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Fuzzy Multi-Layer Perceptron,
Inferencing and Rule Generation

Sushmita Mitra and Sankar K. Pal, Fellow, IEEE

Abstract— A connectionist expert system model, based on a
fuzzy version of the multilayer perceptron developed by the
authors, is proposed. It infers the output class membership
value(s) of an input pattern and also generates a measure of
certainty expressing confidence in the decision. The model is
capable of querying the user for the more important input feature
information, if and when required, in case of partial inputs.
Justification for an inferred decision may be produced in rule
form, when so desired by the user. The magnitudes of the con-
nection weights of the trained neural network are utilized in every
stage of the proposed inferencing procedure. The antecedent and
consequent parts of the justificatory rules are provided in natural
forms. The effectiveness of the algorithm is tested on the speech
recognition problem, on some medical data and on artificially
generated intractable (linearly nonseparable) pattern classes.

I. INTRODUCTION

RTIFICIAL neural networks [1, 2] are massively parallel
Ainterconnections of simple neurons that function as a
collective system. An advantage of neural nets lies in their
high computation rate provided by massive parailelism, so
that real-time processing of huge data sets becomes feasible
with proper hardware. Information is encoded among the
various connection weights in a distributed manner. The utility
of fuzzy sets [3, 4, 5] lies in their capability in modelling
uncertain or ambiguous data so often encountered in real
life. There have been several attempts recently {6, 7, 8] in
making a fusion of fuzzy logic and neural networks for better
performance in decision making systems. The uncertainties
involved in the input description and output decision are taken
care of by the concept of fuzzy sets while the neural net theory
helps in generating the required decision regions.

An expert system [9, 10] is a computer program that func-
tions in a narrow domain dealing with specialized knowledge
generally possessed by human experts. It is expected to be able
to draw conclusions without seeing all possible information
and be capable of directing the acquisition of new information
in an efficient manner. It should also be able to justify a
conclusion arrived at. The major components of an expert
system are the knowledge base, inference engine and user
interface. Traditional rule-based expert systems encode the
knowledge base in the form of If-Then rules while the connec-
tionist expert system [11] uses the set of connection weights
of the trained neural net model for this purpose. However,
the knowledge base itself is a major source of uncertain
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information [10] in expert systems, the causes being unreliable
information, imprecise descriptive languages, inferencing with
incomplete information, and poor combination of knowledge
from different experts.

In this work we consider an application of the fuzzy version
of the MLP (already developed by the authors) {12] to design
a connectjonist expert system. The model is expected to be
capable of handling uncertainty and/or impreciseness in the in-
put representation, inferring output class membership value(s)
for complete and/or partial inputs along with a certainty
measure, querying the user for the more essential missing
input information and providing justification (in the form of
rules) for any inferred decision. Note that the input can be in
quantitative, linguistic or set forms or a combination of these.
The model is likely to be suitable in data-rich environments
for designing classification-type expert systems.

Initially, in the learning phase the training samples are
presented to the network in cycles until it finally converges
to a minimum error solution. The connection weights in this
stage constitute the knowledge base. Finally, in the testing
phase the network infers the output class membership values
for unknown test samples. When partial information about a
test vector is presented at the input, the model either infers
its category or asks the user for relevant information in the
order of their relative importance (decided from the learned
connection weights). A measure of confidence (certainty)
expressing belief in the decision is also defined.

If asked by the user, the proposed model is capable of
justifying its decision in rule form with the antecedent and
consequent parts produced in linguistic and natural terms. The
connection weights and the certainty measure are used for this
purpose. It is expected that the model may be able to generate
a number of such rules in /f-Then form. These rules can then
also be used to automatically form the knowledge base of a
traditional expert system.

The effectiveness of the algorithm is demonstrated on the
speech recognition problem, on some medical data and on
artificially generated intractable (linearly nonseparable) pattern
classes.

II. FuzZY VERSION OF THE MLP

The MLP [2, 13, 14] consists of multiple layers of sigmoid
processing elements or neurons that interact using weighted
connections. Consider the network given in Fig. 1. The output
of a neuron in any layer other than the input layer (b > 0)
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Fig. 1. The fuzzy neural network with three hidden layers.
is given as
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where y? is the state of the i** neuron in the preceding h**
layer and w;‘, is the weight of the connection from the it*
neuron in layer h to the jt* neuron in layer h+ 1. For nodes in
the input layer we have y? = zg, where x? is the j** component
of the input vector.

The Least Mean Square error in output vectors, for a given
network weight vector w, is defined as

1
Bw) =5 Y (yfe(w) — dc)” @
ie

where yfc(w) is the state obtained for output node j in layer
H in input-output case ¢ and d; . is its desired state specified
by the teacher. One method for minimization of E is to apply
the method of gradient-descent by starting with any set of
weights and repeatedly updating each weight by an amount

B OF

Awji(t) = —eawﬁ

where the positive constant ¢ controls the descent, 0 < <1
is the momentum coefficient and ¢ denotes the number of
the iteration currently in progress. After a number of sweeps
through the training set, the error F in (2) may be minimized.
The fuzzy version of the MLP, discussed here, is based on
the model reported in [12] and is capable of classification of
fuzzy patterns. Each input feature F}; is expressed in terms
of membership values indicating a measure of belongingness
to each of the linguistic properties low, medium and_high
modelled as w-sets [4]. An n-dimensional pattern F; =
[Fi1, Fia,. .., Fiy)] is represented as a 3n-dimensional vector

+aduwli(t—1) 3)

E = [/Llow(F“)(ﬁi)’Umedium(Fu)(F‘i))y’high(Fu)(F‘i)’
~~7/1'high(Fm)(ﬁi):| (€]

where the u value indicates the membership to the correspond-
ing linguistic w-set along cach feature axis. The overlapping
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structure of the three w-functions for a particular input feature
F; (j** axis) is the same as reported in [12].

