PHYSICAL REVIEW D

VOLUME 23, NUMBER 10

15 MAY 1981

Evolution, symmetry, and canonical structure in dynamics

N. Mukunda,* A. P. Balachandran,' Jan S. Nilsson, E. C. G. Sudarshan,* and F. Zaccaria®
Institute of Theoretical Physics, S-412 96 Goteborg, Sweden
(Received 21 July 1980)

The behavior of symmetries of classical equations of motion under quantization is studied from a new point of
view. GL(3,R), which is an invariance group of the linear equations of motion for the nonrelativistic free particle as
well as the isotropic harmonic oscillator, is imposed as a group of automorphisms on acceptable Poisson brackets,
and the consequences are examined in detail. The six independent variables of the classical system arrange
themselves, in each acceptable bracket, into one canonical pair and four neutral elements. Consequences of \this for
the equations of motion, existence of a Hamiltonian, breakup of the states of motion into superselected sectors due to
existence of neutral elements, and determination of the canonically realized subgroup of GL(3,R) are all discussed.
The possible relevance of this manner of symmetry breakdown for solid state and particle physics is pointed out.

I. INTRODUCTION

It is by now well recognized that the equations of
motion of a classical dynamical system may pos-
sess a larger group of symmetries than are cap-
tured in a Hamiltonian description with associated
canonical structure.’? The passage from a clas-
sical to the “corresponding” quantum-mechanical
description of a system requires that the former
be given in Lagrangian, or equivalently Hamilton-
ian, terms. If one adopts the viewpoint that the
specification of the Lagrangian defines the classi-
cal system, then one is automatically led to the
usual Poisson-bracket structure on the phase
space; this is so whether the Lagrangian be non-
singular or singular. Then those (infinitesimal)
transformations of the system that leave the La-
grangian invariant up to a total time derivative
will be symmetries of the equations of motion,
representable as canonical transformations on
phase space with well-defined phase-space func-
tions for generators. Symmetries of the equations
of motion lying outside this set do not preserve
the Poisson-bracket structure. They have neither
constants of motion nor infinitesimal generators
associated with them, and so are lost or broken
when one passes to the quantum theory on the ba-
sis of the chosen Lagrangian.'™

One can take an alternate point of view and say
that a classical system is fully defined by its
equations of motion (and, of course, the physical
meaning attached to the variables). The attempt
to find a Hamiltonian description is then motivated
solely by the desire to set up a corresponding
quantum system. This attitude exposes a new and
deep ambiguity in the passage from classical to
quantum theory. It is, in general, possible to set
up several inequivalent Poisson-bracket struc-
tures on phase space, each with an associated

Hamiltonian, all of which reproduce the same
equations of motion. Depending on which of these
structures one chooses, a corresponding subgroup
of the group of symmetries of the equations of
motion is singled out as the one realized via ca-
nonical transformations, and so after quantization
via unitary transformations.!?

We shall present in this paper yet another ap-
proach to this complex of questions, which is the
following. Starting with a definite set of equations
of motion, one can pick a specific subgroup of the
symmetry group of the equations of motion and
search for all possible definitions of (generalized)
Poisson brackets on phase space with the property
of being formally preserved under the chosen sub-
group. Even for the simplest of systems one finds
that this procedure of insisting that the Poisson
brackets admit a given group as a group of auto-
morphisms leads to a rich and varied set of re-
sults. An allowed bracket structure can be singu-
lar in the sense that one has nontrivial neutral
elements (that is, functions whose Poisson brac-
kets with all functions vanish), so that the true
number of canonical degrees of freedom is less
than the dimension of the phase space one started
with. Correspondingly, while the Poisson brac-
kets are preserved in form under the chosen
group, it is a further subgroup that acts as a set
of inner automorphisms or as canonical transfor-
mations with well-defined functions for genera-
tors. And this subgroup can vary from one allowed
Poisson bracket to another. After all permissible
bracket structures have been found and analyzed
in this way, one can then go back to the equations
of motion and search for those bracket definitions
that are stable with respect to time evolution.
This stability is a necessary, but not sufficient,
prerequisite for the existence of a Hamiltonian.
Contrasted with the approach described in the pre-
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vious paragraph, here the automorphism group of
the Poisson brackets is specified first, and the
existence of a Hamiltonian is investigated later.

The system we study is a nonrelativistic particle
in three dimensions obeying equations of motion
linear in (Cartesian) position and momentum. The
cases of physical interest are the free particle for
which

q=p/m, p=0 1)
and the isotropic harmonic oscillator
q=p/m, p=-mwiq. 2)

In the former case one normally uses the expres-
sion for the conserved kinetic energy as the La-
grangian and this then leads to the conventional
Poisson brackets (PB’s)

{Qj;qk}’_‘{pj,.bk}:o'y {QJapk}= O - (3)

The Euclidean group of rotations and translations
in configuration space, under which Egs. (1) are
preserved, preserves the PB’s (3) as well and,

in fact, acts as a group of canonical transforma-
tions generated by the linear and angular momen-
ta. [For the isotropic oscillator (2) one normally
uses the same PB’s (3), and the canonically re-
alized symmetry group is SU(3): this includes
transformations with a quadrupole generator mix-
ing 4 and p linearly.] However, both sets of equa-
tions of motion (1) and (2) are also invariant under
the general real linear group GL(3,R), that is,
when d and P are subjected to one and the same
real nonsingular linear transformation

4;~q;=M gy, D;~pj=Myp,, detM#0. (4)

