
Effect of sheared flows on classical and neoclassical tearing modes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 Nucl. Fusion 45 524

(http://iopscience.iop.org/0029-5515/45/6/015)

Download details:

IP Address: 122.179.52.180

The article was downloaded on 22/02/2011 at 10:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291518302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0029-5515/45/6
http://iopscience.iop.org/0029-5515
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 45 (2005) 524–530 doi:10.1088/0029-5515/45/6/015

Effect of sheared flows on classical and
neoclassical tearing modes
D. Chandra1, A. Sen1, P. Kaw1, M.P. Bora2 and S. Kruger3

1 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
2 Physics Department, Gauhati University, Guwahati 781014, India
3 Tech-X, Boulder, CO 8030, USA

Received 19 December 2004, accepted for publication 18 April 2005
Published 26 May 2005
Online at stacks.iop.org/NF/45/524

Abstract
The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing
modes is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous
force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence
leading to lower saturated island widths for the classical tearing mode and reduced growth rates for the neoclassical
mode. Velocity shear, on the other hand, is seen to make a destabilizing contribution.

PACS numbers: 52.55.Fa, 52.55.Tn, 52.35.Py, 52.65.Kj

1. Introduction

It is now widely recognized that the β limit of advanced toka-
maks is determined by the nonlinear instabilities associated
with neoclassical tearing modes (NTMs) and not by the lin-
earized theory of ideal MHD instabilities [1–3]. In recent
years, a great deal of work has been carried out on the Ruther-
ford theory of NTMs and many important results on critical β

values and their improvement by the use of RF current drive
and heating methods, stabilization by the use of external helical
current coils, etc have been obtained [4–6]. There are, never-
theless, a number of issues related to the origin of excitation
of the mode, its excitation threshold, its nonlinear behaviour
and its interaction with error fields and equilibrium shear flows
that have not been satisfactorily resolved and need to be better
understood [7]. The influence of shear flows is a particularly
important issue since sheared velocity flows are known to be
widely prevalent in tokamak devices and can be generated by
neutral beams, ion cyclotron heating and self-consistent drift
turbulence. A number of past studies have examined the effect
of flows on tearing modes, particularly in the linear regime
and for simplified geometries [8]. There have also been a few
nonlinear studies [9,10] but the problem is quite complex, par-
ticularly in realistic toroidal geometries, and is an important
area of present and future study for major numerical initiatives
such as NIMROD [11]. In this paper, we report on numerical
studies that we have carried out on this problem with the help
of a finite difference code NEAR that solves a set of gener-
alized reduced MHD equations [12] and that includes viscous
force effects based on neoclassical closures. The code has been
tested in the past for the effect of flows on linear resistive tearing
modes. Our emphasis in this work is to extend the investigation
to the nonlinear regime for both classical tearing modes and

NTMs and to delineate the physical mechanisms that govern
the influence of flow on the evolution of the modes.

2. Model equations

Our numerical simulations are based on the solutions of a set
of reduced MHD equations originally proposed by Kruger
et al in 1998 [12]. These equations, which are valid at any
aspect ratio, are derived using k‖/k⊥ (the ratio of parallel to
perpendicular wave numbers) as a small expansion parameter
and by employing a multiple scale analysis that respects
equilibrium constraints and also permits elimination of fast
time scales associated with perpendicular wave motion. The
model equations thus evolve scalar potential quantities on a
time scale associated with the parallel wave vector (shear-
Alfvén wave time scale), which is the time scale of interest
for resistive MHD instabilities like tearing modes. In addition,
the model equations also permit the incorporation of sub-
Alfvénic equilibrium shear flows and neoclassical closures
in a straightforward manner and are therefore well suited for
studying the nonlinear evolution of NTMs in the presence of
flows. In the limit of β ∼ δ1/2(δ � 1), a simplified set of the
evolution equations are as follows:
∂�

∂t
− (b0 + b1) · ∇φ1 − b1 · ∇φ0 = ηJ̃‖ − 1

ne
b0 · ∇ · Πe,

(1)

∇ ·
(

ρ

B0

d

dt

∇φ1

B0

)
+ (V1 · ∇)