It is to be noted here that an n-dimensional feature space is
decomposed into 3™ overlapping sub-regions corresponding to
the three primary properties. This enables the model to utilize
more local information of the feature space [15] and is found
to be more effective in handling linearly nonseparable pattern
classes having nonconvex decision regions [16]). Therefore,
numerical data are also fuzzified to enable a better handling
of the feature space. Besides, this three-state structure of (4)
helps in handling linguistic input suitably.

When the input feature is linguistic, its membership values
for the w-sets low, medium and high are quantified as

low = {095 06 0.02

"\ L'M H

edium = { 07 0:95 0.7

medium = T M A

., _ J0.02 0.6 095
hlgh:{ L ,Va—H—} (&)

When F; is numerical we use the 7-fuzzy sets [17] (in the
one-dimensional form), with range [0, 1], given as
2
2(1—15/\;5) , for%§|Fj—c|§/\

. — 2
m(Fj5¢,A) = 1—2(|—FJ;—CI),fOTOS|FJ‘*c|§% ©

0, otherwise

where A > 0 is the radius of the w-function with c as the central
point. The choice of A’s and c¢’s for each of the linguistic
properties low, medium and high are the same as reported in
[12].

To model real-life data with finite belongingness to more
than one class, we clamp the desired membership values (lying
in the range [0, 1]) at the output nodes during training. For
an [-class problem domain, the membership of the :** pattern
to class Cj is defined as

- 1
m(F) = —— ™
1+ (3)
where z;j is the weighted distance between the ** pattern

and the mean of the k" class (based on the training set)
and the positive constants Fy and F. are the denominational
and exponential fuzzy generators controlling the amount of
fuzziness in this class-membership set. For the 5** input pattern
we define the desired output of the j** output node as

d; = p;(Fy)

where 0 < d; < 1 for all 7. When the pattern classes are
known to be nonfuzzy, z; of (7) may be set to O for a
particular class and infinity for the remaining classes so that
me(F;) € {0,1}

The ¢ of (3) is gradually decreased in discrete steps, taking
values from the chosen set {2, 1, 0.5, 0.3, 0.1, 0.05, 0.01,
0.005, 0.001}, while the momentum factor « is also decreased
[12].

(&)
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Fig. 2. Block diagram of the inferencing and rule generation phases of the model.

III. INFERENCING IN THE FUZzYy EXPERT SYSTEM MODEL

The most difficult, time-consuming and expensive task in
building an expert system is constructing and debugging its
knowledge base. In practice the knowledge base construc-
tion can be said to be the only real task in building an
expert system, given the proliferating presence of expert
shells. Several approaches have been explored for easing
this knowledge-acquisition bottleneck. Connectionist expert
systems offer an alternative approach in this regard. Rules are
not required to be supplied by humans. Instead, the connection
weights encode among themselves, in a distributed fashion, the
information conveyed by the input-output combinations of the
training set. Such models are especially suitable in data-rich
environments and enable human intervention to be minimized.
Moreover, using fuzzy neural nets for this purpose, helps one
to incorporate the advantages of approximate reasoning [18]
into the connectionist expert system. This leads to the design
of fuzzy connectionist expert systems [19, 20]. A study of
neuro-fuzzy expert systems may be found in [21].

In this work we consider an (H + 1)-layered fuzzy MLP
(as depicted in Fig. 1) with 3n neurons in the input layer and
I neurons in the output layer, such that there are H — 1 hidden
layers. The input vector with components a:';- represented as
F by (4) is clamped at the input layer while the desired
[-dimensional output vector with components d; by (8) is
clamped during training at the output layer. At the end of
the training phase the model is supposed to have encoded
the input-output information distributed among its connection
weights. This constitutes the knowledge base of the desired
expert system. Handling of imprecise inputs is possible and
natural decision is obtained associated with a certainty measure
denoting the confidence in the decision. The model is capable
of inferencing based on complete and/or partial information,
querying the user for unknown input variables that are key to
reaching a decision, and producing justifications for inferences
in the form of If-Then rules. Fig. 2 gives an overall view of
the various stages involved in the process of inferencing and
rule generation.

A. Input Representation

The input can be in quantitative, linguistic or set forms or
a combination of these. It is represented as a combination of
memberships to the three primary linguistic properties low,
medium and high as in (4), modelled as w-functions. When

the information is in exact numerical form like F is rq, say,
we determine the membership values in the corresponding
3-dimensional space of (4) by the w-function using (6).
When the input is given as Fj is prop (say), where prop
stands for any of the primary linguistic properties low, medium
or high, the membership values in the 3-dimensional space of
(4) are assigned using the w-sets of (5). The proposed model
can also handle the linguistic hedges [15] very, more or less
(Mol) and not. The sets very low and low or, say, very high
and high are considered to be pairs of different but overlapping
sets [15], such that the minimum (maximum) feature value has a
higher membership to the set very low (very high) as compared
to that in the set low (high). Hence w-functions are found to
be appropriate for modelling these linguistic sets. The hedge
not is defined as
MNot(4) = 1 pa(z) ©)
In the set form, the input is a mixture of linguistic hedges
and quantitative terms. Since the linguistic term increases the
impreciseness in the information, the membership value of a
quantitative term is lower when modified by a hedge [15]. The
modifiers used are about, less than, greater than and between.
If any input feature F); is not available or missing, we clamp
the three corresponding neurons = = z{,, =z}, = 0.5,
suchthat s = (j—1)*3+1.Here 1 <k <3nand 1 < j < m,
where n is the dimension of the input pattern vector. We use

(10)

. . {0.5 0.5 0.5}
no information =

L'M'H

as 0.5 represents the most ambiguous value in the fuzzy
membership concept. We also tag these input neurons with
noinfy = noinfy,, = noinfy _, = 1. Note that in all other
cases the variable noinf{ is tagged with 0 for the corresponding
input neuron k, indicating absence of ambiguity in its input
information.

