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Abstract. A new criterion of fitness evaluation for Genetic Algorithms is introduced where the fitness value of
an individual is determined by considering its own fitness as well as those of its ancestors. Some guidelines for
selecting the weighting coefficients for quantifying the importance to be given to the fitness of the individual and
its ancestors are provided. This is done both heuristically and automatically under fixed and adaptive frameworks.
The Schema Theorem corresponding to the proposed concept is derived. The effectiveness of this new methodology
is demonstrated extensively on the problems of optimizing complex functions including a noisy one and selecting
optimal neural network parameters.
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1. Introduction

Genetic algorithms (GAs) [1–6] are adaptive and ro-
bust computational procedures modeled on the me-
chanics of natural genetic systems. They can be viewed
as randomized yet structured search and optimization
techniques. GAs efficiently exploit the historical infor-
mation so that new offspring with expected improved
performance can be generated [1]. They iteratively per-
form the following cycle of operations on a set of coded
solutions or chromosomes, called a population, un-
til some termination condition is achieved: selection
(including fitness evaluation of each solution), repro-
duction (including crossover and mutation), and reduc-
tion/replacement of the old population with a new one.

Conventional genetic algorithms (CGAs) consider
only the fitness value of the chromosome under con-
sideration for measuring its suitability for selection for
the next generation, that is, the fitness of a chromosome
z is g( f (z)), where f (z) is the objective function and
g is another function which by operating on f (z) gives

the fitness value. Hence, a CGA does not discriminate
between two identical offspring, one produced from
better (highly fit) parents and the other from compara-
tively weaker (low fit) parents. In nature, normally an
offspring is more fit or suitable if its ancestors (parents)
are better, that is, an offspring possesses some extra fa-
cility to exist in its environment if it belongs to a better
family (or its ancestors are highly fit) [7, 8]. In other
words, the fitness of an individual depends also on the
fitness of its ancestors.

The present article provides an investigation based
on the aforesaid observation. We propose a new way of
measuring the fitness of an individual by considering its
own fitness as well as the fitnesses of its ancestors. The
fitness of a chromosome z is g( f (z), a1, a2, . . . , an)
where ai s are the original fitness values of its n ances-
tors. The function g may be of various types consid-
ering the amount of importance given to the fitness of
different ancestors. Various procedures are described
for determining the weights which characterize the de-
gree of ancestors’ importance. The weights may be kept
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constant or varying during the operation of GAs. The
effectiveness of this concept has been demonstrated
experimentally on various problems such as complex
function optimization, noisy function evaluation, se-
lection of optimal set of weights in a multilayer per-
ceptron [9–11], and evolving Hopfield type optimum
neural network architectures for object extraction [12].
A schema analysis is also provided (Appendix A).

The rest of the article is organized as follows. In
Section 2 a brief introduction to genetic algorithms is
provided. Section 3 describes the proposed fitness eval-
uation methodology. Implementation details and anal-
ysis of results are presented in Section 4 and concluding
remarks are put in Section 5.

2. Genetic Algorithms: Basic Principles
and Features

Conventional GAs (CGAs) are intended to mimic some
of the processes observed in natural evolution. The evo-
lution starts from a set of individuals and proceeds
from generation to generation through genetic oper-
ations. Replacement of an old population with a new
one is known as a generation when generational re-
placement technique (replace all the members of the
old population with the new ones) is used. Another re-
production technique, called steady-state reproduction
[13], replaces one or more individuals in each itera-
tion instead of the whole population. This cycle is re-
peated until a desired termination condition is attained.
A schematic diagram of the basic structure of a genetic
algorithm is shown in Fig. 1.

A GA typically consists of the following components
[1, 14]:

Figure 1. Basic steps of a genetic algorithim.

• A population of strings or coded possible solutions
(often referred to as chromosomes).

• A mechanism to decode and encode a possible solu-
tion (often as a binary string).

• Objective function and associated fitness evaluation
techniques.

• Selection procedure.
• Reproduction (with the help of some genetic opera-

tors, e.g., crossover and mutation).
• Probabilities to perform genetic operations.
• Reduction/replacement of population for the next

generation.

3. A New Fitness Evaluation Criterion

In this section we describe a new method for evaluating
the fitness of an individual chromosome by considering
the effect of fitness of its ancestors along with its own
fitness. As mentioned before, in a CGA, chromosomes
are selected for reproduction based on their own fitness
values. The process does not consider any influence
of its ancestors (predecessors). But in nature, ‘family
background’ plays a significant role to determine the
characteristics and suitability of offspring; descendants
from a better family (highly fit ancestors) invariably
possess some extra advantages to be treated as fit in an
environment [7, 8]. This observation has motivated us
to consider the effect of fitness of ancestors (or parents)
to measure the fitness of individuals.

Considering the influence of n ancestors, the modi-
fied fitness value (MFV) of an individual chromosome
z will be

MFV = g(fit, a1, a2, . . . , an), (1)

where fit is the original fitness of the individual z, and
a1, a2, . . . , an are the fitnesses of its n ancestors. A
simple form of g may be as follows:

MFV = α fit +
n∑

i=1

βi ai , (2)

where α and βi s are the weights quantifying the degree
of importance of the fitness of the individual under con-
sideration and those of its ancestors. For convenience,
we have taken α + ∑n

i=1 βi = 1, where 0 ≤ α, β ≤ 1.
These weighting coefficients may be taken as static (ini-
tially set to some value, based on heuristics, and kept
constant throughout the procedure), or dynamic (these
coefficients will change automatically with evolution).
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Now, if we consider the effect of a single previous
generation, we need to take into account the fitness of
the parents (say, p1 & p2) only; in that case (2) reduces
to

MFV = α fit + β1 p1 + β2 p2. (3)

As a special case, if we choose β1 = β2 = β, (that is,
we put equal weight to both parents), then

MFV = α fit + β(p1 + p2). (4)

If we go two generations back, that is, fitness of parents
(p1 & p2) as well as that of grandparents (say, gp1, gp2,
gp3 & gp4) are considered, (2) will take the form

MFV = α fit +
2∑

i=1

βi pi +
4∑

j=1

γ j gp j , (5)

where βi s and γ j s are the weights corresponding to
parents and grandparents, respectively. Moreover, if
β1 = β2 = β, and γ1 = γ2 = γ3 = γ4 = γ , then

MFV = α fit + β(p1 + p2) + γ (gp1 + gp2

+ gp3 + gp4). (6)

Intuitively, βi > γ j , ∀i & ∀ j, that is, the influence
of grandparents is smaller than that of the parents. In
this context one may note that even when we explicitly
consider the influence of only parents for determining
the suitability of an individual, the influence of grand-
parents and their ancestors also comes into account
implicitly because the computation of fitnesses of chro-
mosomes at generation t requires the fitness values of
chromosomes of generation (t − 1) which, in turn, are
computed using those in generation (t − 2).