[Note that unlike the SU(3) symmetry group of the
oscillator, there is no mixing of 4 and P here.]
Elements of GL(3,R) outside the rotation subgroup
violate the PB’s (3) and are not realized as ca-
nonical transformations. We take GL(3,R) as the
basis of our study. In Sec. II we pose and solve
the problem of finding all possible definitions of
generalized PB’s on three ¢’s and three p’s such
that they are form invariant when GL(3,R) acts

as in Eq. (4). It turns out that the solutions can
be profitably divided into five distinct types; the
basis for this is explained in Sec. II. All solutions
are singular. In Sec. III we examine each type of
solution to discover how many independent neutral
elements it possesses, and then expose the bal-
ance of true canonical variables. In all cases we
find four independent neutral elements and one
canonical pair, adding up to six variables. The
subgroup of GL(3,R) that acts via inner auto-
morphisms in each case, and the way in which it
so acts, is also analyzed in Sec. III. In Sec. IV we
search for those GL(3,R)-invariant PB’s that are

stable with respect to the free-particle equation of
motion (1). For this purpose it is necessary to
divide each of the five families of solutions into
smaller subfamilies, and one then finds that only
three cases are stable. In each of these cases we
are able to exhibit a Hamiltonian, and we also
briefly examine the transformations generated by
the linear and angular momenta. Section V con-
tains a corresponding stability analysis for the
oscillator case. In the concluding section we

- comment on the lessons to be drawn from this

study and especially its significance for quantiza-
tion and symmetry breaking.

II. GL(3,R)-INVARIANT POISSON BRACKETS

With respect to the action (4) of GL(3,R) on q
and p there are no bilinear invariants or invariant
numerical tensors. So the only way we can possi-
bly have GL(3,R)-invariant brackets is to choose
the brackets between the basic variables to be
themselves bilinear expressions. The most gen-
eral possibility is then given by

{95,qat=alg,p, - aepy)
{pjapk}=ﬁ(quk—qkpj) ’ (5)
{41,08}= 20 a4+ BD; D4+ Ve D4+ PGRD, -

This involves six real parameters a, 8, A, u, v,
p; and hereafter specific values for these para-
meters will always be listed in this sequence.
Brackets among functions of q and p are evaluated
using the derivation property
{AB,C}=A{B,C}+{A,C}B. (6)

The Jacobi identities now impose constraints on
the six parameters. We find that the identities for
three ¢’s or three p’s, i.e.,

z {qj,{qk1ql}}=c§= {p,,{pk,p;}}=0 (7

cyclic

are automatically satisfied: this is obviously be-
cause with just two GL(3,R) vectors d and p it is

impossible to form a totally antisymmetric third-
rank tenscr. The remaining two Jacobi identities

{Qj,{Qnypz}}"'{qk’{Pz:q,y}}"*'{f’u{thk}}: o,
{pj,{pk’ qt}}"' {pk,{ql ,P,}}+{q, 7{pj3ph}}= 0

lead to the first pair and the second pair, respec-
tively, of the following four equations:

pA+ 2 a+ af=p?
(p+v)a=(p=v)u, )
Au+2uB+Ba=p?,
(p+v)B=(p~v)A.
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Any solution of these four equations, other than
the identically vanishing one, leads to an accepta-
ble GL(3,R)-invariant nontrivial PB among three
g’s and three p’s.

Let us denote by S the set of all solutions to
Egs. (9). In order to be able to survey and classi-
fy the members of S in a compact way, we pro-
ceed as follows. With d and P obeying Eq. (5) cor-
responding to some element of S, let us subject
d and p to a general real linear transformation in
two dimensions:

qi=aq;+bp;, pi=cq;+dp;, (10)
A=qad -bc*0.

This commutes with the action (4) of GL(3,R). If
we therefore compute the PB’s among q’ and p’
and express the results in terms of §’ and p’, they
will have the same form as Eqgs. (5) but with al-
tered parameter values. These new values will,
of course, be a solution to Egs. (9). Thus trans-
formations (10) on § and P give rise in a natural
way to linear transformations preserving Eqgs. (9)
and thus acting on S. A common scale change of
d and p by a positive factor leaves the parameters
a,B,... unchanged, so we need only consider A
=+1 in Eq. (10). If A=+1, we have in (10) the
transformations of the group SL(2,R). But here
again, a simultaneous change of sign of q and p
[which is an SL(2,R) transformation] leads to no
change at all in the parameters. Thus the faithful
action of SL(2,R) on d and P as in Eq. (10) leads to
an action of this group on «,B,... which is not
faithful, since two elements of SL(2,R) differing
but in sign act identically on S. The transforma-
tions on S [corresponding to A=+1 in Eq. (10)]
must therefore form a faithful action of the proper
orthochronous homogeneous Lorentz group in
three dimensions, denoted by SO(2,1),.* The pa-

J

x-.x'=Ax7 y"y'=A37 )

3(a®+ b2+ 2+ d?) 3(a?~b%+c2~d?) =—(ab+cd)

A=| 3(a?+b2=c?=d?) 3(a®-b2—c?+d?)

— (ac + db) bd - ac

Note that SO(2,1), does not include “fictitious”
time reversal x,—~ —x,, X,~X,, X¥,~%, which is not
unimodular. The time-reversal transformation

T of Eq. (13) translates into

Xo==Xg, X~ =%X,, Xy=X, (16)

and similarly for y. This too is not included in
S0O(2,1), since it is not continuously connected to
the identity. Combining the action of SO(2,1), as
in (15) and of T as in (16) we get the group SO(2,1)

cd —-ab
ad+ bc

rameters transform as follows:
a’'=a’a+b*B+ab(v -p),
B’=c?a+d®B+cd(v -p),
NMN=d®r+ciu —cdv+p),
w=b*+a*u —-ab(v+p),
v'=ac(@ — u)+bd(B —=N)+ (ad+bc)v ,
p'==ac(a+ u)=bd(B+N)+ (ad+ bc)p.

We shall rewrite this ina more transparent form
in a moment. As for the possibility A= -1 in (10),
it suffices to consider the single transformation of
physical time reversal

T: q"a; 5"_5’ (12)
which has the following effect on the parameters:
T: a'=—a, B'==Pf, ==X,

(13)
N-’=—H-, VI:V} p'=p.

