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Model equations from a chaotic time series

A K AGARWAL,D P AHALPARA, P K KAW, H R PRABHAKARA
and A SEN o

Institute for Plasma Research, Bhat, Gandhinagar 382424, India
MS received 11 June 1990

Abstract: We present a method for obtaining a set of dynamical equations for a system
that exhibits a chaotic time series. The time series data is first embedded in an appropriate
phase space by using the improved time delay technique of Broomhead and King (1986).
Nc)gt, assuming that the {low in this space is governed by a set of coupled first order nonlinear
grdlnary differential equations, a least squares fitting method is employed to derive values
{or the various unknown coefficients. The ability of the resulting model equations to reproduce
global properties like the geometry of the attractor and Lyapunov exponents is demonstrated
by treating the numerical solution of a single variable of the Lorenz and Rossler systems
in the chaotic regime as the test time series. The equations are found to provide good short
term prediction (a few cycle times) but display large errors over large prediction times. The
source of this shortcoming and some possible improvements are discussed.
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1. Introduction

In recent years, it has become clear that many chaotic time series observed
experimentally in nature, owe their stochasticity to the intrinsic nonlinear dynamics
of a system evolving on a low dimensional strange attractor in phase space. Methods
of phase space reconstruction (Broomhead and King 1986; Packard et al 1980; Takens
1981) allow one to study the geometrical structure of the strange attractor and to
determine such important global parameters as the fractal dimension, Lyapunov
exponents etc. For many such systems it becomes meaningful to write down model
nonlinear equations which may reproduce the observed chaotic behaviour. There is
a great deal of interest in this direction in recent years (Farmer and Sidorowich 1987;
Casdagli 1989; Crutchfield and McNamara 1987; Abarbanel et al 1989). Obtaining
model equations (preferably a set of simple differential equations) can serve as an
important first step in gaining a better understanding of the underlying physical
processes responsible for the observed chaos. They can also form good mathematical
simulators and be usefully employed for prediction and control of the chaotic system.

In this paper, we piesent a method for obtaining a set of differential equations
from an experimentally measured chaotic time series of a single physical variable.
These equations are found to reproduce reasonably well the geometrical and
dynamical features of the attractor reconstructed from the measured time series. The
theorems due to Takens (1981) and Whitney (1936) form the theoretical basis for the
phase space reconstruction and the determination of embedding dimension respectively.
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The improved embedding technique of Broomhead and King (1986) which is based
on singular value analysis provides a means to determine the topological dimension
of the underlying dynamical system and to construct the attractor in an orthogonal
phase space. The evaluation of the dimension yields an estimate of the minimum
number of dynamical variables which are required to describe the dynamical system.
In this analysis we assume that the dynamics on the reconstructed attractor in
orthogonal phase space can be described by a set of coupled first order nonlinear
ordinary differential equations and choose a simple third order polynomial in
dynamical variables as the basis functions to fit the derivatives of the dynamical
variables. We also assume that the divergence of the flow in the reconstructed phase
space‘is a constant quantity. This condition is valid for any dynamical system with
constant dissipation. To obtain a set of model equations, the unknown coefficients
are determined by a linear least square fitting procedure.

We apply the above technique to two test time series obtained by solving the Lorenz
(1963) and Rossler (1976) equations in chaotic regimes to sce if the method can be
used for obtaining dynamical equations for an experimental time series. For this
purpose a single variable of the dynamical system {e.g. z coordinate of Lorenz) is
treated as experimental data and dynamical equations (a set of coupled nonlinear
ordinary differential equations) are obtained. In each test case, the resulting dynamical
equations are solved numerically to compare the geometrical and dynamical features
of the attractor reconstructed from the input time series.

In §2, we describe the method for obtaining dynamical equations from the observed
time series of a single physical variable. The method is applied to two test cases viz
z time series of Lorenz and x time series of Rossler systems, in §3. The results and
some possible improvements are discussed in §4.

