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I n  m a n y  r e a l  life s i t u a t i o n s ,  w e  h a v e  to  d r a w  con -  
c lu s ions  f r o m  d a t a  w h i c h  a r e  n o t  c o m p l e t e  a n d  
h a v e  b e e n  a f f e c t e d  by  m e a s h r e m e n t  e r r o r s .  S u c h  
p r o b l e m s  h a v e  b e e n  a d d r e s s e d  f r o m  t h e  t i m e  of  
B a y e s  a n d  L a p l a c e  ( l a te  1700 ' s )  u s i n g  c o n c e p t s  
w h i c h  p a r a l l e l  B o l t z m a n n ' s  u s e  o f  e n t r o p y  in  t h e r -  
m a l  phys i c s .  T h e  i dea  is t o  a s s i g n  p r o b a b i l i t i e s  
to  d i f f e r e n t  p o s s i b l e  c o n c l u s i o n s  f r o m  a g i v e n  se t  
of  d a t a .  A c r i t i c a l  - a n d  s o m e t i m e s  c o n t r o v e r -  
s ial  - i n p u t  is a ' p r i o r  p r o b a b i l i t y ' ,  w h i c h  r e p r e -  
s e n t s  o u r  k n o w l e d g e  b e f o r e  a n y  d a t a  a r e  g i v e n  o r  
t a k e n !  T h i s  b o d y  of  ideas  is i n t r o d u c e d  in t h i s  
a r t i c l e  w i t h  s i m p l e  e x a m p l e s .  

From the earliest times, thinkers have recognised two 
distinct ways of learning about the world we live in. Our  
educational  system gives prominence to the first one - 
'deduction' .  The  best example is of Course Euclid 's con- 
struction of geometry from a few innocent  looking ax- 
ioms. In the world of fiction, Sherlock Holmes claimed 
to 'deduce'  wha t  had really happened  in a crime from 
a few clues. But  in reality, what  most  of us (Sherlock 
Holmes included) practise, should be called ' induct ion ' .  
Logicians have given this name to drawing conclusions 
from observations or experiments  by a ra ther  different 
process. To s tar t  with, we have a large number  of possi- 
ble hypotheses to choose from. Observations and exper-  
imental  da ta  are used to narrow down the possibilities. 
The word 'hypothesis '  is being used in a ra ther  simple 
sense here. For example, if we are t ry ing to de termine  
the elliptical orbit  of an asteroid, the  'hypothesis '  is just  
a set of numbers  giving the plane of the  orbit, the  size 
and shape and orientat ion of the ellipse in this plane, 
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Figure 1. The (unknown) 
orbit of  the asteroid is 
shown by dashed lines. At 
three different times t~, t2, t~ 
observations give the three 
directions (but not dis- 
tances) of ErA 1, E 2 A 2, and 
E3A 3. Theearth's orbitEIE 2 
E 3 is assumed known. 

and where the asteroid sits on the ellipse at a given 
time. We do not directly measure these numbers but 
rather the angular position in the sky at different times, 
as seen from the earth which is itself a moving platform. 
The situation is illustrated in Figure 1. 

Gauss faced precisely this problem of orbit determina- 
tion in the year 1801. A few observations of Ceres, the 
very first asteroid discovered, were available. He in- 
vented the so called 'method of least squares' to choose 
the best orbit consistent with the measurements avail- 
able. We now explain how his method fits in with our 
earlier general discussion. To simplify matters, we will 
assume, as in Figure 1, that the two orbits, of earth and 
asteroid, lie in a plane. We show in Figure 2 two kinds of 
graphs. One, made up of individual points, gives the ob- 
servations. The continuous curves, give the predictions 
of different possible orbits (i.e., hypotheses). 

Our first reaction is that it needs only four numbers to 
specify the orbit in the plane. These could be the x and y 
coordinates of the asteroid, and the x and y components 
of its velocity, at a given time (January 1, 1801, for 
example!). Four measurements ought to be enough, and 
we should be able to deduce the orbit without guesswork. 