A more general form of g can be used to calculate
MFV as

MFV =
(

α fitr +
n∑

i=1

βi a
r
i

) 1
r

, ∀r ≥ 1, (7)

where α, fit, ai s, and βi s carry the same meaning as
stated earlier (see Eq. (2)). The term inside the bracket
should always be positive. Equation (2) corresponds to
the case r = 1. For fixed ai s, βi s, α, and fit, MFV mono-
tonically increases with r . The value of r determines
the amount of importance to be given on the fitness of
different ancestors.

Schemes for Selection of Weighting Coefficients

In this section we describe a few ways of determining
the weighting coefficients (α, β).

Scheme 0. Here we use conventional genetic algo-
rithm (CGA), that is, α = 1 and β = 0 (see Eq. (4)).

Scheme 1. In this case weighting coefficients are
heuristically assigned. We use (α > βi ), that is, more
importance is given to the offspring itself than to its
parents. We have considered α = 0.5 & β1 = β2 =
β = 0.25 (see Eq. (3)).

Scheme 2. Here also weighting coefficients are as-
signed heuristically. Values are altered depending on
whether mutation has occurred on a chromosome or
not. Since the purpose of applying mutation operation
is to bring out a drastic change in the characteristics of
an individual chromosome, the influence of the parents
on the said mutated chromosome should be smaller.
Hence, less weight will be given on the fitness of par-
ents and more weight on that of the individual chromo-
some, in case mutation occurs. We have considered,
α = 0.8 & β1 = β2 = 0.1 if mutation occurs on a
chromosome; otherwise, α = 0.5 & β1 = β2 = 0.25
(see Eq. (3)).

Scheme 3. This scheme considers the reverse effect
of mutation (Scheme 2) on selecting the weighting co-
efficients. Hence, more weight will be given on the
fitness of parents and less weight on that of the individ-
ual chromosome, if mutation occurs. In case of mutated
chromosome, α = 0.5 & β1 = β2 = 0.25; otherwise,
α = 0.8 & β1 = β2 = 0.1 (see Eq. (3)).

Scheme 4. Here the difference between the fitness
values of the individual chromosome and that of its
parents is used to find the weighting coefficients (βs)
of parents (weighting coefficient of children (α) can
be determined automatically since α + β = 1 where,
0 ≤ α, β ≤ 1). The influence of both the parents is
treated separately. The criterion is such that when the
fitness of parent/child is greater than that of child/parent
then increase/decrease the weighting coefficient (β) of
a parent in proportion to this difference. This ensures
higher β value for a parent having higher fitness value.

Let fch be the fitness value of a chromosome and
f p1 and f p2 be the fitness values of its two parents. If
fch ≥ f p ( f p is taken as the fitness value of a parent),
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Figure 2. Variation of β (a′ = 0.25, m = 2) with (a) | fch − f p|; (b) f p keeping fch constant.

the weight β of that parent is defined as

β = a′
(

1 −
(

fch − f p

const

)m)
, m ≥ 1, (8)

where

const = max{(( f p)bst −( fch)wst ), (( fch)bst −( f p)
wst )},

is a normalizing factor. a′ is a preassigned constant
which controls the maximum value of β. ( f p)bst &
( f p)wst denote, respectively, the fitness values of the
best and worst chromosomes of the parent population
and ( fch)bst & ( fch)wst correspond to those of the child
population. Here, β ∈ [0, a′]. As fch − f p increases,
β decreases.

On the other hand, if f p > fch, then

β = a′
(

1 +
(

f p − fch

const

)m)
, m ≥ 1. (9)

As f p − fch increases, β increases. Here, β ∈ [a′, 2a′].
Combining (8) and (9), the expression for β can be
written as

β = a′
(

1 + n′
( | fch − f p|

const

)m)
, m ≥ 1, (10)

where | fch − f p| represents the absolute difference be-
tween two fitness values fch and f p. n′ = 1 if f p > fch,
else n′ = −1.

Therefore, unlike Schemes 1–3, here the weighting
coefficients are determined based on fitness values (us-
ing (10)). For simulation we have taken a′ = 0.25.
Values of m are considered to be 2 and 3, and accord-
ingly we define two subschemes viz 4a: when m = 2
and 4b: when m = 3.

From the previous discussion, it is clear that β ∈
[0, 2a′] and β is symmetric about a′. Here, the maxi-
mum value of a′ can be 0.25 to ensure α ≥ 0 (since
α = 1 − (β1 + β2), considering the influence of
parents only). Figure 2(a) shows the variation of β

with | fch − f p| (a′ = 0.25, m = 2) while Fig. 2(b)
shows the variation of β with f p keeping fch constant
(a′ = 0.25, m = 2).

Note. In (8) and (9), β = 2a′ indicates that a parent
having the maximum fitness value is producing a child
with minimum fitness value; this is a rare event in na-
ture. Therefore, attainment of this condition in a GA
might affect the evolutionary process.

It is also to be noted that, in many optimization tech-
niques historical information is exploited to determine
the present status. For example, in backpropagation
algorithm of neural networks we see that the present
weight values depend on previous weight values and
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the difference between actual output and target output.
Similarly, starting from an initial state (solution) a sim-
ulated annealing algorithm changes its state according
to some probabilistic transition rule that depends on the
fitness values of the previous and the newly generated
states. This strengthens our key idea of introduction
of Scheme 4 where we tried to quantify the historical
information by considering the difference between the
fitness values of the individual chromosome and those
of its parents.

Scheme 5. Here the weighting coefficients are
evolved automatically over the sequence of generations
by considering them as a part of chromosomes of the
population. Hence, some fields of the chromosome rep-
resentation of possible solutions are kept for α and βi .
Due to crossover and mutation, values of α and βi will
be changing with time and thus they will evolve au-
tomatically. As we choose better chromosomes from
generation to generation, the evolved values of α and
βi will be more suitable for that environment. Parents
are given equal importance, that is, we use (4). Since,
α + β = 1, we need to evolve only one weighting fac-
tor (say, α).

Scheme 6. Similar to Scheme 5, but the amount of
importance given to different parents is different ((3)).
Since, α + β1 + β2 = 1, we need to evolve any two
weights. We restrict β1 & β2 in [0, 0.5); it ensures that
α > 0, that is, some weight will always be there for
the individual chromosome.

Scheme 7. The influence of grandparents in addition
to parents is taken into account in Schemes 1, 2, 5, and
6 using (5) and (6).

4. Implementation and Experimental Results

The effectiveness of the aforesaid concept has been
demonstrated on three problems, namely, (i) optimizing
complex functions including a noisy one (De Jong F4
[1]), (ii) selection of an optimal set of weights and
thresholds in a multilayer perceptron (MLP) for two
input XOR function, and (iii) evolution of Hopfield
type optimum neural network architectures for object
extraction from noisy images [12]. These are described
below.

Table 1. Functions used for optimization.

