of the precipitation, a four-group
classification of snow depth is used: 0.1–12.0, 12.1–
24.0, 24.1–48.0, and $48.1 cm.

Probabilistic QPF models are developed using mul-
tiple discriminant analysis (MDA). The MDA procedure
yields (G-1) discriminant functions for the G groups,
which are used to classify an event (Miller 1962). Klein
(1978) and Wilson (1982) have used MDA for fore-
casting precipitation amounts.

The QPF model is initiated at 0300 UTC only if the
PoP model forecasts the occurrence of precipitation. The
predictors selected for the PoP model are used in the
development of the QPF model. However the QPF mod-
el is not constrained by the PoP model as far as the
development and functioning of the QPF model is con-
cerned. The QPF model provides the probabilistic fore-
cast of the most likely group in terms of precipitation
during the next 24 h. Since there are four groups in the
present study, the MDA procedure yielded three dis-
criminant functions of the form

z 5 w x 1 w x 1 w x 1 · · · 1 w x ,g 1 1 2 2 3 3 m m (1)

where zg are discriminant scores (functions), wi are the
discriminant weights (coefficients), and xi are the in-
dependent variables. The interpretation of the discrim-
inant weights involves the examination of the sign and
the magnitude of the weights. Independent variables
with relatively large weights contribute more to the dis-
criminating power of the function than the smaller ones.
Thus, when the sign is ignored, each weight represents
the relative contribution of its associated variable to that
discriminant function. The sign merely denotes that the
variables make either a positive or a negative contri-
bution. The models are evaluated using developmental
data as well as test datasets.

A set of observations (e.g., the nine predictors) is
assigned to one of the four groups using the sum of the
squared distance principle. That is, an observation y is
assigned to group g if

M M

2 2[d (y 2 x )] # [d (y 2 x )] ,O Om g m h
m51 m51

for all h ± g, (2)

where dm are the discriminant functions (in our case M
5 3), y is the set of observations of the predictors (x1,
. . . , x9), and xg is the vector of mean values of the
predictor variables in the four groups.

5. Experiments for the validation of the PoP and
QPF models

The PoP and QPF models are evaluated with inde-
pendent DJFM data for 1996–97. Four experiments are
designed to evaluate the performance of the models with
four different types of independent datasets as predic-
tors. Predictors selected by the models from station data,
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TABLE 4. MM5 model configuration used in this study.

Model
Fifth-generation PSU–NCAR Mesoscale

Model, version 2.12

Dynamics Nonhydrostatic with 3D Coriolis force
Main prognostic vari-

ables
U, y, w, T, p9, and q

Map projection Lambert conformal mapping
Central point of do-

main
338N, 758E

No. of horizontal grid
points

165 and 105 grid points for x and y, re-
spectively

Horizontal grid dis-
tance

60 km

No. of vertical levels 23 half sigma levels (7 levels within
boundary layer) (24 full sigma levels
are 1, 0.99, 0.98, 0.96, 0.93, 0.89,
0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55,
0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2,
0.15, 0.1, 0.05, and 0.0)

Horizontal grid
scheme

Arakawa B grid

Time integration
scheme

Leapfrog scheme with time-splitting
technique

Lateral boundary con-
ditions

Nudging toward the NCEP–NCAR re-
analysis

Radiation scheme Dudhia’s shortwave/longwave simple
cloud radiation scheme with frequen-
cy of 30 min

Planetary boundary
layer parameteriza-
tion schemes

Hong–Pan (as implemented in NCEP
MRF model)

Cumulus parameteri-
zation schemes

Betts–Miller

Microphysics Explicit scheme of Reisner (mixed
phase)

Soil model Multilayer soil model
Topography U.S. Geological Survey 109 topography
SST and surface pa-

rameters
NCEP–NCAR reanalysis

namely, Jodhpur, Patiala, and Delhi, are the same in all
four of the experiments. The rest of the predictors, se-
lected from the reanalysis data and numerical model
output, are interpolated at 30 stencil points (Fig. 3) as
mentioned in section 2. These experiments are formu-
lated to compare the performance of the PoP and QPF
models based on the concept of PPM using selected
predictors from different types of analyses and model
outputs.