(
∇ ·

(
ρ

B0

∇φ0

B0

))

= (B0 · ∇)
J̃‖
B0

+ (B1 · ∇)
JT‖
B0

+ ∇ · B0 × ∇p1

B2
0

+ ∇ · B0

B2
0

× ∇ · Π, (2)
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dp1

dt
+ (V1 · ∇)p0 + �pT∇ · V1

= (� − 1)

[
ηJ 2

T‖ − Π : ∇V + Πe : ∇ J
ne

− ∇ · q
]

, (3)

ρ
dṼ‖
dt

+ (V1 · ∇)V‖0 = −b0 · ∇p1 − b1 · ∇pT − b0 · ∇ · Π,

(4)

∇ · q = −χ⊥∇2p1 − (χ‖ − χ⊥)[b1 · ∇(b0 · ∇p0)

+b0 · ∇(b0 · ∇p1 + b1 · ∇p0) + b0 · ∇(b1 · ∇p1)

+b1 · ∇(b1 · ∇p0) + b1 · ∇(b0 · ∇p1)], (5)

where
d

dt
= ∂

∂t
+ V · ∇; 
T = 
0 + 
1; pT = p0 + p1;

bT = b0 + b1 = B0

B0
+

B1

B0
,

JT‖ = J0‖ + J̃‖ = b0 · ∇ × B0 + ∇2�,

V = �(ψ)R2∇ζ + V1 = B0 × ∇
0

B2
0

+ V0‖b0

+
B0 × ∇
1

B2
0

+ Ṽ‖bT.

Equation (1) is Ohm’s law, with � representing the magnetic
flux, φ the electrostatic potential, J the current density, η the
resistivity, B the magnetic field, n the number density and Πe

the electron stress tensor. The last term on the right-hand side
is the contribution from the bootstrap current and is the driving
term for the NTM. Equation (2) is the vorticity equation with
V the flow velocity, ρ the mass density and Π the total stress
tensor. Equation (3) is the pressure evolution equation where
heat flow terms have been retained with q representing the heat
flux and χ⊥, χ‖ representing the heat transport coefficients in
the perpendicular and parallel directions, respectively. Finally,
equation (4) is the evolution equation for the parallel velocity
component. The subscripts 0, 1 and T refer to equilibrium,
perturbed and total quantities, respectively. The equilibrium
toroidal velocity, which is conveniently expressed in terms of
a function �(ψ), is ordered such that V0/VA ∼ ε � 1 so that
the flows are restricted to the sub-Alfvénic range. The above
equations have been programmed into an initial value code,
called NEAR, which is a derivative of an older code called FAR.
An early benchmarking of this code was carried out in [13],
where terms proportional to Πe, Π and ∇ ·q were dropped and
the tests were restricted to the linear growth regime of classical
tearing modes. Our emphasis, in this work, is to explore the
effects of shear flow in the nonlinear regime and in particular
to examine its influence on the evolution of NTMs.

3. Numerical simulation results

3.1. Classical tearing modes

As a preliminary to our study of the NTMs and for proper
benchmarking of the code in the nonlinear regime we have
first studied the nonlinear evolution of the classical tearing
mode and the effect of sheared flow on its evolution.
For this we have adopted the simplified approach of [13]
and dropped the stress tensor contributions as well as the
∇ · q term in the model. In the absence of flow, we
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Figure 1. Benchmark results confirming the S−3/5 scaling of the
linear growth rate of the (m/n = 2/1) classical tearing mode.
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Figure 2. Nonlinear saturation of the (m/n = 2/1) classical
tearing mode.

generate an equilibrium profile by numerically solving the
Grad–Shafranov equation with the help of an equilibrium
code called TOQ (http://fusion.gat.com/toq). Using this
equilibrium in NEAR we study the evolution of the (m/n =
2/1) tearing mode from an initial arbitrary perturbation. In the
linear regime the growth rate of the (2/1) mode displays all
the characteristic scalings of the resistive tearing instability (
viz. γ ∼ S−3/5�′4/5 etc, where S is the Reynolds number and
�′ the outer region mismatch parameter) in agreement with
earlier benchmark results [13]. Figure 1 illustrates one such
benchmark test showing the scaling of the linear growth rate
with S. In the nonlinear regime the growth rate slows down
to the algebraic rate of the Rutherford regime and eventually
saturates with an island width Wsat that is in good agreement
with theoretical estimates based on the nonlinear modification
of �′ → �′(1 − W/Wsat) [14]. This is shown in figure 2
where the dashed line corresponds to the theoretical saturated
island width. We next incorporate sheared flow in the system
by generating an appropriate flow modified equilibrium from
TOQ and using it in NEAR.