The appropriate input membership values obtained by
(4-6,10), with/without the hedges or modifiers, are clamped
at the corresponding input neurons.

B. Forward Pass

The I-dimensional output vector with components yH is
computed using (1) in a single forward pass. This output
vector, with components in the range [0, 1], gives the inferred



54

membership values of the test pattern to the ! output classes.
Associated with each neuron j in layer h + 1 are also

* its confidence estimation factor con j"'l

¢ avariable unknown';-”r1 providing the sum of the weighted
information from the preceding ambiguous neurons % in
layer h having noinf* = 1
e a variable known;""l giving the sum of the weighted in-
formation from the (remaining) non-ambiguous preceding
neurons with noin]‘ﬁz = 0.
Note that for a neuron j in layer & + 1 with no preceding
neurons : tagged with noinﬂ‘ =1, we have unknown;z+1 =10.
For neuron j we define

htl _ hh
unknown;" "~ = E WY
i

(11

i

unden’t = Z |w;‘,-|
i

for all ¢ having noinf? = 1 and

known;-’+ 1= Z w}‘,— yh (12)

for all i with noinf® = 0, where for neurons in layer 2 > 0
we have

0 otherwise a3

noin f;' _ {1 if lknown;-‘| < |unknown;»’|
For neuron j in the input layer (h = 0), the value of noinf;
is assigned as explained earlier. Neuron j with noinf;‘ =1
signifies the lack of meaningful information. For an input
neuron this implies missing input information while for other
neurons (h > 0) this is an indicator to the transmission of
a larger proportion of weighted ambiguous information as
compared to more certain information from the input layer.
Using (1,11-13), we define
Sttt

__.l_.__.._.x__-

. . h —
con f;-’ _ anden” if noinf! =1and h >0

14)

yg‘ otherwise

Note that con fJ’-‘ is comparable either among the set of neurons
having noinf} = 1, or among those with noinf}* = 0, but not
between the neurons belonging to these two different sets.
In the output layer (b = H) if noinff’ = 0 then conf}!

g

is higher for neurons having larger y;*, implying a greater
belongingness to output class j. Hence this is a measure of
the confidence in the decision. However if noin fjH = 1 then
con fJH gives a measure of the confidence of the ambiguous
neuron output. This is because as unden;-” by (11) (absolute
sum of connection weights from ambiguous preceding layer
neurons) increases, the confidence con fJ’»‘ decreases and vice
versa.

If there is no output neuron j with noz’nff = 1, then the
system finalizes the decision inferred irrespective of whether
the input information is complete or partial. In case of par-
tial inputs, this implies presence of all the necessary fea-
tures required for taking the decision. It may be mentioned
that the weights (learned during training), that constitute the
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knowledge-base, play an important part in determining whether
a missing input feature information is essential to the final
inferred decision or not. This is because these weights are
used in computing the noinf;L ’s for the neurons by (11-13)
and these in turn determine whether the inferred decision may
be taken.

It is to be noted that the difficulty in arriving at a particular
decision in favor of class j is dependent not only on the
membership value y]‘-"f but also on its differences with other
class membership values yf, where i # j. To take this factor
into account, a certainty measure (for each output neuron) is
defined as

belfl = yff =3 yFf
i#j
where belf < 1. The higher the value of bel]H (> 0), the lower

is the difficulty in deciding an output class j and hence the
greater is the degree of certainty of the output decision.

(15)

C. Querying

If the system has not yet reached a conclusion at the output
layer (as explained in Section III. B.) to complete the session,
it must find an input neuron with unknown activation and ask
the user for its value. If there is any neuron j in the output layer
H with noin fJH =1 by (13), we begin the querying phase.

We select the unknown output neuron j; from among the
neurons with noin fJH = 1 such that conjﬁ by (14) (among
them) is maximum. This enables starting the process at an
output neuron that is most certain among the ambiguous
neurons. We pursue the path from neuron j; in layer H,
in a top-down manner, to find the ambiguous neuron 4, in
the preceding layer (h = H — 1) with the greatest absolute
influence on neuron j;. For this, we select 7 == ¢; such that

)i, % yh| = max |w),; x y?| where noinf! =1 (16)
This process is repeated until the input layer (h = 0) is
reached. Then the model queries the user for the value of

the corresponding input feature u; such that

up = (41— 1) mod 3+1 amn
where 1 <47 < 3n, 1 < u; < n and n is the dimension of
the input pattern vector.

When the user is asked for the value of a missing variable,
she can respond in any of the forms stated in Section IILA.
However if a missing input variable of (10) is found to be
missing once again, we now tag it as unobtainable. This
implies that the value of this variable will not be available
for the remainder of this session. The inferencing mechanism
treats such variables as known with values 2§ = zf ,, =
z o = 0.5 but with noinf) = noinfl | = noinf? ., =0
such that k1 = (u1 — 1) * 3 + 1. We now have

0.5 0.5 0.5 }

j tion =< —, —, — 18
information { M H (18)
Note the difference from (10) in the value of noin f,‘c) and its

effect in the confidence estimation by (11-14). The response
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from an unobtainable input variable might allow the neuron
activations in the following layers to be inferred, unlike that of
a missing variable. Besides, a missing variable has a temporary
value of 0.5 that may be changed later in the session, whereas
an unobtainable variable has a known final value of 0.5.

Once the requested input variable is supplied by the user,
the procedure in Section III. B. is followed either to infer
a decision or to again continue with further querying. On
completion of this phase all neurons in the output layer have
noinfff = 0 by (13).

