Representability of Hom implies flatness

NITIN NITSURE

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
E-mail: nitsure@math.tifr.res.in

MS received 8 August 2003

Abstract

Let X be a projective scheme over a noetherian base scheme S, and let \mathcal{F} be a coherent sheaf on X. For any coherent sheaf \mathcal{E} on X, consider the set-valued contravariant functor $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}$ on S-schemes, defined by $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}(T)=\operatorname{Hom}\left(\mathcal{E}_{T}, \mathcal{F}_{T}\right)$ where \mathcal{E}_{T} and \mathcal{F}_{T} are the pull-backs of \mathcal{E} and \mathcal{F} to $X_{T}=X \times{ }_{S} T$. A basic result of Grothendieck ([EGA], III 7.7.8, 7.7.9) says that if \mathcal{F} is flat over S then $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}$ is representable for all \mathcal{E}.

We prove the converse of the above, in fact, we show that if L is a relatively ample line bundle on X over S such that the functor $\operatorname{hom}_{\left(L^{-n}, \mathcal{F}\right)}$ is representable for infinitely many positive integers n, then \mathcal{F} is flat over S. As a corollary, taking $X=S$, it follows that if \mathcal{F} is a coherent sheaf on S then the functor $T \mapsto H^{0}\left(T, \mathcal{F}_{T}\right)$ on the category of S-schemes is representable if and only if \mathcal{F} is locally free on S. This answers a question posed by Angelo Vistoli. The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on S is representable if and only if the sheaf is locally free.

Keywords. Flattening stratification; Q-sheaf; group-scheme; base change.
Let S be a noetherian scheme, and let X be a projective scheme over S. If \mathcal{E} and \mathcal{F} are coherent sheaves on X, consider the contravariant functor $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}$ from the category of schemes over S to the category of sets which is defined by putting

$$
\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}(T)=\operatorname{Hom}_{X_{T}}\left(\mathcal{E}_{T}, \mathcal{F}_{T}\right)
$$

for any S-scheme $T \rightarrow S$, where $X_{T}=X \times_{S} T$, and \mathcal{E}_{T} and \mathcal{F}_{T} denote the pull-backs of \mathcal{E} and \mathcal{F} under the projection $X_{T} \rightarrow X$. This functor is clearly a sheaf in the fpqc topology on Sch/S. It was proved by Grothendieck that if \mathcal{F} is flat over S then the above functor is representable (see [EGA], III 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.
Theorem 1. Let S be a noetherian scheme, X a projective scheme over S, and L a relatively very ample line bundle on X over S. Let \mathcal{F} be a coherent sheaf on X. Then the following three statements are equivalent:
(1) The sheaf \mathcal{F} is flat over S.
(2) For any coherent sheaf \mathcal{E} on X, the set-valued contravariant functor $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}$ on S-schemes, defined by $\operatorname{hom}_{(\mathcal{E}, \mathcal{F})}(T)=\operatorname{Hom}_{X_{T}}\left(\mathcal{E}_{T}, \mathcal{F}_{T}\right)$, is representable.
(3) There exist infinitely many positive integers r such that the set-valued contravariant functor $\mathcal{G}^{(r)}$ on S-schemes, defined by $\mathcal{G}^{(r)}(T)=H^{0}\left(X_{T}, \mathcal{F}_{T} \otimes L^{\otimes r}\right)$, is representable.

In particular, taking $X=S$ and $L=\mathcal{O}_{X}$, we get the following corollary.

COROLLARY 2

Let S be a noetherian scheme, and \mathcal{F} a coherent sheaf on S. Consider the contravariant functor \mathbf{F} from S-schemes to sets, which is defined by putting $\mathbf{F}(T)=H^{0}\left(T, f^{*} \mathcal{F}\right)$ for any S-scheme $f: T \rightarrow S$. This functor (which is a sheaf in the fpqc topology) is representable if and only if \mathcal{F} is locally free as an \mathcal{O}_{S}-module.

Note that the affine line \mathbf{A}_{S}^{1} over a base S admits a ring-scheme structure over S in the obvious way. A linear scheme over a scheme S will mean a module-scheme $V \rightarrow S$ under the ring-scheme \mathbf{A}_{S}^{1}. This means V is a commutative group-scheme over S together with a 'scalar-multiplication' morphism $\mu: \mathbf{A}_{S}^{1} \times{ }_{S} V \rightarrow V$ over S, such that the module axioms (in diagrammatic terms) are satisfied.