Gauss invented 

the so called 

'method of least 

squares' to choose 

the best orbit 

consistent with the 

measurements 

available. 
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Figure 2. The points show 
the actual observations. 
The continuous curve A 
shows what we might re- 
gard as the best orbit. B is 
another orbit at a greater 
distance than A. The verti- 
cal lines through the ob- 
served points represent 
errors of measurement. 

lO 

Measurements are 

never exact, and 

the points would 

not lie exactly on 

the predicted curve 

even if we knew 

the orbiN 

But  Gauss, a l though  the  prince of ma thema t i c i ans ,  also 
knew the real world bet ter .  Measu remen t s  are never  
exact,  and  the  poin ts  would not  lie exact ly  on the  pre- 
dicted curve even if we knew the  orbit! We can s ta te  this  
in another  way. For each measu remen t ,  we can draw a 
vertical bar which represents  the  possible range in which 
the  t rue  value (of the  angle) could lie. Each po in t  has  
now become 'fuzzy' or 'b lurred '  in the  vertical d i rec t ion  
(The m e a su re men t  along the  x-axis, viz t ime, is usu- 
ally very accura te  and we do not  worry abou t  its errors  
here.) 

Now we can readily see tha t  there  is a cor responding  
fuzziness or unce r t a in ty  in the  curve d rawn t h o u g h  the  
points.  We have moved from deduc t ion  to induct ion .  
Other  names  for this process are ' inversion'  (going back 

from the  d a t a  to the  hypothesis)  and  's tat is t ical  infer- 
ence. ' 

Going back to Figure 2, why do we choose the  curve 
A ra ther  t h a n  the  curve B? An exper imente r  would say 

tha t  ' the devia t ions  of curve A from the  m e a s u r e m e n t s  
are consis tent  wi th  the  error bars,  while curve B lies well 
outs ide the  error bars. 

A 
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Now let us try and be more quanti tat ive.  Each error 
bar is really not a line with  sharp limits. Larger errors 
are less probable, but  not impossible. In fact, Gauss 
himself, building on the work of de Moivre and Laplace, 
proposed tha t  the probabili ty for the error to be x falls 
off proport ional ly to exp . This is the bell shaped 
graph sketched in Figure A. Box 1 gives a few more 
details about  this remarkable,  widespread distr ibution 
which we all call gaussian. The basic message of Box 1 
is t ha t  the error is itself the  sum of many smaller con- 
t r ibut ions  each of which may not have a gaussian dis- 

Box 1. The Gaussian Distribution 

A coin is tossed eight times. What is the most probable number of  heads? Four o f  course. Why is eight 

heads less probable than four? Because there is only one way to get eight heads, HHHHHHHH.  But there 

are 8C4=70 ways to get four heads, since we now have freedom to choose any four o f  the eight tosses to 

show heads. The full table o f  numbers is 

No. o f  heads 0 1 2 3 4 5 6 7 8 

No. of  cases 1 8 28 56 70 56 28 8 1 

and they are plotted in Figure A 

To get the probability, we have to divide by 

256. We have also superposed a bell shaped 

curve. This is how the probabili ty for n heads 

behaves when the number o f  tosses is very 

large (of  course, we have to relabel the axes if  

we have 158 tosses instead of  8!). This is the 

famous gaussian distribution. Its mathemati-  

cal form is 

P ( x ) = A e x p  ( (x-rn)2~ .;. 

A is a constant o f  proportionality. 

x = m is the peak of  the curve and also the average value ofx.  tr 2 is a constant which is called 'var iance ' .  