a. Experiment 1 (Ex-1)

In experiment 1, IMD station observations and
NCEP–NCAR reanalysis data for December 1996 and
January, February, and March 1997 (DJFM 1996–97)
are used as predictors. The NCEP–NCAR reanalysis
data are available at a horizontal resolution of 2.58 lat-
itude 3 2.58 longitude. The NCEP–NCAR reanalyses
are interpolated at 30 stencil points (Fig. 3) to provide
the required predictors for evaluating the performance
of the PoP and QPF models with independent datasets.
It may be noted that as the PoP and QPF models were
developed on the concept of the PPM, some of the pre-
dictors at future time steps are required. Therefore, ex-
periment Ex-1 with the NCEP–NCAR reanalysis data
as predictors is hypothetical from an operational point
of view. However, it is an appropriate experiment with
1996–97 analyses as independent cases for evaluation
as well as a comparison of the performance of the PoP
and QPF models.

b. Experiment 2 (Ex-2)

In method 2, the PoP and QPF model predictors are
obtained from the NCMRWF operational analysis data
for DJFM 1996–97 and IMD station observations. The
NCMRWF operational analysis is available at a hori-
zontal resolution of 1.58 latitude 3 1.58 longitude. The
NCMRWF analysis is interpolated at 30 stencil points
(Fig. 3) to provide the required predictors to evaluate
the performance of the PoP and QPF models with in-
dependent datasets. Like Ex-1, this is also a hypothetical
experiment from an operational point of view.

c. Experiment 3 (Ex-3)

In experiment 3 (Ex-3), IMD observations and the
NCMRWF operational global spectral model T80 day
1 model forecast are used as predictors to evaluate the
performance of the PoP and QPF models for DJFM
1996–97. Details of the T80 spectral global model are
given in the work of Mohanty et al. (1994). The T80
model outputs are available at a horizontal resolution
of 1.58 latitude 3 1.58 longitude and are interpolated at
30 stencil points (Fig. 3) to provide the required pre-
dictors. This is a realistic experiment as the future state
of atmospheric circulations is taken from the T80 nu-
merical model output for the PoP and QPF models based

on the PPM concept and thus can be used in real-time
operational applications.

d. Experiment 4 (Ex-4)

The fourth experiment (Ex-4) uses numerical model
output from the fifth-generation Pennsylvania State Uni-
versity–NCAR (PSU–NCAR) Mesoscale Model (MM5)
for DJFM 1996–97. In this method, observations from
IMD stations and the day 1 forecast from the mesoscale
model provide potential predictors. The MM5 simula-
tions use the initial and boundary conditions from the
NCEP–NCAR reanalysis data. Details of the MM5 are
given by Dudhia et al. (1998). A brief description of
the model configuration is presented in Table 4. The
MM5 outputs have a horizontal resolution of 0.58 lat-
itude 3 0.58 longitude. Here, too, the MM5 day 1 fore-
cast model outputs are interpolated at 30 stencil points
(Fig. 3) to serve as potential predictors. It may be noted
that in this case the model output data used as predictors
over the data-sparse region are of the same horizontal
resolution as that of the concentric circles with 30 stencil
points (Fig. 3). Thus the mesoscale features simulated
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by the high-resolution MM5 over the western Himalayas
are preserved without any horizontal smoothing in the
process of interpolation to an equivalent resolution, 30
stencil points (Fig. 3), to provide potential predictors
for the PoP and QPF models. It may be noted that this
type of experiment is close to a real-time operational
setup, provided the MM5 uses global simulation fields
as lateral boundary conditions.

In addition to these four sets of numerical experiments
for estimating and evaluating the PoP and QPF models,
direct numerical model output from the T80 global spec-
tral model (T80D1) and the MM5 regional mesoscale
model (MM5D1) are also examined. Thus, a total of six
sets of predictions of PoP and QPF are produced for
the comparison and evaluation of the performance of
various models.