The fact that we have in Eq. (11) a six-dimen-
sional real linear representation of SO(2,1),, with
transformation coefficients which are bilinear in
the elements of the SL(2,R) mé.trix, suggests
strongly that @,8,... are combinations of com-
ponents of two vectors under SO(2,1),. This is
indeed so. We define two vectors x and y in a
fictitious three-dimensional space-time, with
signature + — —, as

X,=a+B, x,=a-B, x,=p-v, (14)

Vo= M+ X, Y, =SU=A, y,=p+V.

Then the transformation (11) on the parameters,
induced by the SL(2,R) action (10) on d and p, can
be depicted as

(15)

-
of all unimodular Lorentz transformations in
three dimensions acting faithfully on S. We shall
write G for this group and use its action to classi-
fy the members of S. Equations (9) defining S be-
come, in terms of x and y,

xAy=0, (x+y)2=0. (17)

At this point one recognizes the existence of

further transformations on x and y preserving

Egs. (17), and so on &,B, ... preserving Egs. (9),
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and thus defined on S. These are: (i) a common
scale transformation applied to both x and y, and
so to all the parameters «,B,..., (ii) the inter-
change x+—-1y, corresponding to the interchanges -
Qs [, B, V= —=v,p—~p, (iii)fictitious time
reversal x,~ =x,, X, ~%,, ¥,~%, (and similarly
for y) corresponding to @ = -8, B~ —0a, A~ ~pu,
U==d, v=-v, p—~p. We might consider including
these transformations and so enlarging the group
used to classify the elements of S.

However, none of the transformations just listed
appears as the result of a transformation defined
on q and p and then elevated to act on S, so we do
not consider them further and confine ourselves to

the action of G=S0O(2,1) on S. |

Leaving aside the totally trivial case x=y=0,
one sees that the following types of solutions to
Eqgs. (17) exist: (i) one of the vectors x,y van-
ishes and the other is lightlike, (ii) both are non-
vanishing, they are parallel, and their sum (and
so each one) is lightlike, (iii) the sum x+7y is
null, allowing x to be timelike, lightlike, or
spacelike. With the help of the group G, a solu-
tion of any type can be transformed into a standard
form. In other words, S splits into disjoint or-
bits under the action of G, and we can display one
representative element from each distinct orbit.
We label the orbits and choose representative ele-
ments in this way:

Orbit A: x=0, y2=0; representative x=0, y=(1,0,1), (18a)
Orbit B: x%=0, y=0, representative x=(1,0,1), y=0, (18Db)
Orbit C,, =0<s<»_ s#0: y=sx, x*=0; representative»x=(1,0,1), y=(s,0,s), (18¢c)
Orbit D,, 0<k<»: x%=k% y=—x; representative x = (k,0,0), y=(~%,0,0), (18d)
Orbit E,, 0<k<e: x%=-Fk? y=-x; representative x=(0,0,%), y=(0,0,-F). (18e)

Thus S is the union of the single orbit A, the
single orbit B, the orbits C for all s, D, for all
k, and E, for all .. The most general solution to
Egs. (9) or (17), and thus the most general
GL(3,R)-invariant PB among ¢’s and p’s, arises
by starting with any one of the representative so-
lutions listed, applying any element of G to it,
and then reading off the values of &,8,... . One
could partially unify the description of the orbits
A, B, C, by defining an orbit F, for each value of
an angle ¢ in the range 0s ¢<7:

F,: x cos¢+y sing=0, x2=92=0. (19)

One obtains.A when ¢=0; C; for s<0 when 0<¢
<7/2; B when ¢ =7/2; and C, for s> 0 when 7/2
<¢<m. However, we shall leave the classification
in the form (18).

Analyzing the orbits a little further, one finds
that the subgroup of G leaving the representative
of A invariant (stability group) consists of ele-
ments corresponding to the SL(2,R) transforma-
tions

i[““ “ ], —o<y <o, (20)

-y 1=y

This means that A is the union of two disjoint
pieces, each of which is connected and of dimen-
sion 2; and the transformation T takes one from
one connected portion to the other. This structure
is also geometrically evident, as A corresponds
to x vanishing and y varying over the positive or
negative light cone. Orbit B is similar in struc-

Iture to orbit A, the roles of x and y being inter-
changed. In particular, the representative of B
has the same stability group as that of A. Next,
for each fixed s, the orbit C is again like A or

B, the union of two disjoint pieces, each connected
and of dimension 2. Its representative element
has the same stability group as do those of A and
B. The two pieces of C; may be taken to corres-
pond to x varying over the positive and negative
light cones, respectively, with y always standing
in a fixed relation to x. The set of all orbits C
makes up a generic family which must be pictured
as the union of four disjoint pieces, each connected
and of dimension 3. These four pieces arise as x
may lie on the positive or negative light cone and,
independently, s may be positive or negative. The
representative of the orbit D, has a stability group
whose elements correspond to the SL(2,R) trans-
formations

cosf sind , 0<g<2r. (21)

-singd cosé

Thus again each D, is the union of two disjoint
pieces connected by 7', each piece of dimension 2.
The two pieces correspond to x varying over the
positive and negative timelike hyperboloids of
“mass” k, respectively, while y is always the
negative of x. The set of orbits D, for all £ con-
stitutes a generic family made up of two disjoint
pieces of dimension 3 each, corresponding to x
lying within the positive or negative light cone

(and y=—x). Finally, each orbit E, consists of
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one connected two-dimensional piece, as x now
varies over the spacelike hyperboloid of mass &,
and y=-x. Its representative element has a sta-
bility group consisting of T', of SO(2,1), elements
corresponding to the SL(2,R) transformations

a O
+

0 at

, a>0 (22)

and products of the two. The set of all E, is a ge-
neric, connected, three-dimensional family, with
x varying outside the light cones and y = -x.