It measures the average o f  the square of  the deviation o f x  from m. 
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But let us 

remember that 

least squares is 

not sacred or 

perfect. It is only 

as good as the 

assumptions that 

went into it. 

tribution. But the sum does approach this law in many 
cases. We can think of the height of the gaussian as 
measuring the number of ways that a given error could 
be built up from the underlying individual contributions 
("errorlets' ?). The logarithm of this number is, there- 
fore, proportional to 

log(exp ( - x  2ai/2a2)) --  constant 
2 

Xi 

2a~" 

2 is the average of the square of xi .  Why do we take a~ 
the logarithm? This is a convenient thing to do when we 
want to multiply numbers! Come back to our original 
problem of determining the best orbit (F ig u re  2). When 
we guess a given curve, A or B, we are automatically 
attributing the deviations of the points from the curve 
to experimental error. So we should be asking ourselves 
- 'What is the probability that the errors took the values 
that we are suggesting?' This probability is obtained by 
multiplying gaussian functions for the individual errors 
at each measured point. We now want to maximise the 
joint probability, i.e., the product of probabilities. So 
we maximise the logarithm, which is 

log (Probability of errors) -- 

c o a s t  + a n o t h e r  c o . s t  - 

! 

In the simple case where all the a i s  are equal, this means 
we have to m i n i m i s e  the sum of the squares of all the 
errors (because of the negative sign in front of it). This 
is the famous method of least squares, and it is emi- 
nently sensible. It prevents us from doing silly things 
like drawing the theoretical graph well away from the 
points. It ensures that errors have both signs. But let 
us remember that least squares is not sacred or perfect. 
It is only as good as the assumptions that went into it. 
When the errors do not have a gaussian distribution, or 
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when we have some physical limits which restrict our or- 
bit, we can, and must  do better. Our example was really 
mean t  to introduce a broader  framework for hypothesis 
testing. 

This broader framework came even before Gauss. It is 
a t t r ibu ted  to Bayes and Laplace, who worked in the late 
1700's.! The  basic ( 'Bayesic?') idea is to use a simple 
theorem of conditional probabili ty due to Bayes (Box 2). 
We need it in the form. 

We should warn the reader 
that there are many o/her ap- 

proaches to statistical infer- 
ence. The Bayesean approach 
of this article uses concepts 
closest to enlropy. 

Box 2. Bayes' Theorem for Condit ional  Probabil i t ies  

One way of  understanding this theorem is via 

Figure B in which points stand for events and 

areas stand for probabilities. 

The horizontally' striped region A represents all 

cases or trials in which some event a occured. The 

vertically striped region B similarly stands for all 

instances of  b. The in te r sec t ionC o f t h e s e t w o  

regions is cross hatched and represents cases where 

both a & b occured. We can now say 

Area of  C =p(a,b) =jo in t  probability of  a and b 

Area of  A = p(a) = probability of  a 

Area of  B = p ( b )  = probability o r b  

Conditional probability of  a given that b has occured =p(a Jb) 

area of  C p(a,b) 

area of  A p(a) 

lIence, p(a,b)=p(a [ b) . p(a). Similarly, p(a,b) = p(b [ a) p(b). 

I[ence, equating these two, 

p ( a l b )  
p (b la )p (a )  

p(b) 

Since the left side is a function of  a for fixed b, we can treat the denominator  as a constant,  as we have in 

the main text. 
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Probability of H 
(given D) states 

the goal of all 
experimental 

science, viz., we 
are given data, and 

we try to assign 
probabilities to 

different 
hypotheses based 

on this data. 

Probability of H(given D) c~ Probability of D (given H) 
multiplied by Probability of H (not given anything.) 

Our choice of notation is deliberate. H stands for hy- 
pothesis, D stands for data. The left hand side states the 
goal of all experimental science, viz., we are given data, 
and we try to assign probabilities to different hypothe- 
ses based on this data. That  is what the notation P(H[ 
D) means. The right hand side of our equation tells us 
how we are to achieve this goal. It has two factors. The 
first one is the conditional probability P(D[H). In words, 
given a hypothesis (orbit in our earlier example) what 
is the probability that  the given da ta  could arise (e.g., 
angle measurements of the asteroid)? We have already 
talked about this when we multiplied gaussian (proba- 
bility) distributions for the errors at the various exper- 
imental points. In general, if we know how to predict 
with our hypothesis and we understand our experimen- 
tal errors, we should have no difficulty with P (D[H). 
(And if we don't  the first priority is to do so!). Our ear- 
lier discussion stopped at P(DIH ) - which statisticians 
call the 'likelihood function' when regarded as a function 
of H - for fixed D. Of course, it is an honest probability 
distribution for D, when H is fixed. 