For our numerical studies, we have used two kinds of
flow profiles to identify effects arising from differential flow
and flow shear. The typical flow profiles are shown in figure 3,
where profile 1 has only differential flow between two adjacent
mode rational surfaces ((2, 1) and (3,1) in this instance) and
no shear, whereas profile 2 has both differential flow and
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Figure 3. Typical equilibrium toroidal flow profiles: 1, differential
flow with no shear at the mode rational surfaces; 2, differential flow
with finite shear at the mode rational surfaces.
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Figure 4. The reduction in growth rate of the (m/n = 2/1) classical
tearing mode as a function of the differential flow amount. The
lower curve is from the analytic solution of the model dispersion
relation (7).

shear. In the linear regime, differential flow is found to
have a stabilizing effect, as illustrated in figure 4 where the
growth rate is seen to decrease with increasing differential flow.
On the other hand, inclusion of shear in the velocity (e.g. the
use of profile 2 for the equilibrium profile) diminishes the
stabilizing effect. To understand the origins of the stabilizing
and destabilizing influences we have carried out detailed
controlled numerical runs with particular terms of the code
(corresponding to various physical contributions) succesively
turned on and off. In the absence of flow, it is well known
that the pressure-curvature term has a stabilizing influence—
the so-called Glasser–Greene–Johnson effect [15]. Another
important physical effect arises out of toroidal coupling of
the various mode resonant surfaces. We have examined the
contributions of these effects in NEAR by artificially turning
this term off and comparing the values of the linear growth
rate in each case. Table 1 summarizes a set of typical
results. As can be seen, the pressure-curvature term has a
stabilizing influence and its stabilizing contribution is further
enhanced in the presence of differential flow. The enhancement
can be attributed to the centrifugal force modification of the
equilibrium pressure surfaces. Toroidal coupling is also found
to have a stabilizing influence and this is also enhanced by

Table 1. Summary of quantitative contributions of various linear
terms in NEAR (corresponding to different physical effects) on the
linear growth rate of classical tearing modes.

Toroidal Pressure- Equilibrium Linear
coupling curvature flow growth rate

Off Off Off 2.90e−3
Off On Off 2.85e−3
On Off Off 2.20e−3
On On Off 2.01e−3
Off Off On 2.84e−3
Off On On 2.80e−3
On Off On 2.11e−3
On On On 1.89e−3

differential flow. To understand this mechanism, we consider
a simple analytic model that is a generalization of the single
mode tearing mode theory and captures the essential physics
of mode coupling. When different mode rational surfaces
are toroidally coupled, the eigenfrequencies of the system are
determined from a generalized dispersion relation based on a
matching of a �′ matrix (the outer response matrix) [16,17] to
an inner layer matrix response �(ω). For the simple case of
two coupled rational surfaces (e.g. (2, 1) and (3, 1)), the linear
dispersion relation can be written in the form

det

[
�′

11 − �11(ω) �′
12

�′
21 �′

22 − �22(ω)

]
= 0, (6)

where �ij (ω) = −i(ω − �j)τLj δij , with �j the equilibrium
flow frequency at the surface j and τLj is a parameter that
describes the inner layer response and is a function of the
resistivity, viscosity and the inertia at the mode rational
surface j . This yields a quadratic equation for ω,

ω2 − ω[�1 + �2 + i(γ11 + γ22)] +
[�1 + �2 + i(γ11 + γ22)]2

4

+ γ12γ21 − [�� + i(γ22 − γ11)]2

4
= 0, (7)

where γii = �′
ii/τLi are the individual growth rates at the

surfaces i for the uncoupled system, γij = �′
ij /τLi are the

coupling coefficients, �i is the equilibrium flow frequency at
the surface i and �� = �2 − �1 is the amount of differential
flow. Using NEAR we have determined γii for the two
individual surfaces by turning off the toroidal coupling and the
flow. Using these values and the value of ω obtained in the
presence of coupling we have solved equation (7) to obtain
the value of γ12γ21. Using these values of γij , equation (7) is
subsequently solved for ω at various values of �1 and �2. The
results show a decrease in the growth rate of the mode as ��

increases in agreement with the trend shown by the results of
NEAR in the presence of flow. Figure 4 shows a comparison
of the results of NEAR with that of the simple analytic
model.