Optimum
Function Functional form Domain value

F1
∏10

i=1(x − 2i) [0, 20] 3.72 × 109

F2 0.5 − {sin
(√

(x2+y2)}2−0.5

(1.0+0.001(x2+y2))2 [−100, 100] 1.0

De Jong F4
∑30

i=1 i x4
i + Gauss(0, 1) [−1.28, 1.27] 0.0 (without

noise)
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Figure 3. Sketch of the function
∏10

i=1(x − 2i) (x ∈ [0, 20]).

4.1. Function Optimization

Table 1 shows the three functions which have varying
degrees of complexity with respect to number of op-
tima. The first one (F1) is a univariate function, the
second (F2) is a bivariate, and the third one (De Jong
F4) has 30 variables [1, 15]. The complex behavior
of F1 and F2 is depicted in graphical form in Figs.
3 and 4. F1 has 10 maxima with the global maxi-
mum at x = 0. F2 is a rapidly varying multimodal
function with several close oscillating hills and val-
leys with a global maximum at x = y = 0. Gaussian
noise with a mean value zero and a standard devia-
tion of 1.0 is added to the functional value of De Jong
F4.

4.1.1. Experimental Set-up. To optimize functions
F1 and F2, the following steps are adopted.
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Figure 4. Sketch of the function 0.5 − {sin(
√

(x2+y2)}2−0.5
(1.0+0.001(x2+y2))2 (x ∈

[−100, 100], y ∈ [−100, 100]).

Binary coding is used for chromosomes. Substring
length for each parameter (variable) has been taken
as 22 and that for α, β, and γ as 10. Each chromo-
some or string is a concatenation of binary substrings,
generated randomly, of the parameters of the optimiza-
tion problem to be solved. Let the substring length of
each parameter be l. Let the domain of the parameter
be [llt , ult ]. The substring str is decoded into [0,1] and
mapped into the domain of the parameter. The decoded
value v([0, 1]) of str is obtained from

v = 2l

2l − 1

l∑
i=1

stri

2i
, 0 ≤ v ≤ 1.0, (11)

where stri is the value of the i th bit of str. This decoded
value is then transformed to v′, v′ ∈ [llt , ult ] with

v′ = llt + v(ult − llt ). (12)

The population size is kept fixed at 20 through-
out the simulation. (In a part of the experiment, it
was also chosen as 50.) The initial population is cho-
sen randomly. Generational replacement technique is
used [2].

The objective function is the identity function. It
means, fitness of a chromosome is equal to its func-
tional value. Therefore, the higher the functional value
is, the better is the chromosome. Both the elitist model

[2] and the standard GA (that is, non-elitist model)
are implemented. In the case of elitism, the lowest fit
string of the present generation is replaced by the best
fit string of the previous one, if the latter one is better
than the best fit string of the present generation.

Linear normalization selection procedure (which
works better in a close competitive environment [2])
is adopted. In this technique, instead of considering
original fitness values (e.g., 100, 48, 43, 10, 3), nor-
malized fitness values (e.g., 100, 90, 80, 70, 60) are
used for selecting chromosomes. The fitness values are
normalized using two parameters, namely, the decre-
ment/increment parameter (here, 10) and the maxi-
mum/minimum normalized value (here, 100 or 60).
Thus these normalized values will decrease/increase
linearly. In our experiment, both the difference between
successive fitness values and the minimum fitness value
have been taken as 1. The number of copies produced
by the i th individual (chromosome) with normalized
fitness value fi in a population of size k is taken as
round(ci ); where

ci = k fi∑k
i=1 fi

. (13)

round(ci ) gives the nearest integer of the real number ci .
The crossover and (bitwise) mutation probabilities

are taken as 0.8 and 0.008, respectively. Multi-point
crossover operation is performed where for each sub-
string (each parameter encoded as a part of the chro-
mosome) the crossover operation is one-point. Hence,
the number of crossover sites is taken to be equal to the
number of parameters encoded in a chromosome. One
crossover site is chosen randomly on each substring.
In a part of the investigation, the mutation probability
was also varied from 0.001 to 0.1 in the following way.

Generations 1–200 201–400 401–600 601–800 801–1000

Mutation 0.1 0.01 0.001 0.01 0.1
probability

The reason for this is as follows. At the initial stage
of execution of the GA the chromosomes are assumed
to be random in nature. Higher mutation probability
leads to generate diverse chromosomes and helps to
explore the search space properly. As generation goes,
the mutation probability is lowered. Lower mutation
probability helps to exploit the search. Further, as ex-
ecution continues the chromosomes become more and
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more homogeneous in nature. To avoid this and the
premature convergence, the mutation probability is in-
creased again. The same procedure was also adopted
in [16]. Note that, one may use some other procedures
to vary the probability of mutation.

It may happen that the fitness value fit of a chro-
mosome becomes negative (since the fitness value of
a chromosome is taken as the functional value of the
chromosome). In that case, to differentiate between the
chromosomes having positive and negative fitness val-
ues (when (7) is used), we consider −(fitr ) instead of
(−fit)r and −(fitr )1/r instead of (−fitr )1/r while com-
puting MFV . The value of r (Eq. (7)) is taken as 1
and 2.

The algorithm has been run for 1000 generations
in each simulation. Fifty simulations are performed.
The same initial populations are taken for all the
schemes. Initial populations are different for different
simulations.

To maintain consistency with previous studies
[15], the parameters considered for De Jong F4
minimization are different from those used for F1 and
F2. Here the parameters are taken to be the same
as those used in [15] and only the elitist model is
considered. Different criteria are taken into account
to compare the performance obtained using different
schemes mentioned in Section 3. The performance
of each of the schemes is evaluated by measuring

Table 2. Average (over fifty simulations) of maximum fitness values (NE: non-elitism, E: elitism, r : exponent of (7)) and standard
deviations from maximum fitness values (Std. dev.).

F1 F2

N E E N E E

Scheme no. Fitness × 109 Std. dev. × 109 Fitness × 109 Std. dev. ×109 Fitness Std. dev. Fitness Std. dev.

0 2.23 1.82 2.11 1.84 0.958143 0.052953 0.953111 0.058854

1, r = 1 2.60 1.70 2.60 1.70 0.965642 0.053894 0.964476 0.047178

1, r = 2 2.48 1.75 2.73 1.64 0.968671 0.043855 0.967184 0.045812

2, r = 1 2.85 1.57 2.48 1.75 0.960611 0.051774 0.974791 0.035812

2, r = 2 2.60 1.70 2.48 1.75 0.970324 0.041188 0.972677 0.044505

4a, r = 1 2.60 1.70 2.73 1.64 0.980903 0.024643 0.976722 0.034396

4a, r = 2 2.60 1.70 2.71 1.63 0.974090 0.036987 0.972567 0.039746

4b, r = 1 2.36 1.70 2.97 1.64 0.977907 0.036136 0.978830 0.026404

4b, r = 2 2.48 1.75 3.08 1.34 0.980664 0.025113 0.975721 0.026762

5, r = 1 2.36 1.79 2.48 1.75 0.956425 0.049105 0.970551 0.038064

5, r = 2 2.36 1.79 2.73 1.64 0.955280 0.072822 0.977399 0.026527

6, r = 1 2.36 1.79 2.48 1.75 0.958676 0.047182 0.971053 0.041560

6, r = 2 2.85 1.87 2.97 1.48 0.955074 0.052986 0.970445 0.045738

its ability to detect a solution within a specific ac-
curacy. The parameters used for this function are as
follows.