We conclude this section by noting that the three-
dimensional nature of physical space played no
role in the analysis. Thus what we have achieved
is a complete classification of GL(n,R)-invariant
PB’s among z g’s and n p’s.

III. CANONICAL CONTENT OF
GL(3,R)-INVARIANT BRACKETS

Any two definitions of PB’s corresponding to two
points on the same G orbit in S will be both non-
singular or both singular to the same extent, i.e.,
they will possess the same numbers of independent
neutral elements and residual canonical pairs.
This is because one can pass from one PB to the
other by an invertible transformation defined on
the q’s and p’s directly. (A p7iori one cannot
claim that PB’s corresponding to points on differ-
ent orbits will also share these properties but it
happens in fact that they do.) It is therefore suffi-
cient to examine the canonical content of the PB
corresponding to each of the representative ele-

. ments on orbits listed in Eq. (18).

In what follows, a caret on a vector denotes a
unit vector, and the letters »n, »n’ will denote neu-
tral quantities.

We begin with the representative of orbit A,
with parameter values (0, 0, 3, 3, 3, 3). This
leads to the GL(3,R)-invariant PB’s

{as,9:=1{p;,0:=0,

23)
{a;,08=5 (@, 40 )ay+by) ‘
or in terms of the combinations g +p,
{‘11+P1,Qk+i’k}={QJ w2 _pk}=0, (24)

{CIJ ‘PjyfIk+Pk}= (QJ+pj)(qk+pk) .

The direction of 4+ P, and the components of § —=p
perpendicular to g+ p, are four independent quan- -
tities that cannot be altered by any canonical
transformation generated with the help of the

above PB’s. We have in this case then four inde-
pendent neutral quantities:

A: @+9)/|d+B|, @-P)x (@+P)/|d+D| neutral.
(25)

There cannot be any more, so one canonical pair
of variables, @ and P say, must lie hidden within
the above PB structure. With a little algebra one
finds the representation

A: q"'ﬁ:ﬁ/Q, q_-ﬁ:ﬁp"'ily ﬁ'ﬁ,=09 (26)

where 7 is a neutral unit vector and f’ another
neutral vector orthogonal to #. If one computes
PB’s among g, and p,; regarding them as functions
of @, P for which one has, of course, {Q,P}=1,
one reproduces Eqgs. (23).

In exactly analogous fashion, one can find rep-
resentations for d and p in each of the remaining
four cases listed in Eq.-(18). For the represen-
tative of orbit B, the parameter values are
(3,3, 0,0, -3, 3) and the PB’s are

{(Ij,QA}={P,’Ph}= _{qjypk}=%(quk _qkpj) .

(27)
The corresponding neutral elements are
B: d+p, §xp/|dxp| neutral (28)
and we have the representation
B: d+p=1n, d=tQ+a’e®/?, n-a'=0.  (29)

The representative point in C; has parameter val-
ues

(_1_ 1 s s s=1 s+1)
272722 2 ’ 2
and PB’s

{qj’qk}={pj7ph}=%(quk —th]) ’

(30)
{qj’pk}=%(Qj+pj)(qk+pk)
—%(Q;Pg _QAPJ) .

This leads, after some algebra, to the neutral

combinations
C,: (d+p)/|d+p|, dxp/|dxp|, 1)
|d+B|*|dxp|* neutral

and the representation

The representative of D,, with parameters
(/2, B/2, —=k/2, ~k/2, 0, 0), requires a slightly
different treatment. The PB’s

k
{qj’ qu}"'{.bj ,Pk}=‘2' (q;0 _qkpl) s
A (33)
{q,,p,,}= -3 (g; qh‘*'Pij)

acquire a more transparent form in terms of the
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complex vector a=q+ip:
{a;,a,}={a%,at}=0, {a,,al}=ika,a}. (34)
We now see that the “direction” of 3 is neutral:
D,: 3/|4| neutral. (35)

There are, in fact, four independent real neutrals
here. If for the moment we denote the unit vector
(with complex components) (35) by ¢, it is clear
that in its place we could consider any fixed com-
plex multiple of it as constituting the neutral ele-
ments for the PB’s (33). Thus we could replace
¢ by ¢’=z¢ with z complex and nonzero. We can
now use the phase freedom to make the real and
imaginary parts of ¢’ mutually perpendicular real
vectors, and then the magnitude freedom to make
the real part of ¢’ a unit vector. In this way one
arrives at the representation

D,: q+ip=(@A+in)e?*P/2 5.4=0. (36)

Finally, the representative of E, has parameter
values (0, 0, 0, 0, —%, 0) leading to the PB’s

{q,nqk}:{pj,pk}zo? {‘IJ’P;:}= _'kquk' (37)

The neutral elements are recognized immediately
as

E,: 4/|d|, p/|p| neutral (38)
so we get the representation
E,; §=1e®, p=i'eT/*. (39)

It is interesting to note that while the neutral
quantities are formed differently from § and p in
each case, there are geometrical similarities as
we go from case to case. In all the cases A4, B,
C,, and D,, the neutral quantities constitute two
mutually orthogonal vectors, one of them of unit
length. In E, the situation loosens a bit and we
have two unit vectors with arbitrary orientations.
One must also note the ways in which the continu-
ous parameters s and % enter the constructions in
Egs. (32), (36), and (39); as seen in the last sec-
tion, these parameters distinguish distinct orbits
within generic families.

We now come to the following question: For each
choice of GL(3,R)-invariant PB’s among ¢’s and
p’s, which subgroup of GL(3,R) is realized via
canonical transformations appropriate to that
PB? We shall immediately restrict ourselves to
the identity component of GL(3,R). Those infini-
tesimal elements in this component, which act as
inner automorphisms in any given case, will ap-
pear as infinitesimal canonical transformations
with well-defined functions (of @ and P) as genera-
tors, and by a process of integration one builds up
that subgroup of GL(3,R), each of whose elements
is realized as a finite canonical transformation.