Physically, differential flow acts to decouple the surface,
so that at a given rational surface the other rational surface
appears as a conducting surface and provides a stabilizing
effect. To state it differently, the amount of reconnection at a
given surface decreases as a result of differential rotation. This
can also be ascertained qualitatively from the simple analytic
model discussed earlier. Taking the surface 1 to correspond to
the (3, 1) resonant surface and surface 2 to correspond to the
(2, 1) mode, one can show that the ratio of the eigenvectors is
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Figure 5. Decrease in reconnection at the (3, 1) surface with
increasing differential rotation.
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Figure 6. Ratio of (2, 1) classical mode real frequency to flow
rotation frequency as a function of differential flow.

given as
| �3,1 |
| �2,1 | ≈ γ1,2

��
. (8)

Thus, the amount of reconnection at (3, 1) decreases with
increasing ��. In figure 5 we have plotted this ratio as
obtained from NEAR and we note that this trend is borne out.
The other effect of differential rotation is to make the mode
rotate at a velocity close to the equilibrium rotation frequency
at the mode rational frequency. Such an effect is also confirmed
in NEAR as seen from figure 6, where the mode rotation
frequency is plotted for various values of �. So far, we have
ignored the effect of flow shear, which, as stated earlier, has a
destabilizing effect. This can be understood from flow induced
changes in the inner layer dynamics, as has been extensively
worked out in [8]. For the low values of flow shear we have
used, the approximate growth rate of the linear tearing mode
is given by [8]

γ ∼ α2/5�′4/5S−3/5γ̂ , (9)

where α is the normalized wave number and γ̂ � 1 is the
flow shear correction factor. The results from NEAR for our
parameter range agree with this trend.
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Figure 7. Evolution of mode energy for the (m/n = 2/1) classical
mode for the no flow case (top curve), flow profile 1 (bottom curve)
and flow profile 2 (middle curve).
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Figure 8. Decrease of the saturated island width for the classical
(2, 1) mode as a function of the differential flow amount.

In the nonlinear regime, the differential flow effect
continues to have a stabilizing influence and leads to a lower
level of mode saturation as shown by the lowest curve of
figure 7. The mode rotation frequency is close to the flow
frequency but shows some nonlinear increase close to the
saturation region. When we use profile 2 we find a decrease
in the stabilization effect (the intermediate curve in figure 7)
indicating that velocity shear has a destabilizing trend. The
saturated island width decreases with the amount of differential
flow as shown in figure 8. Since an analytic model of
the nonlinear characteristics of the mode does not exist,
the insights gained from the linear behaviour do provide a
useful guideline and we observe the predominance of the
same physical effects in the nonlinear regime. It should be
mentioned, though, that there may be other effects associated
with parallel velocity coupling and global changes affecting
�′, which, though not important for our present choice of
flow values, may play an important contributory role in other
parametric regimes of flow velocity and flow shear.

3.2. Neoclassical tearing modes

As is well known, the NTM is driven unstable by a perturbation
of the bootstrap current, which arises from the viscous damping
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of the poloidal electron flow and which is proportional to
the cross-field pressure gradient. In the presence of a seed
magnetic island, the equilibrium pressure gradient flattens
locally, thereby switching off the bootstrap current; this results
in a negative current perturbation on the given rational surface,
which drives up the amplitude of the magnetic island by
the Rutherford nonlinear growth mechanism. The pressure
flattening relies on the assumption that the parallel transport
is much faster than the perpendicular transport. To study the
evolution of NTMs, it is, therefore, necessary to retain the
stress tensor terms in the reduced MHD equations in order
to provide the drive term and to keep the heat flow terms in
the pressure evolution equation. For the neoclassical viscous
stress tensor we have used the following closure ansatz [12]:

∇ · 	�j = ρjµj 〈B2〉 Vj · ∇θ

(B · ∇θ)2
∇θ, (10)

where j = i, e and µj is the viscous damping frequency of
each species j . This closure ansatz is appropriate for the long
mean free path (low collisional) limit and reproduces poloidal
flow damping as well as gives an appropriate bootstrap current
perturbation.