6. Results and discussion

The results of the PoP and QPF models determined
with the dependent/developmental datasets from DJFM
1984–96 and independent datasets from DJFM 1996–
97 are presented. The performances of the PoP and QPF
models are evaluated by computing various statistical
skill scores. The verification of categorical forecasts and
the percentage of correct forecasts are also computed.
Comprehensive analyses are carried out to assess the
model skills of the four experiments and the two direct
NWP model outputs. Out of the six sets of forecasts for
the independent cases during DJFM 1996–97, Ex-1 and
Ex-2 may be considered to be control experiments, as
selected predictors are taken from the future state of the
analysis sets, which would not be available for opera-
tional/real-time forecasts. These control experiments
will not only be idealized cases for comparison and
evaluation of the PoP and QPF models with different
sets of predictors, but can also be used to understand
the objective forecast approach over a data-sparse region
with rugged orography.

In this section, emphasis has been given to the per-
formance of PoP and QPF models based on the PPM
concept using independent datasets for DJFM 1996–97.
However, for the sake of completeness, the performance
of these models with development datasets from DJFM
1984–96 is also presented. The performance of the mod-
els is examined for all three of the locations viz, Son-
amarg, Haddan Taj, and Manali, which represent dif-
ferent geographical regions over the western Himalayas.

a. Performance of the PoP forecast model

The regression model for forecasting PoP at these
sites is evaluated using the developmental DJFM data
for the 12-yr period 1984–96 and the independent data
for DJFM 1996–97. For the purpose of verification of
the categorical forecasts, a 2 3 2 contingency table is
prepared and the verification parameters and skill scores
are evaluated as defined in appendix A (Wilks 1995).

For the developmental data, Table 5 illustrates that
the probability of detection (POD) of the occurrence of
precipitation at Sonamarg and Haddan Taj is relatively
higher than that at Manali. The false alarm rate (FAR)
for all three locations does not exceed 0.13, which il-
lustrates that the PoP has a better POD of the nonoc-
currence (C-NON) of precipitation (POD in the range
of 0.94–0.97) than it does the occurrence of precipita-
tion (POD ranging from 0.68 to 0.86). This may be
attributed to the fact that the number of no precipitation
days is generally higher compared to the number of days
with precipitation. The Heidke skill score (HSS) is 0.8
for Sonamarg and Haddan Taj, while it is 0.7 for Manali.
The other skill scores/evaluation indices for the model
with the dependent dataset also show reasonably high
values toward the perfect forecast criteria (appendix A).
It is interesting to note that the overall performance of
the PoP model, which is measured by the percent correct
(PC), is very high and is about 90% at all three locations.
All the forecast verification indices estimated from the
contingency tables clearly demonstrate that the PoP
model at all three locations provides very satisfactory
performance regard to with the developmental data.

The performance of the PoP models with the inde-
pendent dataset from DJFM 1996–97 is investigated ex-
tensively using different types of predictors in Ex-1–
Ex-4 and is also compared with direct numerical model
output, T80D1 and MM5D1. The comparison of Ex-1
and Ex-2, which are the control experiments with the
NCEP–NCAR and NCMRWF analyses as predictors,
indicates that, as with the dependent cases, the skill of
the model in predicting the nonoccurrence events more
successfully with correct nonoccurrence (C-NON) is
higher than the probability of detection (POD). The FAR
in both of the control run experiments does not exceed
0.37. In Ex-1 and Ex-2, the HSSs at Sonamarg and
Haddan Taj are about 0.6 except at Manali in Ex-2 where
the NCMRWF analysis provides the predictors. The
overall performances of both of the control experiments
as illustrated by percent correct are quite satisfactory,
within the range of 81%–88%.