2. Method
Let x(t;), (i=1,2,3,...) denote a time series of some physical quantity measured at

the discrete time interval Az. From this time series we construct a N x n trajectory
matrix by using the time delay method

x(ty) x(ty+1) o x(t,+(@—1)7)
X =N-1/2 x(tz) x(t2:+ 7) x(t+ (" —1)7) (1)
x(ty) Xy +7) - Xlty+0—1)7)

Here © = mAt, is the delay time where m is an integer; t; =iAt, i=1,2,...,N; At is the
sampling time; n is the embedding dimension and N + m(n— 1) is the total number
of samples. The trajectory matrix X describes the attractor in phase space. To
determine an orthonormal basis for the embedding and the dimensionality of the
underlying dynamical system, the matrix X is singular value decomposed (Broomhead
and King 1986) as

X=S8zCT (2)

where S is an N x n orthogonal matrix of eigenvectors of XX, T is an n x n diagonal
matrix, C is an n x n orthonormal matrix and the superscript T stands for the
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transpose of the matrix. The columns of matrix C provides a set of n linearly
independent vectors {c;, c,,...,c,} in the embedding space. The matrices £ and C in
(2) are determined from the following eigenvalue equation

ZC=3X2C 3)

where Z = XTX is the covariance matrix of rank n x n. The diagonal elements of X,
called the singular values, are arranged in descending order, i.e. £ = diag (¢ 15025000, 0p)
where ¢, >0, >... >0. Plotting o, vs i gives the singular value spectrum which
contains the information about the extent to which the trajectory explores the
embedding space. One may think of the trajectory described by the matrix X as
exploring an n-dimensional ellipsoid. The vectors {c;} then give the direction and the
{o;} the lengths of the principal axes of the ellipsoid. For a stochastic system, the
singular value spectrum would be almost flat indicating that the number of degrees
of freedom is too large. However for a deterministic chaotic system, number of points
above noise floor gives the number of degrees of freedom that can be determined.
However this does not give an upper limit for the same since as the noise reduces

_one gets more points above the noise floor and vice versa. Thus this method provides

only an approximate value of the dimension. This is similar to choosing only those
modes with significant power.

The number of singular values d above the noise floor gives the true embedding
dimension of the attractor. The corresponding column vectors {ci1,¢0,0.,6} of C
form thz basis vectors of an orthogonal space of dimension d. The trajectory matrix

X is now projected onto the basis {c;} to give the matrix £ = XC. In the new basis,

the column vectors {&,,¢&,,..., ¢} of the trajectory matrix & are uncorrelated
it = Z x(@ti+k—1)1)Cyj; i=1,2,...,N;j=1,2,...,d. (4)
k=1 .

By Takens theorem (Takens 1981), a reconstructed attractor in this new phase space
should preserve the essential topological features of the original attractor. Accordingly
we prescribe the evolution of the system on this attractor by a set of coupled nonlinear
ordinary differential equations for ¢ (1)

dé¢, . '
BB NS ©

where F; are nonlinear functions, which can be expanded in terms of appropriate
basis functions ¢,

Ff=;a§¢j)¢k(éh€2v--,£d) | | | (6)

where af” are the unknown coefficients to be determined. To illustrate our method,
in the test examples considered below, we have chosen a simple third order polynomial
form in d dynamical variables for F ;» The polynomial for d =3 is

. 3 .
F-i = Z a'g;zls flll ’225133, (ll + lz + 13) < 3. . (7)

Lub,l=0
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In order to reduce the number of unknown coefficients a{/),,, we have imposed a
constraint that the divergence of the flow in the reconstructed phase space is a constant
quantity, i.e.

V:F = constant. | (8)

Here by flow we mean processing of some physical quantity continuous in time. With
this constraint ¢; will occur only in linear terms in the dynamical equation for d¢;/dt.
Thus the constant in (8) will be the sum of coefficients of £; in d£;/dt equation. The
dynamical equation for the variables £, can be written as

d ,
—‘-f—tl—al + a8 +aséytals+astl+aslés +a,&3

+agl3+aglils +a108,83 + a1, 83 . ©)

Similarly the equations for the variables &, and &5 can be written. The derivatives
d¢;/dt are calculated numerically from &;(t) given by eq. (4) by using cubic spline
method (Press et al 1987). The unknown coefficients in the three equations are
determined separately by the y? minimization method. If we denote the numerically
calculated derivatives at time ¢; by éj(ti) and the fitted value of the derivative by
Fi(a,,a,,...,a,) then the function x* can be written as

N :
,ZZ (ay,as,...,0,)) (10)

where N is the number of points on the reconstructed attractor. The minimization
of ¥* with respect to the fitting parameters a,, k = 1,2,...,m results in m simultaneous
linear equations which can be solved to obtain the values of a,,a,,...,4,.