One realizes at once that this subgroup of GL(3,R)
is constant over each G orbit in S, since the ac-
tions of the two groups on d, p commute. We see
this in detail as follows. Let us write £° for the
six variables 4, P, collectively; z for a general
point in S, g for an element in G, gz for the action
of g on z via Egqs. (11) and (13), M for an element
in GL(3,R), and M¢ for the action of M on §, P
via Eq. (4). The PB (5) can be denoted by

{&, &2h=n"(&2), (40)

the right-hand sides being quadratic in . GL(3,R)
invariance means '

NP ME; 2)=MIMin (&5 2). (41)

The action of G on the set of allowed PB’s is ex-
pressed by

n"(&; 82)=geggm™ (g7 2) . (42)

[In this condensed notation it is implicit that the
3X 3 matrices M, of Eq. (4) and the 2x 2 matri-
ces g of Eq. (10) have been enlarged in appropriate
fashion to 6 X 6 matrices.] Take now a specific
PB, i.e., specific z in S, and an infinitesimal ele-
ment of GL(3,R),

£~ £74 087, OE =ML, |€|<1, (43)

which is canonically generated from the generator
¢ (&) through the PB,

8o (£)
agd -

0% =en™(&,z) (44)

Since GL(3,R) and G have commuting actions, we
have

MG &° = gpIMg g™ G£% = gyMy (g™ E)° . (45)

Combining this with Eqs. (42) and (44) we produce
for 6¢° the expression

p(E)
8 gc T=g~1;

0&°=egpnt(E; z)
=€g§17”°(g"£;2)g‘ia—;¢(g"£)

=€ﬂ“°(§;gz)gz—b¢(g'1£) (46)

showing that this element of GL(3,R) is canonical-
ly implementable for all choices of PB belonging
to the orbit of z in S. This proves the assertion.
Before proceeding to the ‘actual determination of
the canonically implementable subgroup in each
orbit, it is useful to summarize our expectations
and describe in general terms the pattern of re-
sults we shall find. The action (4) of the nine-pa-
rameter group GL(3,R) on d and p is such that no
function of  and p is invariant under all of
GL(3,R). -On the other hand, each PB under study
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has four independent neutral elements. The canon-
ically implementable subgroup H in any given case
must then consist of all those GL(3,R) elements
that preserve the neutral elements of that case,
i.e., all those elements that survive when four in-
dependent conditions are imposed. This suggests
that H will be a five-parameter subgroup, and

that its action on q and 5 translates into constancy
of the neutral elements and changes in @ and P
alone. We can be sure that these changes indeed
represent canonical transformations on @ and P;
this is a consequence of the original GL(3,R) in-
variance of the PB. One can now ask whether the
action of the five-parameter group H on the two-
dimensional @ -P plane is faithful. It turns out not
to be so. Now in any nonfaithful realization of a
group the trivially realized elements always form
a normal subgroup, and it is the factor group that
is faithfully realized. In the present situation it
happens that H has a three-parameter normal sub-
group H, whose elements do not alter @ and P at
all, while only the elements of the two-parameter
factor group H/H, act effectively (and canonically)
on @ and P. As a matter of fact we find that while
the details vary from case to case, H always ap-
pears as a semidirect product of a normal three-
parameter subgroup H, and another two-parameter
subgroup K; in fact each element of H appears
uniquely as the product of an element of H, and

an element of K.

To exhibit the above structures we use the rep-
resentations of 4 and p in terms of neutral ele-
ments and the active canonical pair @, P. For the
representative of orbit A, when Eq. (26) obtains,
let us. choose without loss of generality the config-
uration 7= (0,0,1) and 0’ = (0,n’,0). The subgroup
H consists of those GL(3,R) transformations M
which, acting on

q=2(0,n",P+1/Q), $=3(0,~n',-P+1/Q) (47)

reduce to changes in @ and P alone. One easily
finds H to consist of the elements

M
M
M

11

0
0 |, M,;>0, My>0 (48)
M

32 33

with the effect on @ and P being the canonical
transformation

Q' =Q/My,, P'=M P+Myn'. (49)

Equation (49) does not involve M ,, M,,, and M,
at all. Indeed we find the matrix (48) can be
written as the product

M, 00\t 0 o
M, 10flo 1 o |. (50)
M, 0 1Jl0 My, My,

And one can verify: The first factor belongs to a
subgroup Hy of H which is normal; the second fac-
tor belongs to a subgroup K of H; and, H is the
semidirect product of Hy and K.

For the representative of orbit B, choose il
=(0,0,%) and #’=(0,1,0) in Eq. (29). Then H con-
sists of matrices

M, 0 0
M21 M22 0 ’ M11> 0’ M22>0 ‘ (51)
M31 M32 1

with the following action on @ and P:

e-P/z
Q'=Q+MszT , P'=P~2InM,,. (52)
Expressing the matrix (51) as the product
M, 0O0|frt 0 O
1 0{{0 M,, O (53)
0 1j0 M,, 1

M
M

21

31

exhibits Hy and K for this case.