D. Justification

The user can ask the system why it inferred a particular
conclusion. The system answers with an If-Then rule appli-
cable to the case at hand. It is to be noted that these If-Then
rules are not represented explicitly in the knowledge base; they
are generated by the inferencing system from the connection
weights as needed for explanations. As the model has already
inferred a conclusion (in this stage), we take a subset of
the currently known information to justify this decision. A
particular conclusion regarding output j is inferred depending
upon the certainty measure belJH . It is ensured that output
nodes j with bel]’-{ > 0 (or, large yJH values) are chosen
for obtaining the justification. This is because explanation
becomes feasible only when the decision is not uncertain.

Output Layer: Let the user ask for the justification about
a conclusion regarding class j. Starting from the output layer
h = H, the process continues in a top-down manner until
the input layer (h = 0) is reached. In the first step, for
layer H, we select those neurons : in the preceding layer
that have a positive impact on the conclusion at output

neuron j. Hence we choose neuron ¢ of layer H — 1 if
H-1

wy; > 0. Let the set of mgy_; neurons of layer H —
1, so selected, be {af‘l,af'l,...,aﬁil -and let their

connection weights to neuron j in layer
H-1 — wH- 1
jay 1 dampg_
maining layers we obtain the maximum weighted paths through
these neurons down to the input layer.

Intermediate Layers: We select neuron ¢ in layer 0 < h <

H -1 if

be given as

wet nH-1 =W . wet m—1 . For the re-
ay Cmpg_1 1

y* > 0.5, and
— h g
wetn = ﬁzﬁc[wetaﬁﬂ + wy, 1]
k

19

such that wet;» > 0. Let the set of m; neurons so chosen be
given by {a?,a,... al } and their cumulative link weights
to neuron j in layer H be {weta?, weta;, et ,wetafnh}
respectively, by (19). Note that this heuristic ensures that
each of the selected mj; neurons have a significant output
response y!'. This implies choosing a path with neurons that
are currently active for deciding the conclusion that is being
justified. It also enables each neuron i to lie along one of the
maximum weighted paths from the input layer (A = 0) to the
output node j in h = H, by choosing only one of the mp1,
previously selected paths that provides the largest net weight
wetn.
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Input Layer: Let the process of (19) result in mg chosen
neurons (paths) in (from) the input layer (h = 0). These
neurons indicate inputs that are known and have contributed
to the ultimate positivity of the conclusion at neuron j in the
output layer H. It may happen that mg = 0, such that no clear
justification may be provided for a particular input-output case.
This implies that no suitable path can be selected by (19) and
the process terminates.

Let the set of the selected m( input neurons be
{a},aY,...,al, } and their corresponding path weights
to neuron j in layer H be {wetag, wetgg, ... ,wetagno } We
arrange these neurons in the decreasing order of their net
impacts, where we define the net impact for neuron ¢ as

net impact; = y * weto

Then we generate clauses for an If-Then rule from this ordered

list until
z wet;o > 2 Z wet;o
i, in

where ¢, indicates the input neurons selected for the clauses
and ¢, denotes the input neurons remaining from the set
{a},43,...,a5,, } such that

(20)

|és] + |én] = mo

and |is|, |én| refer respectively to the number of neurons
selected and remaining from the said set. This heuristic allows
selection of those currently active input neurons contributing
the most to the final conclusion (among those lying along the
maximum weighted paths to the output node j) as the clauses
of the antecedent part of a rule. Hence, it enables the currently
active test pattern inputs (current evidence) to influence the
generated knowledge base (connection weights learned during
training) in producing a rule to justify the current inference.

Clause Generation: For a neuron ¢,, in the input layer
(h = 0), selected for clause generation, the corresponding
input feature u,, is obtained as in (17). The antecedent of the
rule is given in linguistic form with the linguistic property
being determined as

low ifis1 —3(usl—-1)=1
prop = ¢ medium if 4,1 — 3(us1 —1) =2 21
high otherwise

Here, the 3-dimensional components for the input feature
us, correspond to the appropriate part of the test pattern vector
(given in quantitative, linguistic or set form and converted to
the respective 3-dimensional space of (4)). Suppose that the
relevant input feature had been initially supplied in linguistic
form as medium with the individual components given by (5).
The neuron i,, selected for clause generation by (19-20) can,
however, result in feature u,, corresponding to any of the
three properties low, medium or high by (21). This is because
the path generated during backtracking is primarily determined
by the connection weight magnitudes encoded during training.
However, the test pattern component magnitudes at the input
also play a part in determining whether the input neuron i,
can be selected or not. In the example under consideration,
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the input feature components being {0.7, 0.95, 0.7}, the
linguistic property prop can be either low or medium or high
and is not constrained to be medium only. Therefore, feature
properties highlighted for the input pattern may not necessarily
be reflected in a similar manner while selecting the value of
prop in feature u,, for a clause of the rule. In fact, such an
input feature component may also not be selected at all as an
antecedent clause.

A linguistic hedge very, more or less or not may be attached
to the linguistic property in the antecedent part, if necessary.
We use the mean square distance d(us,,prm) between the
3-dimensional input values at the neurons corresponding to
feature u,, and the linguistic property prop by (21), with or
without modifiers, represented as pr,,. The corresponding 3-
dimensional values of pr,, (without modifiers) for prop are
given by (5). The incorporation of the modifiers very, more
or less and not result in the application of different operators
(as reported in [15]) to generate the corresponding modified
values for pr,,. That value of pr,, (with/without modifiers) for
which d(us, , Prm) is the minimum is selected as the antecedent
clause corresponding to feature u,, (or neuron ,,) for the rule
justifying the conclusion regarding output neuron j.

This procedure is repeated for all the |i,| neurons selected
by (20) to generate a set of conjunctive antecedent clauses
for the rule regarding inference at output node j. All input
features (of the test pattern) need not necessarily be selected
for antecedent clause generation.