The performance of the models with independent data
as illustrated in Ex-3 and Ex-4 depicts that the PoP
models can predict the nonoccurrence of precipitation
events better than it can the occurrence of precipitation
events. This aspect of the PoP models agrees with the
dependent data as well as the control experiments. Sim-
ilarly, the performance of the PoP at Sonamarg and
Haddan Taj with respect to POD is reasonably higher
than that at Manali. The Heidke skill scores for Ex-3
and Ex-4 are almost in the same range as those of the
control experiments. The overall performance of Ex-3
and Ex-4 with respect to percent correctness is almost
the same for all three stations. In Table 5, the percent
correct with these two experiments ranges from 85% to
89%, which is slightly better than that of the control
experiments. However, the total number of occurrences
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TABLE 5. Verification measures for the PoP model. Ex-1 uses NCEP–NCAR reanalysis, Ex-2 uses NCMRWF analysis, Ex-3 uses T80
global spectral model outputs, and Ex-4 uses MM5 regional model outputs.

Measure
Dependent data

(DJFM 1984–96)

Independent data (DJFM 1996–97)

Based on PPM

Ex-1 Ex-2 Ex-3 Ex-4

Direct model output

T80D1 MM5D1

Sonamarg
POD
FAR
MR
C-NON
CSI

0.86
0.07
0.14
0.95
0.80

0.71
0.16
0.29
0.94
0.63

0.61
0.21
0.39
0.93
0.52

0.68
0.16
0.32
0.94
0.60

0.74
0.18
0.26
0.93
0.64

0.61
0.63
0.39
0.53
0.30

0.39
0.35
0.61
0.90
0.33

TSS
HSS
BIAS
PC

0.81
0.81
0.92

91

0.65
0.68
0.84

87

0.53
0.57
0.76

83

0.62
0.66
0.82

86

0.66
0.68
0.89

87

0.14
0.12
1.63

55

0.30
0.33
0.61

74

Haddan Taj
POD
FAR
MR
C-NON

0.86
0.08
0.14
0.94

0.71
0.23
0.29
0.90

0.82
0.21
0.18
0.90

0.82
0.18
0.18
0.92

0.84
0.18
0.16
0.92

0.58
0.63
0.42
0.55

0.47
0.36
0.53
0.88

CSI
TSS
HSS
BIAS
PC

0.80
0.80
0.80
0.94

90

0.59
0.61
0.63
0.92

84

0.67
0.72
0.71
1.03

88

0.69
0.73
0.73
1.00

88

0.71
0.76
0.75
1.03

89

0.29
0.13
0.12
1.55

56

0.38
0.35
0.38
0.74

75

Manali
POD
FAR
MR
C-NON
CSI

0.68
0.13
0.32
0.97
0.60

0.64
0.28
0.36
0.92
0.51

0.43
0.37
0.57
0.92
0.34

0.50
0.22
0.50
0.96
0.44

0.57
0.16
0.43
0.97
0.52

0.61
0.65
0.39
0.66
0.28

0.71
0.55
0.29
0.74
0.38

TSS
HSS
BIAS
PC

0.63
0.70
0.77

90

0.57
0.59
0.89

86

0.35
0.40
0.68

81

0.46
0.52
0.64

85

0.54
0.61
0.68

88

0.26
0.21
1.75

64

0.46
0.38
1.57

74

of precipitation events with the independent data from
DJFM 1996–97 is limited to about 35 cases.

The direct numerical model output experiment
MM5D1 illustrates that the numerical models also pre-
dict the nonoccurrence of precipitation events better
than the probability of precipitation events. The nu-
merical models give larger FARs compared to the sta-
tistical dynamical PoP model. The overall performance
of MM5 is better than that of the T80 spectral global
model. The MM5 also has a better percent correct score
than does the global spectral T80 model. Comparison
of all the statistical verification parameters/skill scores
clearly indicates that the overall performance of the
MM5 is better than that of the global spectral T80 mod-
el. This may be attributed to the fact that the mesoscale
model is of higher resolution at 0.58 latitude 3 0.58
longitude and can resolve the complex topography more
accurately than the T80 model, having a horizontal res-
olution of 1.58 latitude 3 1.58 longitude.