3. Test examples

We consider the z time series of Lorenz system as the first test case. The Lorenz
equations

X=—o(x—y)
y=—zX+rx—y
Z=xy—bz (11)

are solved numerically using Bulirsch-Stoer method (Press et al 1987) for the parameter
‘values ¢ = 10, r =38 and b = 8/3 and 6000 solution points are stored with time step
At =0-009. The xy projection of the Lorenz attractor is shown in figure 1(a). Using
z time series of this solution [figure 1(b)], an embedding is carried out with t = At
and n="7. The phase space portraits of the reconstructed attractor in orthogonal
phase space are shown in figure 2. The singular value spectrum yields d =3 which
means 3 dynamical variables are required to describe the dynamics on the attractor.
The coefficients of the three equations d¢;/dz, j =1,2,3 as determined by the least
square fitting method, are given in table 1. The model equations with the coefficients
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(b)

Figure 1. (a) xy projection of the Lorenz attractor for ¢ = 10, b=8/3, r=38. (b) z time
series of the Lorenz system used for time series analysis.
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©

Figure 2. Phase space portraits of the attractor in orthogonal space reconstructed from z
time series of the Lorenz system. Figures (a), (b) and (c) show &, &,,¢, &, and &, &, projections
of the attractor respectively.

Table 1. Model equations of the attractor reconstructed from z time
series of the Lorenz system.

Term  dé,/dt dé,/de dg,/dt

Constant 1 0000424 0-020437 —5.743306
Linear & —0-000570 — 1-760502 75773665
¢, 6784514 —0-029699 83-772072
& — 0005261 15902427 —24-176651
Quadratic &2 00 0999903  —127-550237
&2 0001693 00 —9-846200

&2 0-024002 — 0225875 00
g &, 00 00 —105-399142

&5 0072998 00 00

£, 00 — 1422202 00
Cubic & 00 — 0744035 50-:242957
& — 0027008 00 — 0237277

& 0-005080 0-027953 0-0
E2¢, 00 - 00 - 30-777431

E2e, 00 0-323328 00

E2¢, — 0049679 00 0-0
&é, 00 00 0409609

E3¢, 0-0 0-798516 00

Ei¢, — 0-:010660 00 00

£1&,¢, 00 00 : 00
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given in table 1 are solved numerically with the initial conditions as one of the point
on the reconstructed attractor and the solution &, (t), £,(2), &5(2) is plotted (figure 3).
Trajectories in figure 2 and figure 3 compare well. In other words the model equations
are able to reproduce well the geometrical shape of the reconstructed attractor. We
also find that the Lyapunov exponents (Wolf et al 1985) of the reconstructed equations
compare well with those of the original Lorenz equations (table 2). Identical results
are obtained when x or y time series of the Lorenz system are used as the input time
series.

As another test example, the same analysis is carried out using the x time series
of the Rossler system (Rossler 1976). The Rossler equations

X=—(y+2)
y=x+ay
Z=b+z(x—¢) (12)

are solved for the parameter values a =02, b=0-2, ¢ = 57 and time step At = 0-05.
The xy projection of the Rossler attractor is shown in figure 4(a). 6000 points of the
x solution [figure 4(b)] are used to construct trajectory matrix X with the delay time
T=At and n=3. The phase space portraits of the reconstructed attractor in the
orthogonal phase space are shown in figure 5. Table 3 contains the coefficients of the
model equations as determined from the ¥ minimization method. In this case however
the V- F = constant constraint does not work and we use an unconstrained fit. Figure 6
shows the phase space portraits obtained by solving the model equations given by