For the representative of orbit C;, choose #
=(0,0,1), n’=(0,»’,0) in Eq. (32). We then find
elements of H are

M, 0 O
le M22 0
M31 M32 M;;

, M;,>0, M,,>0, (54)

the action on @ and P is

2w

Q'=QMg,, P'=PM;i+=

Mg,QYs, (55)

and Hy and K are exhibited by expressing the ma-
trix (54) as the product

M, 001 0 0
M, 1 ollo M, o |. (56)
M31 01 0 M32 M;g

For the representative of orbit D,, again choose
7=(0,0,1), n’=(0,»’,0) in Eq. (36). Then elements
of H are

M, O 0
My, My, —n"*Mg| , My, >0 (57)
M31 M32 MZZ

action on @ and P is determined by
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eo,_ikpf/zz(Mzz +in’M32)eQ'ikP/z , (58)

and H, and K arise by expressing (57) as the pro-
duct

My, 00) (1 0 0
My 10| |0 My -n2Mg,| . (59)
My 0 1) L0 My, M,

Lastly, we come to the representative of E,. The
choice 7=(0,0,1), #’ =(0, cosd, sing) in Eq. (39)
leads to H consisting of

My, 0 0
My, M,, 0 ’ (60)
M31 (Mzz - Mas)tana Maa
My, >0, My, >0, My3>0;

to this action on @ and P,

Q'=Q+InM,,, P’ =P——11;lnM22 (61)

and to Hy and K determined by the decomposition

M, 00) (1 0 0
M, 10 0 M,, 0 (62)
M, 01 0 (M, — My,)tand M,

of the matrix (60).

For explicitness and clarity, simple choices of
the neutral vectors were made in each case, and
H, Hy, and K then determined. It is, in principle,
possible to leave the neutral elements in a general
configuration, then H, H,, K become explicitly de-
pendent on g and p (through the neutral elements)
but remain conjugate to the subgroups we have
found. In this form these subgroups will display
invariance along G orbits in S as demanded by Eq.
(46).

From A:
x:0, y=(1’1’0); (0’0’0’1’0’0)’

x=03 y =(1’—1;0); (0,0;1;070:0) ’

IV. STABILITY UNDER EQUATIONS OF MOTION:
FREE PARTICLE

To examine this question we must first make a
finer classification of the set S of all GL(3, R)-in-
variant PB’s than was given in Sec. II. That clas-
sification was based on a rather “large” group G,
some of whose elements mixed d and p; this en-
abled us to display the relatively “small” number
of distinct G orbits in S, and choose representa-
tive points from each, in a compact way. When
dealing with the specific equations of motion (1),
(2) for a free particle or oscillator, g and p are,
respectively, identified with position and mo-
mentum: preservation of this identification suggests
that we do not consider any longer the entire group
G but only that subgroup G, that does not mix q
and p. (We emphasize that use of G is perfectly
justified for classifying elements of S and for ex-
amining the canonical structure as in the previous
section.) G, then consists of reciprocal scale
changes in q and p,

G-Ge”s, F-ers )

and the physical time-reversal operation T, Eq.
(12). According to Eq. (15), the transformation

(63) induces on x (and similarly on y) the special
Lorentz transformation

X =%, Cc0sh@ +x, sinh@,
. (64)
x, +x, coshf +x,sinhd, x,—x,,
while T changes the signs of x, and x,, leaving x,
unaffected [cf. Eq. (16)]. Each of the G orbits 4,
B, C,, D, E, in S splits now into many distinct
orbits with respect to G, and a representative
element can be chosen from each of these finer
orbits.

We list now one representative element from
each G, orbit contained in each G orbit in turn,
giving both the vectors x, y, and the values of

a,B,....

(65)

x=0, y=(|yzl,0,y2), ¥,#0, (O!OfélyzIvélyzlyéyz’%yz)'

From B:
x¥=(,1,0), y=0; (1,0,0,0,0,0),

x=(1’_1;0); y=0; (071,0’0’07 0) ’

(66)

x=(|%,],0,%,), v=0, x,#0; (3|x,], 3|%,],0,0,-3x,,3%,).
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From Cg:
x=(1,1,0), y=sx; (1,0,0,s,0,0),

x=(1,"1’0)) y=3x§ (0,1,8,0,0, 0) ’

(67)

-1
x=(|x2[,0,x2), y=sx, x,#0; (élle’%lxzv!’glle’glle’i{'xz’s_ﬂxz)'

From D,:

x=((kz+x22)1/2’0,x2), Y ==x, _ao<x2<oo;

2

(L +x,2) 2 LR+ 2,20V 2, = 5(R% +x,2)1 2 = h(R2 +x,2)V 2, -%,,0) . (68)

From E,:

x=(0, (kz_xzz)l/zsxg) y YE=x, %<k

(%(kz _ xzz)lla, _%(kz - x22)1/ z’ %(kz - x22)1/2, __é.(kz - x22)1/ 2’ -X,, 0) s

(1,0,0,-1,-%,0),
0,1,-1,0,-%,0),
(0,0,0,0,-%,0),
(1,0,0,-1,%2,0),
(0,1,-1,0,%,0),
(0,0,0,0,%,0),

x=((x 2= F2)2,0,x,), y=-x, x2>k%;

x=1,1,k), y=-x;
x=01,-1,k), y=-x;
x=(0,0,k), y=-x;
x=01,1,-k), y=-x;
x=(1,-1,=-%), y=-x;
x=(0,0,-%), y=-x;

(69)

(%(xzz - k2)1/2’ %(xzz - k2)1/ 2, _%(xzz - k2)1/ 2, _.é_(xzz - kz)xla, -, 0).

One sees that the breakup of S into G, orbits is
quite complex. Some of these orbits, the first

two entries in Eq. (65) and the first two in Eq. (66),
stand isolated. The third entries in Eqgs. (65) and
(66), the first two entries in (67), and entries two
to seven in (69), belong to generic one-parameter
families; the rest belong to generic two-parameter
families. GL(3,R)-invariant PB’s among functions
of g and p, corresponding to points on distinct

G, orbits in S, must be thought of as being physical-
ly different.