It is interesting to compare the performance of the
numerical models T80D1 and MM5D1 with the cor-
responding statistical dynamical models Ex-3 and Ex-
4 for PoP based on these numerical model outputs. With
respect to all the evaluation parameters/skill scores, Ex-

3 and Ex-4 yielded considerably better results than the
corresponding direct numerical model outputs except
for POD at Manali. The result with the most contrast
is that the FAR is considerably reduced by the statis-
tical–dynamical models (Ex-3 and Ex-4) compared to
the direct numerical model outputs. The HSS for these
statistical–dynamical models is much higher than the
HSS for the direct numerical models. Similarly the per-
cent correct with respect to Ex-3 and Ex-4 is higher than
for the respective numerical model outputs. These re-
sults clearly demonstrate that the use of numerical model
outputs as predictors in statistical–dynamical models
based on the PPM concept considerably improves the
performance of location-specific PoP as compared to
the direct numerical model outputs.

b. Performance of the QPF model

QPF models based on discriminant analysis to predict
the categorical quantity of precipitation are evaluated
with the development and independent datasets. The
skill scores and the other verification measures are cal-
culated using a 4 3 4 contingency table (appendix B;
Wilks 1995). The skill scores and other verification mea-
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TABLE 6. Contingency table and skill scores of the QPF model. Ex-1 uses NCEP–NCAR reanalysis, Ex-2 used NCMRWF analysis, Ex-3
uses T80 global spectral model outputs, and Ex-4 uses MM5 regional model outputs.

Categories Measure
Dependent data

(DJFM 1984–96)

Independent data (DJFM 1996–97)

Ex-1 Ex-2 Ex-3 Ex-4 T80D1 MM5D1

Sonamarg
I
II
III
IV

CSI
CSI
CSI
CSI
HSS
PC

0.47
0.25
0.18
0.26
0.22

45.0

0.76
0.00
0.33
0.67
0.49

74.0

0.91
0.40
0.50
1.00
0.68

78.0

0.76
0.57
0.50
0.25
0.68

81.0

0.72
0.00
0.80
1.00
0.77

85.0

0.46
0.31
0.00
0.00
0.14

43.0

0.30
0.20
0.30
0.30
0.26

47.0

Haddan Taj
I
II
III
IV

CSI
CSI
CSI
CSI
HSS
PC

0.40
0.16
0.21
0.18
0.19

43.0

0.34
0.23
0.00
0.16
0.12

41.0

0.53
0.45
0.00
0.22
0.33

52.0

0.44
0.30
0.25
0.22
0.28

48.0

0.55
0.25
0.16
0.22
0.30

53.0

0.40
0.22
0.20
0.20
0.25

45.0

0.36
0.14
0.00
0.00
0.05

28.0

Manali
I
II
III
IV

CSI
CSI
CSI
CSI
HSS
PC

0.38
0.20
0.15
0.17
0.18

41.0

0.50
0.43
0.00
0.40
0.37

56.0

0.50
0.30
0.00
0.50
0.33

58.0

0.57
0.60
0.40
0.00
0.49

64.0

0.67
0.40
0.50
0.30
0.54

69.0

0.44
0.22
0.20
0.00
0.17

41.0

0.40
0.09
0.67
0.13
0.17

40.0

sures of the QPF models are illustrated in Table 6 for
Sonamarg, Haddan Taj, and Manali.

For the developmental data, the critical success index
(CSI) for the QPF model is higher in category I as
compared to other categories at all three stations. This
illustrates the fact that the QPF model can predict the
precipitation amount in lower snowfall categories better
than in higher categories. In most of the categories, the
CSI is higher at Sonamarg than at Haddan Taj and Man-
ali. The HSS ranges from 0.18 to 0.22 at these sites. It
is interesting to note that the overall performance of the
QPF model in terms of percent correct (PC) with the
developmental sample ranges from 41% to 45%. All the
forecasts estimated from the contingency tables show
that the QPF models at all three locations are able to
provide reasonable performance over these data-sparse
regions.