Population size: 10
Crossover probability: 0.7
Mutation probability: 0.005
Substring length corresponding to each parameter:

8 bits
Stopping condition: 2500 generations
Number of simulations: 50
The other parameters taken are equal to those used for

optimization of F1 and F2.

4.1.2. Analysis of Results. Let us now explain the
results in terms of mean (taken over fifty simulations)
fitness values of the best chromosomes at the last gen-
eration using various schemes (Section 3) for the func-
tions F1 and F2 (Table 1) with r = 1 and 2. For
convenience, we mention here the said schemes in
brief. These are Scheme 0 (conventional genetic algo-
rithm, CGA), Scheme 1 (fixed weighting coefficients),
Schemes 2 and 3 (weighting coefficients dependent on
mutation), Scheme 4 (adaptive weighting coefficients
dependent on the fitness values of parents and chil-
dren), Scheme 5 (equal weighting coefficients auto-
matically evolved) and Scheme 6 (unequal weighting
coefficients automatically evolved). Table 2 shows such



14 Ghosh, Ghosh and Pal

results for Schemes 0, 1, 2, 4, 5, and 6. NE and E
denote respectively, the non-elitist model and the eli-
tist model. Std. dev. denotes the standard deviation of
all the best chromosomes obtained at the last gener-
ation of different simulations. This provides a com-
parative study among various schemes based on the
performance attained at the end of evolutionary pro-
cess. It is seen from Table 2 that Scheme 0 performs
the worst, except for three cases of F2 with NE (e.g.,
the cases of r = 1 and 2 for Scheme 5 and r = 2 for
Scheme 6). It is mostly Scheme 4 and then Scheme 2
or 6 which are seen to produce the best result (marked
bold). Note that Scheme 2 involves fixed weight-
ing coefficient, whereas it is adaptive for Schemes 4
and 6.

The effect of varying mutation probability is shown
in Table 3. Here we considered F2, as an example,
using elitism with Schemes 0, 2, 4b, and 6 only. The
performance of Schemes 2, 4, and 6 is seen to be slightly
better than that of Scheme 0.

Table 4 demonstrates the performance of the afore-
said best resulting schemes when the population size
is increased from 20 to 50. Here too, the conclu-
sion as in Table 3 holds good. Thus it appears
that with the increase in population size, the im-
provement of Schemes 2, 4, and 6 over Scheme 0
decreases.

Figures 5(a) and (b) demonstrate graphically the
improvement in performance of the Schemes 2, 4b
and 6 over Scheme 0 with generations as per the ex-

Table 3. Average (over fifty simulations) of maximum fitness values (r : exponent of (7))
for F2 using elitism: variable mutation probability.

Scheme no.

2 4b 6

0 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

0.991580 0.991861 0.992551 0.992775 0.992875 0.993199 0.992227

Table 4. Average (over fifty simulations) of maximum fitness values ( NE: non-elitism, E: elitism,
r : exponent of (7)) for F2: population size = 50.

Scheme no.

2 4b 6

Model 0 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

NE 0.981849 0.987065 0.983719 0.991950 0.983112 0.984962 0.991033

E 0.983398 0.984697 0.985565 0.978694 0.981722 0.992282 0.989668

perimental set-up of Table 2. As an illustration, we
consider the case of r = 1 with elitism for both
F1 and F2. The curves are drawn using least square
fit method. Here the ordinate represents the average
(computed over fifty simulations) of maximum fit-
ness values obtained at a generation. In a part of the
experiment, we have also plotted the average (com-
puted over fifty simulations) of average fitness val-
ues obtained over the population at a generation. Its
variation is shown in Fig. 6 for the function F1, as
a typical illustration. From these figures Scheme 4b
is seen to be the best. One may note in this con-
nection that the version 4a also produces comparable
results.

Results of Schemes 0, 2, 4b and 6 on De Jong
F4, with Gaussian noise injected on it, is presented
in Table 5. Percent solved represents the percentage
of fifty simulations where the functional value was
≤ −2σ (where σ denotes standard deviations of added
noise). The noisy average best denotes the average best
solution (over fifty runs) found after 2500 generations
with respect to the noisy function evaluation value. The
true average best is the average of the true function
evaluation value (without noise) for the same popula-
tion evaluated for the noisy average best value. The
smaller the average functional value is, the better is the
corresponding chromosome. The last column of this
table indicates the minimum average (over fifty runs)
number of generations required to attain a value ≤ −2σ

using noisy evaluation. The entry ‘—’ in this column



Incorporating Ancestors’ Influence in Genetic Algorithms 15

0 100 200 300 400 500 600 700 800 900 1000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

9

Generation number

M
a

x
im

u
m

 f
it
n

e
s
s
 v

a
lu

e

Scheme 0

Scheme 2 (r=1)

Scheme 4b (r=1)

Scheme 6 (r=1)

0 100 200 300 400 500 600 700 800 900 1000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Generation number

M
a

x
im

u
m

 f
it
n

e
s
s
 v

a
lu

e

Scheme 0

Scheme 2 (r=1)

Scheme 4b (r=1)

Scheme 6 (r=1)

(a) (b)

Figure 5. Variation of maximum fitness value over generations corresponding to Scheme 0, Scheme 2 (r = 1), Scheme 4b (r = 1), and
Scheme 6 (r = 1) using the elitist model for the function: (a) F1; (b) F2.
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Figure 6. Variation of average fitness value over generations cor-
responding to Scheme 0, Scheme 2 (r = 1), Scheme 4b (r = 1), and
Scheme 6 (r = 1) using the elitist model for the function F1.

means that the above mentioned value was not found
within 2500 generations. Here, in five out of six cases
(Table 5), MGA performed better than CGA even for
noisy environment.

In a part of our study, instead of using linear normal-
ization selection procedure and multi-point crossover
operator, we used roulette wheel selection process and
single point crossover operator. Comparison between
them with respect to CGA and MGA is studied. As an
illustration some of the results are put in Table 6. The
results further strengthen the superiority of MGA.

Furthermore, a comparative study is made with some
enhanced variants of GA, namely, Eshelman’s CHC
[17] (CHC is chosen because of its robust performance
on a wide variety of problems). Some of these results
are shown in Table 7 for illustration. As expected, CHC
performs better than CGA; and Scheme 4b of MGA

Table 5. Results of De Jong F4 using elitism (r : exponent of (7)).

Average best
Scheme
no.