Consequent Deduction: The consequent part of the rule can
be stated in quantitative form as membership value y]H to
class j. However a more natural form of decision can also be
provided for the class j, having significant membership value
y]H , considering the value of bel]H of (15). For the linguistic
output form, we use

1. very likely for 0.8 < belf’ <1
likely for 0.6 < belfl < 0.8
more or less likely for 0.4 < belfl < 0.6
not unlikely for 0.1 < bel < 0.4
. unable to recognize for belH < 0.1

In principle it should be poss1ble to examine a connectionist
network and produce every such If-Then rule. These rules can
also be used to form the knowledge base of a traditional expert
system.

An Example: Consider the simple 3-layered network given
in Fig. 3 demonstrating a simple rule generation instance
regarding class 1. Let the paths be generated by (19). A
sample set of connection weights w;-‘i, input activation y?
and the corresponding linguistic labels are depicted in the
figure. The solid and dotted-dashed paths (that have been
selected) terminate at input neurons i, and ¢, respectively,
as determined by (20). The dashed lines indicate the paths
not selected by (19), using the w], and yf values in the
process. Let the certainty measure for the output neuron under
consideration be 0.7. Then the rule generated by the model in
this case to justify its conclusion regarding class 1 would be

wop e

If Fy is very medium AND F; is high
then likely class 1.
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Fig. 3. An example to demonstrate the rule generation scheme by back-
tracking.

In this case, the net path weights by (20) at the end of the clause
selection process are found to be 2.7 (= 1.6 + 1.1) and 1.05
for the selected i, and not selected i, neurons respectively
such that 2.7 > 2 x 1.05. The modifier very is obtained by
applying appropriate operators [15], and this is found to result
in the minimum value for d(u,, ,pry,).

To demonstrate querying, let us consider F} to be initially
unknown. Then 3 = 3 = y§ = 0.5, with the other values
corresponding to those given in Fig. 3. From (11-13), we have
known! = 0.57, known} = 0.618, unknown! = 0.575,
unknown} = 0.65, and therefore noinfl = noinfi =
noinf = 1. As the system cannot reach any conclusion in
this state, the querying phase is started. In this case, the only
unknown input feature is F) and it can be supplied in any of
the forms mentioned in Section III. A.

IV. IMPLEMENTATION AND RESULTS

The above-mentioned algorithm was first tested on a set
of 871 Indian Telugu vowel sounds. These were uttered in a
Consonant-Vowel-Consonant context by three male speakers
in the age group of 30 to 35 years. The data set has three
features; F, F» and F3 corresponding to the first, second and
third vowel formant frequencies obtained through spectrum
analysis of the speech data. Thus the dimension of the input
vector in (4) for the proposed model is 9. Note that the
boundaries of the classes in the given data set are seen to
be ill-defined (fuzzy). Fig. 4 shows a 2D projection of the 3D
feature space of the six vowel classes (0, a,i,u,e,0) in the
Fy — F, plane (for ease of depiction). The training data has
the complete set of input features in the 9-dimensional form
while the desired output gives the membership to the 6 vowel
classes. The test set uses complete/partial sets of inputs and
the appropriate classification is inferred by the trained neural
model.

The model has also been implemented on a medical diagno-
sis problem that deals with kala-azar [22], a tropical disease,
using a set of 68 patient cases. The input features are the
symptoms while the output indicates the presence or absence
of the disease. The symptoms are the measurements of blood
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Fig. 4. Vowel diagram in the F; — Fy plane.
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Fig. 5. Pattern Set A in the F, — F, plane.

urea (mg %), serum creatinine (g %), urinary creatinine (ng
%) and creatinine clearance (ml/min) indicated respectively as
Fy, F,, F; and F. These are represented in the linguistic form
of (4). The training data has the complete set of symptoms with
the desired classification indicating presence or absence of the
disease.

Lastly, the model was used on two sets (A, B respectively)
of artificially generated intractable (linearly nonseparable)
pattern classes represented in the 2D feature space Fi — Fy,
each set consisting of 880 pattern points. These are depicted
in Figs. 5-6. The training set consists of the complete pattern
vectors in the 6-dimensional form of (4).

A. Vowel Data

The details regarding the classification performance on
various training and test sets as well as the choice of the
parameters for the said model (on the vowel data) have already
been reported in [12]. Here we demonstrate a sample of
the inferencing ability of a trained neural model (with five
layers having 10 nodes per hidden layer) that functions as
a knowledge base for the vowel recognition problem. It was
trained using 50% samples from each representative class. The
results are demonstrated in Tables I-IIL.

Table I illustrates the inferred output responses of the
proposed model on a set of partial and complete input feature

?

Fig. 6. Pattern Set B in the F; — F» plane.

vectors. It is observed that often the two features F; and
F, are sufficient for reaching a conclusion. This may easily
be verified from the 2D representation of the vowel data in
Fig. 4. Here the 2™ entry corresponds to no particular vowel
class and hence the certainty measure is appreciably low with
both classes e and ¢ registering ambiguous output membership
values slightly less than 0.5. The 4a** entry has only one
accurate input value corresponding to F;. Hence this maps to
a line parallel to the F; axis at F; = 700 in Fig. 4. Note that
both classes a and 0 register positive belongingness, although
class a is the more likely winner. On the other hand the 37¢
entry, with a complete feature vector, specifies a more certain
decision in favor of class a. In entry 4b, with a certain value
for F, the decision shifts in favor of class e. The 5t* entry also
possesses finite possibility of belongingness to classes e and
i, as verified from the vowel diagram. However the certainty
measure is indicative of the uncertainty in the decision. The
ambiguity of the 6% and 7** entries are evident both from
Fig. 4 as well as the two highest output membership values
and the certainty measures. The 11at* entry corresponds to a
horizontal band across Fig. 4 around F; = 350. The classes
e and 7, having the two highest horizontal coverages in this
region, correspond to the significant responses obtained. This
may be contrasted with entry 4a where at least F has a definite
value 700. On the other hand, entry 1la corresponds to a
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TABLE 1
INFERRED OUTPUT RESPONSES AND CERTAINTY MEASURES FOR A SET OF VOWEL DATA, USING