(@)
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Figure 3a-c. 'Corresponding portraits obtained by solving the model equations given by
table 1. These figures are to be compared with figure 2. -
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b
Table 2. Lyapunov exponents. i
' 4 A
Lyap. exp. no. Lorenz system Model equations .o
1 1-58 13 .
2 00 00
3 — 2135 — 3424
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Figure 4. (a) xy projection of the Rossler attractor for a =02,b=02 and ¢c=57. (b) x
time series of the Rossler system used for the analysis.
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Figure 5. Phase space portraits of the attractor reconstructed from x time series of the
Rossler system. Figures (a), (b) and (c) show &, &,,&, &5 and £,¢&, projections of the attractor
respectively.
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Figure 6a—c. Corresponding: portraits obtained by solving the model equations given by -

table 3. These figures are to be compared with figure 5.
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eqs (5) and (7) with the coefficients given in table 3. These figures compare well with
figure 5. Lyapunov exponents of the Rossler equations and the model equations are
given in table 4 which also compare well. :

4. Discussion

We have developed a method to obtain model dynamical equations from single time
series data that exhibit chaotic behaviour. The procedure we have adopted incorporates
the improved time delay embedding technique of Broomhead and King to determine
the dimensionality of the attractor and to obtain a set of linearly independent vectors

along the direction of the principal axes in the embedded space. The evolution of the

dynamics on this attractor is then expressed in terms of these new basis vectors. A
simple global description is sought by prescribing the evolution to obey a set of
coupled first order nonlinear ordinary differential equations in the new variables. The
nonlinear flow function is expanded in terms of appropriate basis functions and the

Table 3. Model equations of the attractor reconstructed from x time
series of the Rossler system.

Term dg, /dt de,/dt dg,/dt

Constant 1 — 0000030 0000404 —0.012725
Linear £ 0002504  —0-520284 0245215
£, 2451089 0:002553 1:245353

£, —0014097 2450000  — 6010692

Quadratic £ —0000568 —0003848 — 0236573
&2 0025044  —0-172964 10-676128

&2 —0044666 3591581  —19-287406

&, 0000910  —0-152087 0428880

£,6 —0118156 2599341  —50-674237

¢, 0027082  —0-736909 11366149

Cubic 3 _0019505 - (0-453966 — 8346129
3 ~0317533 0308504  — 134679460

3 0071346  —4770292 30-145698

£28,  —0112489 1717551  —47-886660

&2e, 0-366788 4923404 156-107332
&3¢y —0-221880 1786956 — 95153484

g2, 0128040 2:295998 54-379256
g2e, 0329147 —11952868  —139-729950
£g,  —001059%4 2812778  — 6235948

£, 6245 0-324331 ~25067014 139-277139

Table 4. Lyapunov exponents.

Lyap. exp. no. Rossler system Model equations

1 0-06 0-14
0-0 00
3 —7-65 —580

41
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unknown coefficients are determined by x* minimization. We have tested this
procedure on two sample problems viz by treating the numerical solution of a single
variable of the Lorenz and Rossler systems in the chaotic regime as experimental
data. The resulting dynamical equations reproduce the geometrical features of the
original Lorenz (Rossler) attractor quite well. This is evidenced in the visual display
of phase space portraits as well as the quantitative comparison of Lyapunov exponents.
The equations are also found to provide good short term prediction (a few cycle
times) but display large errors over large prediction times. A possible source of this
shortcoming is the inadequacy of the global description of the attractor and may be
improved upon by adopting a local description as one moves to different parts of the
embedding space (Farmer and Sidorowich 1987, 1988). However this would considerably
increase the computational complexity of the method. A recent work which is closely
related to our work is that of Abarbanel et al (1989). These authors set up model
nonlinear maps which are then used for system identification and prediction for
systems exhibiting chaotic time series. Our method for setting up model differential
equations is complementary to theirs and might have some advantage in relating to
physical models. An important element in their method is the use of invariants of the
dynamical systems e.g. Lyapunov exponents as constraints on the choice of mapping
parameters. An unconstrained least squares fit gives them poor values of the invariants
like the Lyapunov exponents. Such a constraint does not seem to be necessary in
our approach. An alternative constraint that we have found useful is V- F = constant.

‘This reduces the number of coefficients to be determined and helps with convergence

of the least squares fitting. The major advantage of the constrained method of
Abarbanel et al (1989) is in improving the predictive power of the maps and we are
exploring such a procedure for our method. These techniques are now being tried
out on time series obtained from plasma physics experiments, and will.be rcported
shortly.
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