Percent
solved (Noisy) (True)

−2σ obtained
at generation

0 48.0 3.63 7.18 —

2, r = 1 58.0 3.49 6.97 2134

2, r = 2 50.0 3.37 6.81 2428

4b, r = 1 38.0 4.08 7.85 —

4b, r = 2 64.0 3.50 6.95 1479

6, r = 1 58.0 3.55 7.04 2282

6, r = 2 66.0 3.25 6.94 1746
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Table 6. Average (over fifty simulations) of maximum fitness values for F2 (r : exponent
of (7)) using elitism, roulette wheel selection and single point crossover.

Scheme no.

2 4b 6

0 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

0.986979 0.991743 0.987460 0.993254 0.994410 0.988290 0.992013

Table 7. Average (over fifty simulations) of maximum fitness values
for F2 (NE: non-elitism, E: elitism, r : exponent of (7)).

Scheme no.

2 4b 6

Model 0 r = 1 r = 1 r = 1 CHC

NE 0.973921 0.974337 0.982587 0.975642 0.975109

E 0.976982 0.978812 0.985606 0.978624 0.980236

produces the best result. Moreover, CHC is computa-
tionally more intensive than MGA.

4.2. Selection of Multi Layer Perceptron (MLP)
Parameters for an XOR Problem

To determine an optimal set of connection weights and
thresholds in an MLP for classification problem, the
overall error, that needs to be minimized, is defined
as [10]

Error = 1

s

∑
s

out∑
j=1

(ts j − Vsj )
2, (14)

where s and out represent the number of training sam-
ples and the number of neurons in the output layer,
respectively. Variable ts j and Vsj denote the target and
obtained output for the j th neuron, (that is, the acti-
vation of the j th output neuron) respectively, corre-
sponding to the sth training pattern. The weights and
thresholds are modified (using GAs) so that Error is
minimized. Each neuron j in the output and hidden
layers is associated with a set of p′ input values Ii j ,
1 ≤ i ≤ p′, a threshold value θ j , a set of interconnec-
tion weights wi j , an activation function (which is taken
as sigmoidal), and an output value

Vsj = 1

1 + exp(Ii jwi j − θ j )
. (15)

4.2.1. Experimental Set-up. Input values to the net-
work are in binary form. Total number of patterns in
the data set is 148. These patterns are generated by
replicating the four input-output patterns of two-input
XOR function 32 times. The size of the training set
is considered to be 10%, 20%, 30% and 40% of the
data set and these samples are taken randomly. In this
problem, there are two neurons in the hidden layer.
Since it is a two-class problem, the number of neu-
rons in the output layer is 2. Hence, the total number
of parameters of the problem (including threshold val-
ues of the neurons of hidden layer and output layer)
= 2 × 2 + 2 × 2 + 2 + 2 = 12. Substring length of each
parameter e.g., wi j , θ j has been taken as 10. Values of
these parameters lie in [−25, +25] and these can be
obtained by decoding the substrings using Eqs. (11)
and (12). Thus each string represents a set of weights
and thresholds corresponding to a complete network.
The objective function to be minimized is the error
value. The lower this value is, the higher is the fit-
ness. The population size is kept fixed at 20. The
crossover and mutation probabilities are taken as 0.8
and 0.008, respectively. Equation (13) is used for se-
lecting chromosomes. The algorithm is also run, like
the previous experiments, with fifty different initial
populations.

4.2.2. Analysis of Results. Table 8 shows the average
(over fifty simulations) error values of the best chro-
mosomes in the last generation obtained for different
training sets using Schemes 0, 2, 4 and 6 for the prob-
lem of selecting MLP parameters. Here, in six cases out
of eight, Scheme 4 (either Scheme 4a or Scheme 4b) is
seen to be the best.

4.3. Selection of Hopfield type Network Architecture
for Object Extraction

For determining the optimum architecture of Hopfield
type neural network for object extraction, we
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Table 8. Minimum error value (averaged over fifty simulations) for MLP problem (NE: non-elitism, E: elitism, r : exponent of (7)).

Training sample used

10% 20% 30% 40%
Scheme
no. NE E NE E NE E NE E

0 1.168863 1.295544 2.083853 1.722724 2.756636 3.877250 5.555961 3.635180

2, r = 1 1.107500 0.846727 1.588272 1.397355 1.448601 3.022454 5.207902 5.014730

2, r = 2 1.081293 1.189643 2.049644 2.916845 2.708330 3.427654 4.433890 2.126972

4a, r = 1 0.905767 1.136387 2.658492 2.100025 1.855749 1.347899 2.913776 1.727618

4a, r = 2 0.770073 1.054493 1.342199 1.915655 1.207395 2.026888 3.323396 2.090645

4b, r = 1 0.622872 0.911022 1.362805 1.126525 2.012772 2.990306 5.055459 3.314264

4b, r = 2 0.572429 0.921926 1.274718 1.505582 2.764329 3.051799 4.739758 3.446146

6, r = 1 1.094390 0.776514 2.169206 1.221610 3.288752 3.287268 2.347590 3.438966

6, r = 2 1.258785 1.402526 2.676056 2.676635 3.208401 1.889062 4.061546 2.907758

considered various noisy images as input. In order to
demonstrate the effectiveness of the proposed concept
of ancestors’ influence, we have considered here only
Scheme 4b, as it is seen to produce the best overall
performance compared to others.

4.3.1. Experimental Set-up. The original image
(Fig. 7) is a synthetic binary (two-tone) one and is of
size 40×40. Two different noisy versions are generated
by adding Gaussian noise (N (0, σ 2)), with mean value
zero and standard deviation σ = 20 and 32, to each
pixel of this binary image. The range of pixel value is
[1, 32].

For an m1 × n1 image, each pixel (neuron) being
connected to at most k1 of its neighbors, the length
of a chromosome is m1 × n1 × k1. Each bit of the
chromosome represents Wi j . If a neuron is connected
to any of its neighbors, the corresponding bit of the

Figure 7. Original synthetic image.

chromosome (i.e., value of Wi j ) is set to 1, else 0.
Hence for an image of size 40 × 40, a binary string
of length 40 × 40 × 8 (here we consider maximum 8
neighbors for a pixel) is used for chromosome repre-
sentation. Each string represents a possible network ar-
chitecture for object extraction. Since the number of pa-
rameters to be determined here is very large, we consid-
ered a population size of 30. Fitness of a chromosome
is taken as a function of the energy value (Appendix
B) of the (converged) network. The lower the energy
value is, the better is the corresponding chromosome.
The crossover probability is taken as 0.8. The mutation
probability is chosen as 0.002. Selection procedure is
the same as in previous experiments (that is, Eq. (13) is
used).