A FIve-LAYERED Fuzzy MLP HavinG 10

NopEs PER HIDDEN LAYER WITH perc = 50

Sr. Input features Highest output Significant 2™¢ choice | Certainty
No. Fy 12 F Clase j | Membership y¥ | Class | Membership betl
1 300 800 missg. u 0.89 - 088
2 250 1550 wnobt. e 0.49 1 0.47 0.02
3 700 1000 2600 e 0.89 - 0.89
4a 700 misag. miasg. a 0.85 4 0.14 0.71
4b 700 2300 miasg. e 0.77 - 0.68
5 450 2400 miseg. 3 0.70 i 0.1 047
6 600 1200 missg. a 0.71 o 0.27 0.39
T fow very low | misep. u 0.48 o 0.35 0.10
8 high Mol low | misag. a 0.91 - 0.91
9 between 1600 misag. e 0.75 - 0.72
500 & 600
10 greater high missg. e 0.75 0.60
than 650
11a sbout 350 missg. missg. e 0.70 t 0.10 0.50
1itb | abdout 350 high missg. e 0.65 ' 0.34 0.31
TABLE II Table III shows the rules generated from the knowledge base

QUERYING MADE BY THE NEURAL NETWORK MODEL WHEN PRESENTED
WITH A SAMPLE SET OF PARTIAL PATTERN VECTORS FOR VOWEL DATA

Serial Input features Query
No. F, F, F3 for
la 700 missing | missing F,
1b 700 2300 | missing -
2a | about 350 | missing | missing F
2b | about 350 | high missing -
3 400 800 missing Fy
4 400 missing | missing 3
5 250 1550 | missing b

pattern point having relatively more uncertainty at all three
frequency values. This results in the difficulty of decision as
is evident from the value of the certainty measure. Besides,
pattern class w (with a lower horizontal coverage around the
broader band about 350) also does not figure among the top
two significant responses. In entry 11b, as F» becomes set at
high, the response in favor of class ¢ increases. However, the
ambiguity in the decision is still evident.

In Table II we demonstrate a sample of the partial input
feature combinations that are insufficient for inferring any
particular decision. The more essential of the feature value(s)
is queried for by (16, 17). The 37¢ and 5% entries are seen
to lack essential information in spite of having specific values
corresponding to two features. This can be explained from the
ambiguity of decision (w. r. t. a class) observed at these pattern
points in the 2D projection in Fig. 4.

by presenting a sample set of test patterns. The antecedent
parts are obtained using (19-21) while the consequent parts
are deduced from the values of the certainty measure belf-’ .
The rules obtained may be verified by comparing with Fig. 4.
Note that the 5%, 6t* and 9** entries generate no justification.

B. Kala-azar Data

The model was next trained with the kala-azar data using
30 (20 diseased and 10 control/normal) cases. The test set
consisted of 38 samples constituting the responses of the
above-mentioned 20 diseased patients (over the next 20 days)
to the ongoing treatment [22]. Some of these patients were
cured while the conditions of a few others worsened, some-
times ultimately culminating in death. The instances of patients
cured constituted the output class normal/cured while the
remaining cases were clubbed under the output class diseased.
The performance of various sizes of the proposed model on the
kala-azar data with training set size perc = 44.1(= 38/68) is
depicted in Table IV. Note that mean square error mse, perfect
match p and best match b refer to the training set while mean
square error mse; and overall score t are indicative of the
test set.

Then a trained three-layered neural network with 10 hidden
nodes was used to demonstrate the inferencing ability (Tables
V-VI) of the model on the kala-azar data. Table V shows the
inferred output responses of the model for a sample set of
test data. Here class 1 corresponds to diseased while class 2
refers to cured. The 1% and 6" entries correspond to patients
experiencing speedy recovery during the course of treatment
while the 274 entry refers to a patient who was gradually
cured. The certainty measure and output membership values
bear testimony to this. Note that the 1°* and 2°¢ rows for
each entry refer respectively to the status of the patient at the
end of 10 and 20 days. The 3" and 4'* entries correspond
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RULES GENERATED BY THE NEURAL NETWORK MODEL TO JUSTIFYE?SB{‘NE‘EE;ED DECISIONS FOR A SET OF PATTERN VECTORS FOR VOWEL DATA.
Serial Input featurcs Justification / Rule generation

No. F, F; If dause Then conclusion
1 300 900 missing F3 is very low and

Fy is very low very likely class u
2 250 1550 unobtainable Fy is very low and

F3 is Mol low unable to recognize
3 700 1000 2600 F; is very low and

F) is Mol high and

F3 is Mol high very likely class a
2] 700 wnobtainable missing Fyis Mol high likely class o
5 450 2400 missing no explanation -
6 700 2300 missing ®o explanation -
7 kigh Mol low missing Fy is Atgh and

F; is Mol low very likely class a
8 between 500 & 600 1600 missing F3 is very medixm and

Fy is very medium likely class e

9 greater than 650 high missing no erplanation -
10 about 350 high missing Fy is high and

Fy is very low not wniikely class e

TABLE IV chosen from each representative pattern class. The number

OUTPUT PERFORMANCE ON TRAINING AND TEST SET OF KALA-AZAR
DatA BY THE Fuzzy NEURAL NET MODEL FOR VARIOUS LAYERS
H + 1, witH m NODES PER HIDDEN LAYER, USING perc = 44.1

Layers H + 1 3 4

Nodes m 10 5 10

perfect p (%) | 934 | 90.0 | 100.0
best b (%) 100.0 { 100.0 | 100.0
test t (%) 86.8 | 81.5 | B86.8
mase 0.002 | 0.004 | 0.001
mase, 0.129 | 0.158 | 0.188

to patients who expired after 10 days of treatment. The 5th

and 7P entries refer to patients whose conditions deteriorated
during treatment. All these cases may be verified from the
patient records listed in [22].