But the rules of probability tell us that  this is not enough. 
We have to face up squarely to the second factor on the 
right side P(H). This is the unconditional probability 
that a particular hypothesis H is true. Since this has 
nothing to do with the data, it is called the 'prior' dis- 
tribution. Perhaps the philosophy of Kant shaped this 
terminology. He believed that  some things like space 
and time had to be given to us 'a priori', right at the 
beginning. We already had some kind of prior distribu- 
tion in mind in our orbit problem. We only drew curves 
like A or B which were based on Newton's laws of mo- 
tion and gravitation, and did not try others. Using P (H) 
to reject what we know to be impossible even before the 
observations are taken, is a good idea. But P(H) also as- 
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signs different weights to two hypotheses which are both 
possible =to-start with. This seems like introducing the 
exper imenters  prejudice into the interpreta t ion of data! 
Hot debates  continue on this point. The  ghost of the 
prior has haunted  Bayesian statistical inference from its 
birth.  Laplace himself coined a 'principle of insufficient 
reason' .  It was a way of making the prior a constant 
or flat function so as to be as even handed  as possible. 
This is similar in spirit to our accepting 1/2 and 1/6 as 
the probabilit ies for coins and dice. But when we come 
to a continuous variable q, going from zero' to one, do we 
say it has equal probabilit ies to be less than  or greater 
than  17 There  is a t rap  here pointed out by Laplace's 

2" 
coun t ryman  Bert rand.  W h y  not apply the  same (insuf- 
ficient!) reasoning to q2, which goes from zero to one? 
We would then conclude the q would be less than  0.707 
with  probabil i ty �89 Clearly one needs fur ther  input  to 
decide on a prior in cases like this. 

So far, we have just  touched the fringes of entropy con- 
cept,  when we looked at the logari thm of the number  of 
ways tha t  a given error could occur. But  we are now 
prepared  for the basic problem which faced Bol tzmann 
when he investigated the  theory of gases in the lat ter  
half  of the n ineteenth  century. There  is detai led discus- 
sion in the article by  Bhat tachar jee  in this issue, and 
we only give the bare min imum needed for this story. 
Bol tzmann would take the  total energy and total  vol- 
ume  of a gas as given - these correspond to the da ta  set 
D. Let us th ink of the  detai led position (x) and velocity 
(v) information of all the  molecules as our hypothesis 
H. Bol tzmann (and his great American contemporary,  
Gibbs) divided the space of x and v into cells of equal 
volume, measured by the  product  dxdv. Notice tha t  he 
singled out  x ra ther  than  x 3, v rather  than  v 5. This prior 
was based on his analysis of the dynamics  of collisions 
between molecules. The  rest is history. He was able 
to deduce Maxwell 's probabil i ty distr ibution law for the 
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In modern 
quantum language, 

one can state 
Boltzmann's prior 

in a physically 

appealing way. 
Every single 

energy level of the 
whole system gets 
equal probability to 

start with. 

2 Interestingly, this is a product of 
three gaussian distributions for v x, 

vy. v,. 

3 If all the letters were equally 
likely to occur,  this n u m b e r  

wou ld  be W=-26 ~~176 

molecular velocity components  v=, vy, Vz. 2 Even bet ter ,  
he was able to show how collisions would produce such 
a distr ibution even if it was not present  to s tar t  with.  
These results were in full agreement  with experiments ,  
both  earlier and later. In modern  quan tum language,  
one can state  Bol tzmann 's  prior in a physically appeal-  
ing way. Every single energy level of the whole system 
gets equal probabili ty to start  with. While Bol tzmann 
chose the volume in x - v space based on classical colli- 
sions, today we know that  this is equivalent to count ing  
energy states in quan tum theory. 