The performance of the QPF models with the inde-
pendent data from DJFM 1996–97 is evaluated using
different types of predictors in Ex-1–Ex-4 and is com-
pared with direct numerical model outputs. Experiments
Ex-1 and Ex-2 are control model runs with the NCEP–
NCAR and NCMRWF operational analyses, respec-
tively. Higher CSI values are shown for Ex-2 than for
Ex-1. This illustrates the fact that Ex-2 produces a better
prediction of the probability of occurrence of the quan-
tity of precipitation in respective categories than does
Ex-1 at Sonamarg and Haddan Taj. These two experi-
ments show very similar results at Manali, but the over-
all performance of Ex-2 is better. At Sonamarg and Had-
dan Taj, the HSSs are reasonably higher in Ex-2 (0.68
and 0.33) than in Ex-1 (0.49 and 0.12), whereas the

reverse is true at Manali (0.33 for Ex-2 and 0.37 for
Ex-1). The overall percent correct for Ex-1 and Ex-2
are 74% and 78% at Sonamarg, 41% and 52% at Haddan
Taj, and 56% and 58% at Manali.

At Sonamarg, a comparison of the CSI of the QPF
models with independent data in Ex-3 and Ex-4 indi-
cates that Ex-4 better predicts the higher categories of
precipitation than does Ex-3, whereas Ex-3 performs
better in the lower categories of precipitation. However,
at Haddan Taj and Manali Ex-4 performs better in the
lower categories than the higher categories. At all three
locations the Heidke skill scores are better for Ex-4 than
for Ex-3. The percent correct with these two experi-
ments range from 0.28 to 0.77 and are better than are
those of the control experiments (Ex-1 and Ex-2). Fur-
ther, at all three locations, the overall performance of
Ex-4 is better than Ex-3.

The direct numerical model output experiments
T80D1 and MM5D1 demonstrate that the CSI is higher
for category I than for the other categories except that
the CSI is 0.67 for category III at Manali, suggesting
that value is a fluke. The overall performance of both
the numerical model outputs are almost the same at
Manali (41% and 40%), whereas at Haddan Taj, the
T80D1 model performs better with 45% versus 28%
percent correct and at Sonamarg, the MM5D1 model
performs better with 47% versus 43% percent correct.
However, it may be noted that out of 35 cases with
precipitation, the lowest category of snow depth is the
most common. In the highest category, the number of
events does not exceed 5. Therefore, the results of the
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TABLE A1. The 2 3 2 contingency table format.

Observed

Forecast

Yes No

Yes
No

A
C

B
D

QPF model for the highest category of precipitation may
be considered to be tentative.

It is of interest to compare the performance of nu-
merical models T80D1 and MM5D1 with the corre-
sponding statistical dynamical model results of Ex-3 and
Ex-4 based on these numerical model outputs. The over-
all values of the CSI, HSS, and PC are reasonably higher
for the statistical dynamical models (Ex-3 and Ex-4) as
compared to direct numerical model outputs. These re-
sults again confirm the fact that the use of large-scale
meteorological fields of numerical model outputs as pre-
dictors in statistical–dynamical models significantly im-
proves the performance of the QPF models as compared
to direct numerical model outputs.

7. Conclusions

PoP and QPF models are developed and their per-
formances are evaluated with four experiments and two
direct numerical model outputs. Based on the evaluation
of the performance of the models, the following broad
conclusions are drawn.

The PoP models provide satisfactory results in fore-
casting the probabilistic occurrence–nonoccurrence of
precipitation. It may be noted that the nonoccurrence of
precipitation is better predicted by PoP models than is
the occurrence of precipitation. The statistical–dynam-
ical models for forecasting QPF by classification of pre-
cipitation amounts into four categories perform with
reasonable accuracy. Further, PoP models perform con-
siderably better than the QPF models based on CSI,
HSS, and PC skill scores. This may be attributed to the
fact that precipitation amounts are highly variable in
space and time as compared to the occurrence of pre-
cipitation, which is mainly due to the passage of large-
scale synoptic events during winter months.