4.3.2. Analysis of Results. Figures 8(a) and (b) show
the improvement of average fitness value of the net-
work with generations using Scheme 4b with respect
to Scheme 0 for σ = 20 and σ = 32, respectively.
Here too, the curves are drawn using least square
fit method. For a typical illustration the noisy in-
put for σ = 20 and the corresponding outputs us-
ing Scheme 0 and Scheme 4b (r = 1) are shown
in Figs. 9(a)–(c), respectively. Since this problem is
computationally intensive five simulations are consid-
ered. It is seen that the percentage of correct classifi-
cation of pixels are 97.4375 and 98.2500 correspond-
ing to Figs. 9(b) and (c). Moreover, the upper and
the right edges of the object are better preserved in
Fig. 9(c).
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Figure 8. Variation of average fitness value over generations for Scheme 0 and Scheme 4b (r = 1) using the non-elitist model for noisy image
with (a) σ = 20; (b) σ = 32.

Figure 9. (a) Noisy version (σ = 20) of Fig. 7; (b) output using
Scheme 0 considering Fig. 9(a) as input; and (c) output using Scheme
4b (r = 1) considering Fig. 9(a) as input.

5. Conclusions

A new fitness evaluation criterion for GAs has been
introduced by considering the effect of fitness of an-

cestors (predecessors) in addition to the fitness of the
individual itself. Selection of chromosomes is made
based on these modified fitness values. The Schema
Theorem for this new model is derived. Some condi-
tions (Eqs. (21) and (25) of Appendix A) are found
where the proposed concept leads to superior per-
formance compared to the conventional GA in terms
of the lower bound of the number of instances of
a good schema in subsequent generations. Differ-
ent schemes are provided considering the amount
of weight, to be given to the ancestors, either in
a fixed or adaptive manner, both automatically and
manually.

As the population size increases, the improvement
of the proposed schemes over the CGA decreases. The
method also works better for noisy environments and
complex problem domains including preservation of
shape (edges) of image regions.

Scheme 2 (mutation dependent fixed weighting co-
efficient), Scheme 4 (dynamic weighting coefficient,
dependent on the difference of fitness values between
parents and children) and Scheme 6 (automatically
evolved dynamic weighting coefficient) are given more
emphasis from the point of conducting experiments,
because of their relatively improved performance. Al-
though the adaptive methods are computationally more
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intensive, they are seen to have an edge over the fixed
ones even for noisy and complex functions. Note that
unlike Scheme 4, Scheme 6 does not consider the differ-
ence between the fitness values of parents and children,
though the parents are given unequal weighting coef-
ficients in both the schemes under an adaptive frame-
work. Overall, it is Scheme 4 which is seen to provide
superior results.

Although we have considered the value of r to be
1 and 2, one can take, as mentioned in Section 3,
any value r ≥ 1 for conducting experiments. Results
under Scheme 7 are not included because the influ-
ence of grandparents was seen to be not much ef-
fective in enhancing the performance. Moreover, in
a part of the investigation, the new criterion of fit-
ness evaluation is also tested using gray coding and
the results are found to corroborate our above men-
tioned findings. In this context it may be mentioned that
this new criterion may sometimes lead to a premature
convergence.

Appendix A

Influence of Parents on Offspring
and the Schema Theorem

The Schema Theorem [1] estimates the lower bound
of the number of instances of different schemata at
any point of time. According to this theorem, a short-
length, low-order, above-average schema will receive
exponentially increasing instances in subsequent gen-
erations at the expense of below average ones. In this
section we derive the Schema Theorem for GAs us-
ing the aforesaid MFV (let us call it ‘Modified Genetic
Algorithms’ (MGAs)) and find the lower bound of the
number of instances of a schema. We also compare
this bound with that of the CGA. Before deriving the
theorem let us first introduce some definitions.

A schema is a similarity template describing a sub-
set of strings with similarities at certain string posi-
tions. As an example, ∗∗10∗1∗ is a schema where ‘∗’
indicates that the corresponding positions may be ei-
ther 1 or 0 (considering binary strings). Then 1010111
and 1110011 are two instances (chromosomes) of this
schema. The number of fixed bits of a schema is the
order of that schema. The distance between the first
and the last fixed positions is termed as defining length
of the schema.

For the sake of convenience, let us first show the
derivation of the Schema Theorem for CGA [1]. The

notations that we will be using are listed below:

h: a short-length, low-order, above-average schema
δ(h): the defining length of schema h
o(h): order of schema h
L: length of a chromosome
k: size of the population
m(h, t): number of instances of a schema h in a popu-

lation at generation t for the CGA
f̄ : average fitness value of the population for the CGA
f̄h : average fitness value of the strings representing

schema h for the CGA
pc: crossover probability
pmut : mutation probability

Let m instances of a particular schema h exist in the
population at time t (denoted as m(h, t)). Now selec-
tion process copies each string into the mating pool
according to its fitness value. In a population of size k
the i th string (where, 1 ≤ i ≤ k) Ai , with fitness value
fi , gets selected with probability prob = fi∑ j=k

j=1 f j
. A

non-overlapping population of size k is produced with
replacement from the population at time t . Hence in
the population at time (t + 1) the number of instances
of schema h (denoted as m(h, t + 1)) is

m(h, t + 1) = m(h, t)k
f̄h∑
k f j

= m(h, t)
f̄h

f̄
.

Hence the number of above average schemata will grow
exponentially, and below average ones will receive a
decreasing number of samples.

If a crossover site is selected uniformly at random
among (L − 1) possible sites, a schema h will be de-
stroyed with a probability

pd = δ(h)

(L − 1)
.

Thus, the survival probability (ps), when the crossover
site falls outside the defining length, is

ps = 1 − pd

= 1 − δ(h)

(L − 1)
.

If pc is the crossover probability then,

ps ≥ 1 − pc
δ(h)

(L − 1)
.
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Moreover, in order to survive a schema h, all the
fixed positions of h (o(h)) should remain unaltered. If
pmut is the mutation probability, a single allele survives
with a probability (1 − pmut). Hence, for o(h) number
of fixed positions of a schema h to survive, the survival
probability is

(1 − pmut)
o(h).

If pmut � 1, the above value is (1 − o(h)pmut).
Therefore,

m(h, t + 1) ≥ m(h, t)
f̄h

f̄
{1 − pcδ(h)/(L − 1)}

× {1 − o(h)pmut }. (16)

Neglecting the small cross-product term, we have

m(h, t + 1) ≥ m(h, t)
f̄h

f̄
× {1 − pcδ(h)/(L − 1) − o(h)pmut }.