The question of stability can now be posed:
Starting with the free-particle equations of motion
(1) and an allowed PB structure (5), if we take
the time derivatives of the brackets and insert the
equations of motion, will the equalities hold? We
can get general conditions on a,f,... to guarantee
stability and then go down the list of G -orbit
representatives to pick out the cases that survive.
[The action of G, in effect changes only the sign
and scale of m in the equations of motion (1). Thus
the results below cover the entire G, orbit if m

is regarded as variable (and #0).] The stability
. ]

{qquk}=0a {pp.bk}zox {qj)pk}=y'pjpk’ w0

{qj)qk}=a(quk_qkpj)) {pj’,bk}=0’ {qj’pk}=o" a0
lapauk=al;pr=a:0), {p,0=0, {a,0}=1p;0,, @#0, p#0.

f
of the PB between two ¢’s requires that {g,,p,} be
symmetric in j and %,

%[{q,,qk}— a(quk—qup,)]=0=°p=V- (70)

Note, in particular, that a is unconstrained. The
PB {p,,p,} is automatically stable. Stability of
{a;, 04} entails

ﬁ(ijk'qkpj)=7\(quk+qkpj)+(V"'p)pjpk- (71)

From Egs. (70) and (71) we immediately see that
the necessary and sufficient conditions for stabi-
lity for the free-particle case are

B=A=v=p=0. (72)

Going down the list of representatives of G, orbits
in Egs. (65)-(69) we see that the first of set (65),
of set (66), and of set (67) are the only survivors.
We can now exhibit quite easily the general

GL(3, R)-invariant PB’s on these orbits by applying
a general element of G, to the appropriate repre-
sentative elements:

(73a)
(73b)
(73c)
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To repeat, these are the only possible GL(3, R)-
invariant PB’s that are stable under the free-par-
ticle equations of motion (for any value of the mass
m). Because these three possibilities arose from
distinct G orbits and make up three distinct G,
orbits we keep them separate rather than gather
them all in one form, (73c), by permitting a or u
to vanish.

We study the three surviving stable cases brief-
ly. In each of them a Hamiltonian can be exhibited:

1 -
H—y—n—ﬁlnlp] for cases (73a) and (73c)

I T
——%lnqup| for case (73b). (74)

Stability of the PB’s already implies that the time
derivative of a neutral quantity, computed with
direct use of the equations of motion, is also neu-
tral. The further information that a Hamiltonian
exists, to generate the equations of motion via the
PB, then means every neutral element is, in fact,
a constant of motion. Thus in the cases under dis-
cussion, each of the neutrals can be expressed
entirely in terms of the known constants of motion,
the linear momentum p, and the angular moment-
um J=d X p. Now, for the PB’s (73a) for instance,
one can set up a definite linear transformation of
the form (10) which carries the previously chosen
representative (18a) of orbit A into the element of
A present in Eq. (73a). Use of this transformation
in conjunction with Eqs. (25) and (26) will give us
the neutral elements and a representation of g

and D appropriate to the PB’s (73a), and similarly
in the other two cases. [This explains why the
neutral elements listed below in Eq. (75) are dif-
ferent functions of q and p than were given in Eqgs.
(25) and (26).] Proceeding in this way, or working
directly with Eq. (73), one finds the neutral ele-
ments

p/|p|, 3/|p| for case (73a),
p, J/|J| for case (73b), (75)
o/|8], 3/13], |p|**|J|* for case (73c).

Suitable representations for g, p in the three cases
are

d=nuQP*+n', p=nP, n'n'=0, (76a)
d=naQ+n'e’?, p=n, 0-a'=0, (76b)
- ’ -

p=nP, n#-n'=0. (76c)

[These differ somewhat from the results of directly
applying suitable linear transformations to Egs.
(26), (29), and (32), respectively.] The Hamilton-
ians (74) reduce to (InP)/mu, P/ma, and (InP)/

m u in the three cases. In the conventional treat-
ment thelinear and angular momenta serve as gen-

erators for a canonical realization of the Euclidean
group. They now act quite differently. They re-
duce to

=1, J=a’'Xne? in case (73b), (77)

So, in the first stable bracket just one component
each of p and J survives, they are equal, and so
generate a one-parameter group of canonical trans-
formations: translations in @. Through Eq. (76a)
one can see the effect of these transformations on
4. In the second stable case, all that survives

is one component of J, and this generates a one-
parameter group of transformations affecting only
4. And in the last stable case, one component
each of p and J survives (unless u=a when, by Eq.
(75), J becomes neutral), and together they gen-
erate a two-parameter Abelian group of canonical
transformations.

V. STABILITY: OSCILLATOR CASE

For the isotropic harmonic oscillator (2) the
analysis can be carried out in an analogous way
and we confine it to the stability of the structure
and the search for a Hamiltonian. Stability gives
the following relations among the parameters:

a,B, A arbitrary,
w=xm2a?, : (78)
v=p=0, )

and goihg through the list of representatives of
G, orbits we see that the surviving structures are

{qj’qk}=a(quk_quk) ’ {pj:Pk}={Pj’Qk}=0 , a#0
(79)
from the first of (66),

{qj,qk}={qj,l>k}=0, {pj’pk}':B(quk_ qkpj) , B#0

(80)
from the second of (66),
k
{qj’ak}zm (quk— quj) ’
k
{pj)pk}=—m2—&’(quk_quk)) (81)

_ Rk 1
{qj)pk}_— E qu‘iqk+mpjpk

from (68).
The existence of a Hamiltonian for cases (79) and
(80) is soon excluded. In fact
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;( B,a,b+ {'ﬁpj})

2( {q,q,}+ {qp})

j

(82)

»-Qi'

and p vanishes for case (79), while d does for case
(80). For case (81), from (82) the following equa-
tions have to be solved:

8H oH 2
S op)-- 22,

%,

(83)
OH p, _
Z(ap, mw " op, (-qu,)> B
A Hamiltonian is then
———1n(|p]2+m w?|q]?). (84)

V1. CONCLUDING REMARKS

We have given in this paper a fairly complete
analysis of the simplest and yet nontrivial dynam-
ical systems, leading to new perspectives on ques-
tions of symmetry, symmetry breakdown, and
quantization. It is appropriate to discuss briefly
the relation of this work to other approaches.