A numerical model with finer resolution can provide
better representation of the rugged topography over the
region of interest and hence the MM5 model simulates
weather events better than the coarser-resolution global
T80 model. The use of numerical weather prediction
model outputs as predictors in statistical–dynamical
models substantially improves the forecast of the prob-
ability of occurrence of precipitation as well as the
amount of precipitation as compared to direct numerical
model outputs. Further, the MM5 model outputs as pre-
dictors in a statistical–dynamical model (Ex-4) outper-
form T80 model outputs as predictors in a statistical–
dynamical model (Ex-3).

From this study, it may be concluded that numerical
model outputs used as predictors in a statistical–dynam-
ical model improve PoP and QPF forecasts over a data-
sparse mountain region like the western Himalayas. Fur-
ther, the improvement in the prediction of precipitation
will depend on the improvement in the performance of
mesoscale models along with an enhanced mesoscale
observational network, mesoscale data assimilation, and
better use of nonconventional data from various sources.
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APPENDIX A

Verification Measures Used for Forecast Evaluation

The values in Table A1 are defined as follows:

1) When an event is predicted to occur (forecast oc-
currence) and in reality it does occur (observed oc-
currence), then it is classified as A; otherwise (ob-
served nonoccurrence) it is classified as C;

2) when an event is predicted not to occur (forecast
nonoccurrence) and in reality it does occur (observed
occurrence), then it is classified as B; otherwise (ob-
served nonoccurrence) it is classified as D;

3) A 1 B is the total number of cases of occurrence of
precipitation as observed;

4) C 1 D is the total number of cases of nonoccurrence
of precipitation as observed; and

5) A 1 B 1 C 1 D is the total number of forecasts.
6) Evaluation measures derived from Table A1 are

Probability of detection (POD)

A
POD 5 ,

A 1 B

False alarm rate (FAR)

C
FAR 5 ,

C 1 A

Miss rate (MR)

B
MR 5 ,

B 1 A

Correct nonoccurrence (C-NON)

D
C-NON 5 ,

D 1 C

Critical success index (CSI)
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TABLE B1. The 4 3 4 contingency table format.

Observed

Forecast

I II III IV Total

I
II
III
IV
Total

a
e
i
m
N

b
f
j
n
O

c
g
k
o
P

d
h
l
p
Q

J
K
L
M
T

A
CSI 5 ,

A 1 B 1 C

True skill score (TSS)

A D
TSS 5 1 2 1,

A 1 B D 1 C

Heidke skill score (HSS)

2(AD 2 BC)
HSS 5 ,

2 2B 1 C 1 2AD 1 (B 1 C)(A 1 D)

Bias (BIAS) for occurrence

A 1 C
BIAS 5 , and

A 1 B

Percentage correct (PC)

A 1 D
PC 5 100%.

A 1 B 1 C 1 D

For a best/perfect forecast series, B 5 0 and C 5 0
and hence

POD 5 1, FAR 5 0, MR 5 0, C-NON 5 0,

Bias 5 1, CSI 5 1, TSS 5 1, HSS 5 1,

and

PC 5 100%.

APPENDIX B

Categorical Verification of Forecasts
(Four-Category Events)

In Table B1 the total number of observed events in
category I is

J 5 a 1 b 1 c 1 d,

the total number of forecast events in category I is

N 5 a 1 e 1 i 1 m, and

in a similar fashion O, K, P, L, Q, and M are computed.
Then the total numbers of events are

T 5 J 1 K 1 L 1 M 5 N 1 O 1 P 1 Q.

Evaluation measures derived from Table B1 are

Percentage correct (PC)

a 1 f 1 k 1 p
PC 5 100%,

T

Critical success index (CSI)

a f k
CSI 5 , , ,

J 1 N 2 a K 1 O 2 f L 1 P 2 k

p
,

M 1 Q 2 p

Heidke skill score (HSS)

JN 1 KO 1 LP 1 MQ
a 1 f 1 k 1 p 2

T
HSS 5 .

JN 1 KO 1 LP 1 NQ
T 2

T
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