In Table VI we illustrate a few of the rules generated from
the knowledge base. The serial nos. refer to the corresponding
test cases reported in Table V. The antecedent and consequent
parts are deduced as explained earlier.

C. Artificially Generated Data

Finally, the network was trained on the two sets of noncon-
vex pattern classes in succession. Two nonseparable pattern
classes 1 and 2 were considered in each case. The region of ro
pattern points was modelled as class none (no class). Table VII
compares the performance of the three-layered fuzzy neural
network model with that of the conventional MLP (Vanilla
MLP), on the two sets of nonseparable patterns A, B, (depicted
in Figs. 5-6 respectively) Training set size of perc = 10 was

of hidden nodes used were m = 11 for Pattern Set A and
m = 13 for Pattern Set B [16] for both the models. The perfect
match p, best match b mean square error mse correspond to
the training set while the remaining measures refer to the test
set (classwise, corresponding to the three classes 1, 2, none
and also overall, along with the mean square error mse;).

In Tables VIII and X we demonstrate the inferred output
responses of a five-layered model (with 10 nodes per hidden
layer and trained with perc = 50) on some partial and com-
plete input feature vectors for the two pattern sets. Tables IX
and XI illustrate the generation of a few rules from the above-
mentioned two knowledge bases. Verification regarding these
tables may be made by examining the original patterns given
in Figs. 5-6. The disjunctive (Or) terms in the antecedent parts
are obtained by combining the various conjunctive clauses
generated for the same feature corresponding to a single
rule (produced to justify a single inferred decision). These
disjunctive clauses result due to the concave and/or disjoint
nature of the pattern class(es).

In Table VIII, the 1%¢, 4t", 5th and 7** entries correspond to
horizontal bands across Fig. 5 showing Pattern Set A. Class
none, having the largest horizontal coverage at F; = low in
entry 1, produces a significant response. Note that entry 4
(with F; = medium and inferring class 1) and entry 5 (with
Fy = Mol medium and inferring class none) denote ambiguous
decisions as observed from the certainty measure. However
entry 7 with £ = Mol high produces a more definite response
in favor of class 1. As F5 becomes known as low in entry 2, the
response changes from class 1 to class none. This is because of
the fact that along the horizontal band at F; = very low, class 1
has the largest horizontal coverage. However when the smaller
region of interest is specified at F> = low, the decision shifts
in favor of class none and the ambiguity in decision decreases
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INFERRED OUTPUT RESPONSES AND CER'EZ?N';I;EM\;ASURES FOR A SET OF KALA-AZAR DATA

Serial Input features Highest output Significant 24 choice | Certainty

No. F 123 F Fy | Class j | Membership y¥ Membership bel¥

1 200 | 08 | 5648 | T1.3 2 0.75 0.24 0.52

22.5 | 087 | 61.21 | 60.5 2 0.91 0.83

2 20| 09 | 5145 | 76.6 1 0.50 0.49 0.01

29.0 | 097 | 48.89 | 64.0 2 0.51 0.49 0.03

3 450 | 1.2 750 | 65.0 1 0.76 0.26 0.5

4 520 | 1.4 35.7 | 64.5 1 1.0 - 1.0

[ 250 | 11 | 86.85 | 90.0 1 0.59 0.4 0.19

270§ 1.3 | 117.27 | 893 1 1.0 - 1.0

6 180 | 0.83 | 788 | 65.5 2 0.75 0.25 0.5

190 | 09 | 71.02 | 64.0 2 0.97 - 0.94

7 210 { 08 | 7246 | 96.0 i 0.87 0.13 0.73

30.0 { 1.1 96.4 | 85.0 1 1.0 - 1.0

TABLE VI with Fig. 5. Note that in Table IX, entries 2 and 4 generate

RULES GENERATED BY THE NEURAL NETWORK MODEL TO
JusTIFY ITs INFERRED DECISIONS FOR KALA-AZAR DATA

" Serial No.

If clause

Then conclusion

1

F; is very medixm and
Fy s very low and

Fy is very low

more or less likely cured

F3 is very medium and
F; is very medivm and

Fy is Mol low

very likely cured

Fy is very low and
F, is very medium and
F} is very medium and

F; is low

unable to recognize

F3 is very mediam and

F2 is Mol high

wnable to recognize

Fy is very low and

Fi is Mol high

more or less fikely diseased

Fy is very low and

F3 is very low

very likely discased

F¢ is very medivm and

F is very medixm

not wnlikely discased

Fy is very medium and
Fi is Mol high

very fikely discased

F3 is very medium and

F2 is very medium

more or less likely cured

Fy is Mol high and

Fyis low hikely discased
Fy is Aigh and
F¢ is Mol low very hkely diseased

drastically as the certainty increases (belf =1 here). In case
of entries 6, 8 the corresponding responses in favor of classes
2 and none become more certain as Fy becomes specified.
All results of Tables VIII-IX may be verified by comparing

no justification.

In Table X, entries 1, 2, 5 correspond to horizontal bands
across Fig. 6 showing Pattern Set B. The 1% and 5'" entries,
for F'; = not low and very high respectively, generate compar-
atively less certain decisions in favor of class 1. Entry 2 with
Fy = medium produces a decisive response in favor of class 2.
As F, becomes known as low in entry 3, the response changes
from class none to class 2 as the region of interest becomes
more localized. But the ambiguity in decision is observed
to be more in case of the complete input specification. All
results of Tables X-XI may be verified by comparing with
Fig. 6.