Briefly stated, we have studied the consequences
of forcing a system with a certain superficial
number of degrees of freedom to admit a canonical
structure which will possess a given group §, act-
ing in a specified way, as a group of automorph-
isms. We find that, for suitably large ¢ in rela-
tion to the number of variables, the response of the
canonical structure can be that it sacrifices some
canonical degrees of freedom in order to accom-
modate itself to the imposed formal invariance
under §. Thus the achieving of this invariance can
entail the emergence of neutral dynamical varia-
bles and superselection.

Let us contrast this for a moment with the con-
verse situation. If one has a finite-dimensional
phase space with a nondegenerate PB structure
(i.e., no neutral elements other than constants),
then every (infinitesimal) transformation preserv-
ing the PB structure is necessarily a (infinitesimal)
canonical transformation and definitely possesses
a (infinitesimal) generator: nondegeneracy of the
PB ensures that every automorphism is an inner
one. Now one can ask, “What are the (semisimple)
Lie groups that can possibly be faithfully realized
via canonical transformations on this phase
space?” Here the dimension of the phase space
places a definite upper limit on the ranks of the
groups that can be canonically realized; and more-
over, one may not have much freedom in the choice
of group action.>® In the present work, the roles
of the group and of the PB structure have been pre-
cisely reversed: the former and its action are

specified, and the latter must then adjust itself
accordingly.

In previous work on this subject it was shown
that it is possible to break a subset of the classical
symmetries (i.e., symmetries of the classical
equations of motion) at the quantum level by choos-
ing a PB structure relative to which these symme-
tires are not canonical, so after quantization they
are not unitarily represented.? However, in these
discussions it was implicitly assumed that the PB’s
were nondegenerate, and so every broken symme-
try had the feature that it was not an automorphism
of the canonical structure. This paper exhibits
a new and novel way in which symmetry breakdown
can occur. There are many possible canonical
structures for each of which GL(3,R) acts as a
group of automorphisms, but in any given case it
is far from true that all of GL(3, R) is represented
by canonical tranformations. There is in each
case a subgroup H of GL(3, R) which alone leaves
the neutral elements fixed, a prerequisite to be a
group of inner automorphisms. And, furthermore,
it is not even H but only the factor H/H, that is
faithfully realized by canonical transformations on
the system. Thus one has gone all the way from
the nine-parameter automorphism group GL(3, R)
to a few possible two-parameter groups H/HN
realized faithfully by canonical transformations.
But this is not all. Stability under the equations of
motion makes a further selection out of the possible
groups H/H,, and so finally only these survive in
the quantum theory. All these various stages are
conceviable only because the PB has become de-
generate.

In passing we mention that another possibility
exists for systems with an infinite number of de-
grees of freedom.” Here it may happen that even
with a nondegenerate PB on the system phase
space, not every automorphism is an inner one.
This contrasts with the situation for finite numbers
of degrees of freedom. Following the pattern of
calculation in the latter case, one may formally
construct a generator for an infinitesimal canoni-
cal automorphism in the infinite-dimensional case
(and nondegeneracy implies one always can), but
questions of convergence connected solely with
the infinity of independent variables can arise.
There can be some states in which a certain gen-
erator exists and makes sense, and others in which
it does not; thus the states of the system may
break up into sectors only in some of which a given
automorphism is inner. But this breakup is not
based on the assignment of different numerical
values to nontrivial neutral quantities: there need
be none of these. In this paper we have considered
only systems with finitely many degrees of free-
dom.
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Taking the free-particle case as an example it is
interesting to see how the stable GL(3, R)-invariant
PB’s organize the collection of all possible states
of motion of the system. At the level of the equa-
tions of motion (1) one views the q and p as coor-
dinates in a certain six-dimensional space. The
solutions of the equations of motion are trajectories
in this space. If one imposes the usual Euclidean-
invariant canonical structure (3) on the space, one
knows that, as a matter of fact, the entire Galilei
group acts canonically and irreducibly on the sys-
tem; in fact, one can map any state of motion onto
any other with a suitable Galilei transformation.

In contrast we see that a stable GL(3, R)-invariant
canonical structure breaks up the six-dimensional
space into two-dimensional “sheets”, there being

a four-parameter family of these sheets; each of
the three structures in Eq. (73) does this in its own
way, of course. Stability guarantees that each
sheet contains entire trajectories, i.e., solutions
of the equations of motion. But each sheet, speci-
fied by the values of the neutral elements on it, is
superselected and cannot be connected to any other
sheet; only states within a sheet are canonically
transformable into one another. Thus there is
nothing that can alter the values of the neutral
elements, except our doing it by hand. Each choice
of stable brackets and then each sheet yield a dif-
ferent physical system—the states of the one parti-
cle have been broken into many, though they all
share the same equations of motion. Additional

problems are posed by the harmonic-oscillator
analysis. Here out of the three classes of invar-
iant Poisson structures exhibiting stability only one
could admit a compatible Hamiltonian function.
This discussion shows the possibility of spontan-
eous breakdown of symmetry already at the clas-
sical level, not in terms of the symmetry being
broken in certain classical “ground-state” con-
figurations, but rather in the canonical structure.
Previous work and the present one suggest that the
choice of canonical framework for classical theory
(which is then quantized by Dirac’s prescription)
can have profound consequences for the quantum
theory. This way of breaking classical symmetry
at the quantum level strikes us as among the more
interesting of such consequences in view of its
possible implications for solid-state physics and
particle theory. The origin of spontaneous sym-
metry breakdown in these domains (cf. the Gold-
stone-Higgs mechanism) thus need not necessarily
lie in the specific quantum aspects of the problem.
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