(17)

We now derive the expression for the expected num-
ber of instances of schema h, that is, we determine
m(h, t + 2) from m(h, t + 1) for the MGA considering
the influence of parents only. For deriving the theorem
we have computed the fitness distributions of the popu-
lations both before and after the selection procedure in
each generation. Let the time instants ‘before selection’
and ‘after selection’ of the t th generation be denoted
as (tbs) and (tas), respectively. The other notations that
we will be using for this purpose are listed below:

m∗(h, t): number of instances of a schema h in a pop-
ulation at generation t for the MGA

f̄ (tas): average fitness value of the population at tas for
the CGA

f̄ ∗(tas): average fitness value of the population at tas

for the MGA
f̄h(tas): average fitness value of schema h at tas for the

CGA
f̄ ∗

h(tas): average fitness value of schema h at tas for the
MGA

f̄ (t + 1)bs: average fitness value of the population at
(t + 1)bs for the CGA

f̄ ∗(t + 1)bs: average fitness value of the population at
(t + 1)bs for the MGA

f̄h(t + 1)bs: average fitness value of schema h at
(t + 1)bs for the CGA

f̄ ∗
h(t + 1)bs: average fitness value of schema h at
(t + 1)bs for the MGA

f̄ p1
h : average fitness value of schema h (at tas) of the
first parent for the MGA

f̄ p2
h : average fitness value of schema h (at tas) of the
second parent for the MGA

fi : fitness value of i th chromosome at (t + 1)bs for the
CGA

f p1
i : fitness value of the first parent (at tas) of i th chro-
mosome

f p2
i : fitness value of the second parent (at tas) of i th
chromosome

f ∗
i : modified fitness value of i th chromosome at
(t + 1)bs for the MGA

For the CGA, the expected number of instances of
schema h obtained from m(h, t+1) can be written from
(17) as

m(h, t + 2) ≥ m(h, t + 1)
f̄h(t + 1)bs

f̄ (t + 1)bs

×
{

1 − pc
δ(h)

L − 1
− o(h)pmut

}
. (18)

In the MGA, the MFV of the i th (∀i = 1, . . . , k)
chromosome is calculated based on its own fitness
value and its ancestors’ (here, p1 and p2) fitness values
as

f ∗
i = g

(
fi , f p1

i , f p2
i

)
,

where g is the fitness function. The MFV of each chro-
mosome changes the average fitness value of the pop-
ulation (at (t + 1)bs). Let the modified average fitness
value be f̄ ∗(t + 1)bs. Then

f̄ ∗(t + 1)bs =
∑i=k

i=1 f ∗
i

k
.

(Note that for the CGA, f̄ (t + 1)bs = ∑i=k
i=1 / fi/k.)

The MFV of chromosomes also changes the av-
erage fitness value of the schema. The fitness val-
ues of the parent chromosomes at (t + 1)bs are
obtained from tas. Hence, the modified average fitness
value of schema h ( f̄ ∗

h(t + 1)bs) can be represented
as

f̄ ∗
h(t + 1)bs = g( f̄h(t + 1)bs, f̄h(tas)). (19)
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Chromosomes from stage (t + 1)bs are selected
based on their both modified fitness values and the
modified average fitness value f̄ ∗(t + 1)bs. Thus, the
probability of selection of each chromosome for the
MGA may be different from that of the corresponding
chromosome of the CGA.

The expected number of instances of the schema h
at (t + 2)bs for the MGA will therefore be

m∗(h, t + 2) ≥ m(h, t + 1)
g( f̄h(t + 1)bs, f̄h(tas))

f̄ ∗(t + 1)bs

×
{

1 − pc
δ(h)

L − 1
− o(h)pmut

}
. (20)

Now we will derive various conditions for differ-
ent values of r (exponent of (7)) under which the
right hand side of (18) will be smaller than that of
(20), that is, the expected number of instances of
schema h in the CGA will be smaller than that of
the MGA. Here we consider the general form of g as
in (7).

Case 1: r = 1:

f̄h(t + 1)bs

f̄ (t + 1)bs

{
1 − pc

δ(h)

L − 1
− o(h)pmut

}

<
g( f̄h(t + 1)bs, f̄h(tas))

f̄ ∗(t + 1)bs

×
{

1 − pc
δ(h)

L − 1
− o(h)pmut

}

⇔ f̄h(t + 1)bs

f̄ (t + 1)bs
<

g( f̄h(t + 1)bs, f̄h(tas))

f̄ ∗(t + 1)bs

⇔ f̄h(t + 1)bs

f̄ (t + 1)bs
<

α f̄h(t + 1)bs + (β1 + β2) f̄h(tas)

α f̄ (t + 1)bs + (β1 + β2) f̄ (tas)
(using (3) and any α, 0 < α < 1)

⇔ α f̄h(t + 1)bs

α f̄ (t + 1)bs
<

α f̄h(t + 1)bs + (1 − α) f̄h(tas)

α f̄ (t + 1)bs + (1 − α) f̄ (tas)

⇔ α f̄h(t + 1)bs

α f̄ (t + 1)bs
<

(1 − α) f̄h(tas)

(1 − α) f̄ (tas)[
since,

a

b
<

a + c

b + d
⇒ a

b
<

c

d

]

⇔ f̄h(t + 1)bs

f̄ (t + 1)bs
<

f̄h(tas)

f̄ (tas)
. (21)

Equation (21) means that if the proportion of aver-
age fitness value of the strings representing schema h

with respect to the average fitness value of the popu-
lation in a mating pool (at tas) in CGA is greater than
that after performing crossover and mutation operation
(at (t + 1)bs), then the performance of MGA in terms of
the number of instances of schema h will be better than
that in CGA. Intuitively, this condition is likely to be
satisfied in many problems since due to crossover and
mutation some of the instances of schema h would al-
ways get disrupted. The possibility of such a disruption
is smaller in the case of MGA since more bias is given
here to keep schema undisrupted through ancestors.

Case 2: r = 2:

f̄h(t + 1)bs

f̄ (t + 1)bs

{
1 − pc

δ(h)

L − 1
− o(h)pmut

}

<
g( f̄h(t + 1)bs, f̄h(tas))

f̄ ∗(t + 1)bs

{
1 − pc

δ(h)

L − 1
− o(h)pmut

}

⇔ f̄h(t + 1)bs

f̄ (t + 1)bs
<

g( f̄h(t + 1)bs, f̄h(tas))

f̄ ∗(t + 1)bs

⇔ f̄h(t + 1)bs

f̄ (t + 1)bs

<

{
α( f̄h(t + 1)bs)2 + β1

(
f̄ p1

h

)2 + β2
(

f̄ p2
h

)2} 1
2

1
k

∑k
i=1

{
α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2} 1
2

(using (7))

⇔ ( f̄h(t + 1)bs)2

( f̄ (t + 1)bs)2

<
α( f̄h(t + 1)bs)2 + β1

(
f̄ p1

h

)2 + β2
(

f̄ p2
h

)2

{
1
k

∑k
i=1

{
α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2} 1
2
}2

.

(22)

It is of the form

X1

X2
<

X3

X4
,

where

X1 = ( f̄h(t + 1)bs)2,

X2 = ( f̄ (t + 1)bs)2,

X3 = α( f̄h(t + 1)bs)2 + β1
(

f̄ p1
h

)2 + β2
(

f̄ p2
h

)2
, and

X4 =
{

1

k

k∑
i=1

{
α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2} 1
2

}2

.



22 Ghosh, Ghosh and Pal

Let us simplify the components.