We now move forward about  half a century to 1948. 
St imulated by rapid advances in electronics, one of the  
best telephone systems in the world was established in 
the United States. Many of the new developments came 
from the Bell Telephone Laboratories (Bell Labs for short)  
and were published in the Bell  Sys tem Technical Jour- 
hal. Claude E Shannon, a young researcher at Bell, 
contr ibuted two papers on the Mathemat ica l  Theory  of 
Communicat ion.  His deep insight was to int roduce a 
quant i ta t ive measure of the amount  of information be- 
ing communicated.  After all, this information is wha t  
we really pay the  telephone company for! If you receive 
a message from someone in the  English language, you 
already know the approximate fraction of E's, T's, A's, 
etc. Let us say there  are a hundred  letters in a telegram. 
There is a large number,  W,  of possible English mes- 
sages with a hundred  letters. 3 You open the te legram 
and find out which one of the W is your message. Shan- 
non proposed tha t  the information gained be measured  
by S = log 2 W. The reason for taking the logari thm is 
the same as earlier. Two successive telegrams (on unre- 
lated subjects!) would correspond to W1 • W2 possible 
messages. Shannon 's  measure ensures tha t  the informa- 
tion (and perhaps  your telegram bill!) is additive, i.e., 

S = log 2 W 1 + log 2 W2 = $1 + $2. 

This is related to Bol tzmann's  entropy. He would call 
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S a measure of your ignorance before you opened the 
telegram, rather than your enlightenment after you open- 
ed it. But it is sensible to take the two quantities as 
equivalent. 

Why choose 2 as the base of logarithms? The sim- 
plest situations are when the message simply says which 
of two (equiprobable) options was realised. When the 
nurse steps out of the maternity ward and tells the anx- 
ious father 'Its a girl', W=2, and S=I.  This is called 
one bit of information. Everyone-in this computer age 
knows that 'bit' is short for 'binary digit', something 
which takes 2 values, zero and one. 

Shannon's concept of information took the world by 
storm. There was tremendous enthusiasm to apply it 
to every field. An indignant journal editor even wrote 
the following lines - "We will no longer consider papers 
with titles like information theory, photosynthesis, and 
religion"! 

We have presented Shannon's work in conjunction with 
the ideas of Bayes and Boltzmann. This attempt at com- 
plete synthesis actually came a few years after Shannon, 
in the influential work of the physicist Edwin T Jaynes. 
He and his followers have explored the application of 
'maximum entropy' (as they call this approach) to a va- 
riety of practical problems. Both Shannon and Jaynes 

Figure 3. The photograph. 
shows the effect of apply- 
ing maximum entropy 
deconvolution to a motion- 
blurred picture. Processing 
by A Lehar and Maximum 
Entropy Data Consultants 
Ltd. for the UK Home Of- 
rice. Our thanks to Steve 
Gull and his colleagues at 
the Mul lard Radio As- 
tronomy Observatories in 
Cambridge who were in- 
strumental in developing 
maximum entropy methods 
for such problems. 
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Figure 4. 
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died recently, living to see their  ideas bear fruit over 
nearly half a century. 

Although we cannot  give details here, inversion based 
on maximum entropy methods is in wide use. A dra- 
matic  real life example (Figure 3) would be a blurred 
photograph of a car. In this context,  the blurred pho- 
tograph stands for the data  D,  while the reconst ructed 
picture corresponds to H.  After inversion, one is able to 
read the number  plate clearly! An example of removing 
blurring in as t ronomy using prior information is given 
in Figure 4. 

We must  of course remember  tha t  max imum entropy is 
not a magic wand. The fact tha t  we are able to read the 
number  plate  means tha t  the information in the da t a  
(blurred photograph) ,  plus the information in the prior, 
were enough to recover what  we were looking for. In 
a given problem, there is usual ly  a range of possible 
priors which would be regarded as reasonable. Most 
workers would regard results which are insensitive to 
choices in this range as genuine. When  results s tar t  
becoming sensitive to the prior, it is t ime to go out and 
get more da ta  or work on a different problem. 
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