V. CONCLUSION AND DISCUSSION

In this work we considered a fuzzy neural net based expert
system model. The trained neural network constituted the
knowledge base for the application in hand. The network
was capable of handling uncertainty and/or impreciseness in
the input representation provided in quantitative, linguistic
and/or set forms. The output decision was inferred in terms
of membership values to one or more output classes. The
user could be queried for the more essential feature infor-
mation in case of partial inputs. Justification for the decision
reached was generated in rule form. The antecedent and
consequent parts of these rules were provided in linguistic
and natural terms. The magnitudes of the connection weights
of the trained neural net were used in every stage of the
inferencing procedure. A measure of certainty expressing
confidence (belief) in an output decision was also defined.
The effectiveness of the algorithm was demonstrated on the
vowel recognition problem, on some medical kala-azar data
and on two sets of artificially generated nonconvex pattern
classes.

Due to the limitations of the available medical data (on
kala-azar), the proposed model could not be shown to sug-
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TABLE VII
COMPARISON OF RECOGNITION SCORES OF THREE-LAYERED Fuzzy NEURAL NET MODEL WITH
THAT OF THE MORE CONVENTIONAL MLP, ON THE TWO NONSEPARABLE PATTERN SETS 4, B

Pattern set A B
Model Fuzzy | Conventional | Fuzzy | Conventional
1 78.6 47.7 83.9 87.1
T 2 84.0 720 84.8 0.0
e | none | 849 82.0 59.5 51.6
s | Overall | 83.1 71.1 75.4 69.6
t mse; 0.088 0.152 0.143 0.16
perfect p 62.1 1.2 32.2 8.1
best b 100.0 87.4 100.0 77.1
mse 0.007 0.078 0.008 0.104
TABLE VIII

INFERRED OUTPUT RESPONSES AND CERTAINTY MEASURES FOR A SAMPLE OF PATTERN SET A
DaATA, USING A FIVE-LAYERED Fuzzy MLP HAVING m = 10 NODES IN EACH HIDDEN LAYER

Senal Input features Highest output Significant 2"¢ choice | Certainty
No. F, F Class 3 | Membership ul" Class Membership bel:"
1 low missing none 1.0 - - 1.0
2 very low missing 1 0.60 none 0.41 0.19
very low low none 1.0 - B 1.0
3 Mol low low 2 1.0 - - 1.0
4 medism missing 1 0.67 none 0.34 0.32
5 Mol medixm | missing none 0.72 1 0.32 0.4
6 not medium | missing 2 0.73 none 0.27 0.47
not medivm low 2 1.0 - - 1.0
7 Mol Aigh missing 1 1.0 - - 1.0
8 not high missing none 0.8 1 0.2 0.62
noi high low none 1.0 2 0.01 0.99
9 low high none 1.0 - - 1.0
10 medism medism none 1.0 - - 1.0

TABLE IX
RULES GENERATED BY THE NEURAL NETWORK MODEL TO JUSTIFY ITS INFERRED DECISIONS FOR A SAMPLE OF INPUT VECTORS FOR PATTERN SET A DATA

Serial Input features Justification / Rule generation
No. Py 13 If clause Then conclusion
1 Mol high missing | Fy is Mol high or very medium very_likely class 1
2 medium missing no explanation -
3 medixm low F; is medixm or Mol high and
F; is very medixm Mol ltkely class 1
4 Mol medinm | missing no erplanation -
5 medivm high F, i medivm and
F3 is high or very medism very likely no class
6 Aigh medium | F2 is medium or Mol high and
Fy is high Mol likely no class
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TABLE X
INFERRED OUTPUT RESPONSES AND CERTAINTY MEASURES FOR A SAMPLE OF PATTERN SET B
DaTa, USING A FIVE-LAYERED Fuzzy MLP HavING m = 10 Nopes IN EACH HIDDEN LAYER

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1, JANUARY 1995

Serial Input features Highest output Significant 2"? choice | Certainty

No. Fy F Class 5 | Membership y)" Class | Membership bcI;'
1 not low missing 1 0.81 none 0.19 0.61

2 medium misaing 2 0.92 none 0.07 0.93

3 Mol medism | missing none 0.97 2 0.07 0.90
Mol medism low 2 0.88 none 0.11 0.77

4 not medism low 1 0.82 none 0.18 0.63

5 very high missing 1 0.82 none 017 0.64
6 medium Aigh 2 1.0 1.0

TABLE XI

RULES GENERATED BY THE NEURAL NETWORK MODEL TO JUSTIFY ITs INFERRED DECISIONS FOR A SAMPLE OF INPUT VECTORS FOR PATTERN SET B DATA

Justification / Rule generation

Serial Input features
No. Fy F If clause Then conclusion
1 very low low Fy is very low and
F, is low or very medism very likely no class
2 not low missing Fy is very high likely class 1
3 medism misaing F is medivm or Mol low very likely class 2
4 Mol medium low Fy is Mol medium or Mol low and
Fyis low likely class 2
5 not medinm low F, is low or very medivm litely class 1
6 high low F) is Aigh and
Fis low very likely no class
7 medivm high F\ is medsum or Mol low and
Fy is high very likely class 2

gest therapies and/or handle multiple diseases. However the
suitability of the model in inferring correct decisions in
the presence of overlapping disease categories may easily
be gauged from its efficient handling of the fuzzy vowel
data and the subsequent generation of appropriate justifi-
catory rules. In the presence of suitable medical data, the
therapies could be treated as output classes such that the
certainty in favor of any such recommendation might be
inferred. Any evaluation of the performance of the proposed
model on the nonconvex Pattern Sets A and B should be
made in the context of the difficult nature of the problem
of class separability in these cases. This accounts for the
relatively better performance of the model on the vowel
data.
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