X2 = ( f̄ (t + 1)bs)2

=
(

f1 + f2 + · · · + fk

k

)2

= 1

k2
( f1 + f2 + · · · + fk)2

= 1

k2


 f 2

1 + f 2
2 + · · · + f 2

k + 2
k∑

i=1

k∑
j=1
i �= j

fi f j




= 1

k2
D,

where

D =


 f 2

1 + f 2
2 + · · · + f 2

k + 2
k∑

i=1

k∑
j=1
i �= j

fi f j


 .

Let us denote(
α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2) 1
2 = Ei .

Now X4 can be written as

X4 =
{

1

k

k∑
i=1

{
α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2}1
2

}2

= 1

k2

[
(E1 + E2 + · · · + Ek)2

]

= 1

k2


E2

1 + E2
2 + · · · + E2

k + 2
k∑

i=1

k∑
j=1
i �= j

Ei E j


 .

(23)

Substituting the values of Ei in (23) we obtain

X4 = 1

k2


α

k∑
i=1

( fi )
2 + β1

k∑
i=1

(
f p1
i

)2

+ β2

k∑
i=1

(
f p2
i

)2 + 2
k∑

i=1

k∑
j=1
i �= j

{
α
(

f 2
i

)

+ β1
(

f p1
i

)2 + β2
(

f p2
i

)2} 1
2
{
α
(

f 2
j

)

+ β1
(

f p1
j

)2 + β2
(

f p2
j

)2} 1
2


 . (24)

Now

E2
i = {

α
(

f 2
i

) + β1
(

f p1
i

)2 + β2
(

f p2
i

)2}
.

Hence

Ei E j = [
α2 f 2

i f 2
j + β2

1

(
f p1
i

)2(
f p1

j

)2

+ β2
2

(
f p2
i

)2(
f p2

j

)2 + F
] 1

2 ,

where

F = αβ1( fi )
2
(

f p1
j

)2 + αβ2( fi )
2
(

f p2
j

)2

+ αβ1
(

f p1
i

)2
( f j )

2 + β1β2
(

f p1
i

)2(
f p2

j

)2

+ αβ2
(

f p2
i

)2
( f j )

2 + β1β2
(

f p2
i

)2(
f p1

j

)2
.

or

Ei E j = (
α2 f 2

i f 2
j + G

)1/2
,

where

G = β2
1

(
f p1
i

)2(
f p1

j

)2 + β2
2

(
f p2
i

)2(
f p2

j

)2 + F.

or

Ei E j = α fi f j + H,

where

H = Ei E j ∓
√

E2
i E2

j − G.

Therefore, from (24)

X4 = 1

k2


α

k∑
i=1

( fi )
2 + β1

k∑
i=1

(
f p1
i

)2 + β2

k∑
i=1

(
f p2
i

)2

+ 2
k∑

i=1

k∑
j=1
i �= j

(α fi f j + H )




or

X4 = 1

k2


αD + β1

k∑
i=1

(
f p1
i

)2 + β2

k∑
i=1

(
f p2
i

)2

+ 2
k∑

i=1

k∑
j=1
i �= j

H




or

X4 = 1

k2

[
αD + β1

k∑
i=1

(
f p1
i

)2 + β2

k∑
i=1

(
f p2
i

)2 + H ′
]
,
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where

H ′ = 2
k∑

i=1

k∑
j=1
i �= j

H.

Substituting the values of X2 and X4 in (22) we get

α( f̄h(t + 1)bs)2

α
(

1
k2

)
D

<
α( f̄ h(t + 1)bs)2 + β1

(
f̄ p1

h

)2 + β2

(
f̄ p2

h

)2

(
1

k2

) [
αD + β1

∑k
i=1( f p1

i
2) + β2

∑k
i=1( f p2

i )2 + H ′
]

⇔ α( f̄h(t + 1)bs)2

αD

<
α( f̄h(t + 1)bs)2 + β1

(
f̄ p1

h

)2 + β2

(
f̄ p2

h

)2

αD + β1
∑k

i=1

(
f p1
i

)2 + β2
∑k

i=1

(
f p2
i

)2 + H ′

⇔ ( f̄h(t + 1)bs)2

D

<
β1

(
f̄ p1

h

)2 + β2

(
f̄ p2

h

)2

β1
∑k

i=1

(
f p1
i

)2 + β2
∑k

i=1

(
f p2
i

)2 + H ′
. (25)

Thus the right hand side of (18) will be less than that
of (20) if (25) holds.

Similarly, the expressions for r > 2 can be deduced.
One may note that the right hand side of (21) is inde-
pendent of α and βi , whereas it is not the case for (25).

Appendix B

Hopfield type Neural Network Architecture
for Object Extraction

To use a Hopfield type neural network for object back-
ground classification [18], a neuron is assigned corre-
sponding to every pixel. Each neuron can be connected
to all of its neighbors (over a window) only. The con-
nection can be full (a neuron is connected to all of its
neighbors) or can be partial (a neuron may not be con-
nected with all of its neighbors). The network topology
for a fully connected third order neighborhood is de-
picted in Fig. 10. Here the maximum number of con-
nections of a neuron with its neighbors is 8. In practice,
all these connections may not exist. Again, different
neurons may have different connectivity configuration
within its neighbors. The initial status and input bias
of each neuron are set depending on the gray value of
the corresponding pixel. The status updating rules are
similar to those of Hopfield’s model [19]. The objective

Figure 10. Topology of the neural network with third order con-
nectivity (in the proposed system all connections may not exist).

function to be minimized for object extraction is simi-
lar to the expression of energy of the above mentioned
network.

The energy function of this model has two parts.
The first part is due to the local field or local feedback
and the second part corresponds to the input bias of
the neurons. In terms of images, the first part can be
viewed as the impact of the gray levels of the neighbor-
ing pixels, whereas the second part can be attributed
to the gray value of the pixel under consideration.
The total energy contributed by all pixel pairs will be
− ∑

i

∑
j Wi j Si S j , where Si , Sj are the status of the i th

and j th neurons, respectively and Wi j is the connection
strength between these two neurons. In our experimen-
tal study Wi j is either 0 or 1 (connection is absent or
present).

For every neuron i there is an initial input bias Bi

which is taken to be proportional to the actual gray
level for the corresponding pixel. If the gray value of
a pixel is high (low), the corresponding intensity value
of the scene is expected to be high (low). The input bias
value is taken in the range [−1, 1]. Under this frame-
work an ON (1) neuron corresponds to an object pixel
and the OFF (−1) one as background pixel. So the
threshold between object and background can be taken
as 0. Thus the amount of energy contributed by the in-
put bias values is − ∑

i Bi Si . Therefore, the expression
of energy for the object extraction problem takes the
form

Energy = −
∑

i

∑
j

Wi j Si S j −
∑

i

Bi Si . (26)
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From a given initial state, the status of a neuron is
modified iteratively to attain a stable state. Stable states
of the network (local minima of the energy function)
are made to correspond to the partitioning of a scene
into compact regions.
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