The NTM instability is essentially a nonlinear (or subcrit-
ical) instability that can develop even in the limit of resistive
MHD stability (i.e. �′ < 0) and requires a threshold amplitude
of the magnetic perturbation for its excitation. The evolution
of a single helicity NTM is well described by the Rutherford
nonlinear theory, suitably modified to include neoclassical
effects [18–21]. A generalized form of the Rutherford equation
is given by

τR

rs

dW

dt
= rs�

′ + rsβp

(
− aGGJ√

W 2 + 0.2W 2
d

+ abs
W

W 2 + W 2
d

−apol

W 3
h(W)

)
, (11)

where τR is the resistive time at the resonant flux surface located
at the radius r = rs and βp is the poloidal beta. The first term
on the RHS of the above equation (11) is the usual driving term
for tearing modes and is positive for resistive MHD instability.
For the case of an NTM, as discussed earlier, we take this
term to be negative. The next term proportional to aGGJ is the
stabilizing contribution of the curvature due to toroidicity, the
Glasser–Greene–Johnson effect, which has been discussed in
the previous section in the context of classical tearing modes.
Finite perpendicular heat diffusion modifies this term over
the scale length [22] Wd = 5.1rs(χ⊥/χ‖)0.25[R/(rsssn)]0.5,
where χ‖ and χ⊥ are the parallel and perpendicular pressure
diffusivities, respectively, R is the major radius, n the toroidal
mode number and ss the magnetic shear at the resonant
surface. The third term is the destabilizing contribution of
the perturbed bootstrap current. The sign of abs depends on
the relative signs of the pressure gradient and magnetic shear
(it is positive for a normal profile where the pressure gradient is
negative and the magnetic shear is positive and is negative in a
reversed shear region). The final term is the ion polarization
current contribution and its sign depends on the island rotation
frequency with respect to the electron and ion diamagnetic
frequencies. However, it should be noted that this term arises
in a two fluid model and this effect is absent in the one fluid
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Figure 9. The pressure variance σ 2
p , computed by following

individual field lines as a function of χ‖/χ⊥. It shows that the degree
of pressure equilibration increases with increase in the ratio χ‖/χ⊥.

reduced MHD description of NEAR. We will, therefore, not
discuss this effect in our work.

From equation (11) it is clear that for an NTM instability
to occur the contribution of the third term must be larger
than the sum of the first two terms. In other words, there
exists a threshold amplitude in W for the instability to be
triggered, which is a characteristic signature that distinguishes
it from the classical tearing mode. For a given value of a
perturbation, one can also similarly determine a threshold
in β. Before investigating the effect of flows on NTMs
we have benchmarked the NEAR code by reproducing these
characteristic features of the NTMs and also paid particular
attention to pressure equilibration [23].

Figure 9 shows the necessary pressure equilibration,
which is key to NTM physics. The typical ratio of χ‖/χ⊥
in most of our runs has been of the order of 106 or more
and the Reynolds number S has been kept at 105 or higher.
The amount of viscosity chosen is such that the ratio of
resistive time to viscous time is about 10−1–10−2. We have
studied the evolution of the (m/n = 2/1) and (m/n = 3/1)

NTM modes using equilibrium configurations for which the
corresponding classical modes are linearly stable. In figure 10,
we show the dependence of the mode evolution on the initial
amplitude and the existence of a threshold amplitude for
the destabilization of the mode. In figure 11, we have
demonstrated the existence of the threshold β above which
the mode gets unstable. Figure 12 shows a typical nonlinear
evolution of the island width and its eventual saturation. The
magnetic flux function profile and contour showing islands
for the typical evolution are shown in figures 13 and 14,
respectively.

We next introduce toroidal flow in the system through
equilibrium flow profiles of types 1 and 2 (cf figure 3) by
generating them self-consistently with TOQ. The basic trend
in this case is seen to be quite similar to what we observe for
classical tearing modes, namely destabilizing effects of flow
shear and a more dominant stabilizing effect from differential
flow. In figure 15 we show the mode energy evolution for three
different cases—the top curve is without any flow, the bottom
curve is for a flow profile of type 1 (pure differential flow) and
the intermediate curve is for a flow profile of type 2 (differential
flow + shear). The qualitative behaviour in the nonlinear
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Figure 10. Benchmark results showing the existence of a threshold
amplitude for the (3, 1) NTM.

 0.004

 0.008

 0.012

 0.016

 0  400  800  1200  1600

W
(3

,1
)

t/τa

β0=0.006
0.005
0.004
0.003
0.002

Figure 11. Benchmark results showing the existence of a threshold
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Figure 12. Benchmark result showing typical island width of the
(2, 1) NTM and its evolution to saturation.

regime is once again found to be quite similar to that observed
for classical tearing modes discussed in the previous section.
However, there is a quantitative difference in the magnitude
of stabilization for the NTM case (figure 15 compared with
figure 7) primarily due to the difference in the magnitude of
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Figure 13. Benchmark result showing the profiles of the magnetic
flux function � for the (2, 1) and (3, 1) modes for a typical NTM
evolution.
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Figure 14. Benchmark result: the helical contour of the magnetic
flux function � for a typical NTM evolution showing the formation
of a (2, 1) magnetic island.
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Figure 15. Nonlinear evolution of the (2, 1) NTM for no flow (top
curve), flow profile-1 (bottom curve) and flow profile-2
(middle curve).

the differential flow for the two cases. This happens because
in generating the equilibrium flow profiles in TOQ we have
kept the magnitude of the Mach number parameter (V0/Cs)
the same in both the cases but the plasma β values have been
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chosen to be different. The NTM runs have been made at a
higher β value compared with the classical ones in order to
be well beyond the threshold regime. Thus the magnitude
of �τa = V0/VA = βV0/Cs at the (2, 1) surface is higher
for the NTM runs (∼0.0095) as compared with the classical
case (∼0.0064 as shown in figure 3) and consequently leads
to a larger amount of stabilization. If the Mach number
parameter is chosen differently in the two cases, so as to keep
the differential flow amount the same, then the stabilization
effects are found to be of comparable magnitude.

4. Summary and discussion

Our present set of numerical results, using two different
profiles of toroidal equilibrium flow, indicates that differential
flow has a strong stabilizing influence on the nonlinear
evolution of both classical and NTMs whereas velocity shear
has a destabilizing effect. While a quantitative comparison
with any existing analytic model is not possible, some
qualitative features of the results can be understood on the basis
of past theoretical work on shear flows, as well as nonlinear
evolutionary studies of tearing modes in the absence of flows.
The destabilization effect of weak shear flows is consistent
with the findings of earlier linear studies [8].

The source of the stabilizing influence of differential
flow has been primarily traced to two physical factors—the
pressure-curvature term and the toroidal coupling. The
pressure-curvature term has a stabilizing influence (when
the overall curvature is favourable) even in the absence of
flow. We have confirmed this by artificially turning this
term off in the code. We have further numerically confirmed
that the stabilizing effect of this term is enhanced by the
presence of differential flow due to equilibrium modifications
of the pressure profile caused by the centrifugal effects of
flow. However, the measured enhancement is not sufficient
to fully account for the amount of flow induced stabilization.
The additional stabilization comes about from the influence
of differential flow on toroidal mode coupling. A semi-
quantitative measure of this effect is obtained by a simple
model application of the �′ matrix theory and the results are

seen to agree with the numerical findings quite well in the linear
regime. Flow induced changes observed in the linear regime
are found to continue in the nonlinear regime where differential
flows lead to lower island saturation levels whereas flow shear
appears to oppose this stabilizing trend. Further explorations
with different flow profiles and different neoclassical closure
models are currently in progress to study their influence on the
nonlinear evolution of NTMs.
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