A linear functor \mathbf{F} on S-schemes will mean a contravariant functor from S-schemes to sets together with the structure of an $H^{0}\left(T, \mathcal{O}_{T}\right)$-module on $\mathbf{F}(T)$ for each S-scheme T, which is well-behaved under any morphism $f: U \rightarrow T$ of S-schemes in the following sense: $\mathbf{F}(f): \mathbf{F}(T) \rightarrow \mathbf{F}(U)$ is a homomorphism of the underlying additive groups, and $\mathbf{F}(f)(a \cdot v)=f^{*}(a) \cdot(\mathbf{F}(f) v)$ for any $a \in H^{0}\left(T, \mathcal{O}_{T}\right)$ and $v \in \mathbf{F}(T)$. In particular note that the kernel of $\mathbf{F}(f)$ will be an $H^{0}\left(T, \mathcal{O}_{T}\right)$-submodule of $\mathbf{F}(T)$. The functor of points of a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma that if a linear functor \mathbf{F} on S-schemes is representable, then the representing scheme V is naturally a linear scheme over S.

For example, the linear functor $T \mapsto H^{0}\left(T, \mathcal{O}_{T}\right)^{n}$ (where $n \geq 0$) is represented by the affine space $\mathbf{A}_{\mathbb{Z}}^{n}$ over $\operatorname{Spec} \mathbb{Z}$, with its usual linear-scheme structure. More generally, for any coherent sheaf \mathfrak{Q} on S, the scheme $\operatorname{Spec} \operatorname{Sym}(\mathfrak{Q})$ is naturally a linear-scheme over S, where $\operatorname{Sym}(\mathfrak{Q})$ denotes the symmetric algebra of \mathfrak{Q} over \mathcal{O}_{S}. It represents the linear functor $\mathbf{F}(T)=\operatorname{Hom}\left(\mathfrak{Q}_{T}, \mathcal{O}_{T}\right)$ where \mathfrak{Q}_{T} denotes the pull-back of \mathfrak{Q} under $T \rightarrow S$.

With this terminology, the functor $\mathcal{G}^{(r)}(T)=H^{0}\left(X_{T}, \mathcal{F}_{T} \otimes L^{\otimes r}\right)$ of Theorem 1(3) is a linear functor. Therefore, if a representing scheme $G^{(r)}$ exists, it will naturally be a linear scheme. Note that each $\mathcal{G}^{(r)}$ is obviously a sheaf in the fpqc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the existence of a flattening stratification [TDTE IV] together with the techniques which were employed in [N1] to prove the following result.

Theorem 3 (Representability of the functor $G \boldsymbol{L}_{\boldsymbol{E}}$). Let S be a noetherian scheme, and E a coherent \mathcal{O}_{S}-module. Let $G L_{E}$ denote the contrafunctor on S-schemes which associates to any S-scheme $f: T \rightarrow S$ the group of all \mathcal{O}_{T}-linear automorphisms of the pullback $E_{T}=f^{*} E$ (this functor is a sheaf in the fpqc topology). Then $G L_{E}$ is representable by a group scheme over S if and only if E is locally free.

We re-state Grothendieck's result (see [TDTE IV]) on the existence of a flattening stratification in the following form, which emphasises the role of the direct images $\pi_{*}(\mathcal{F}(r))$. For an exposition of flattening stratification, see [M] or [N2].

Theorem 4 (Grothendieck). Let S be a noetherian scheme, and let \mathcal{F} be a coherent sheaf on \mathbf{P}_{S}^{n} where $n \geq 0$. There exists an integer m, and a collection of locally closed subschemes $S_{f} \subset S$ indexed by polynomials $f \in \mathbb{Q}[\lambda]$, with the following properties.
(i) The underlying set of S_{f} consists of all $s \in S$ such that the Hilbert polynomial of \mathcal{F}_{s} is f, where \mathcal{F}_{s} denotes the pull-back of \mathcal{F} to the schematic fibre \mathbf{P}_{s}^{n} over s of the
projection $\pi: \mathbf{P}_{S}^{n} \rightarrow$ S. All but finitely many S_{f} are empty (only finitely many Hilbert polynomials occur). In particular, the S_{f} are mutually disjoint, and their set-theoretic union is S.
(ii) For each $r \geq m$, the higher direct images $R^{j} \pi_{*}(\mathcal{F}(r))$ are zero for $j \geq 1$ and the subschemes S_{f} give the flattening stratification for the direct image $\pi_{*}(\mathcal{F}(r))$, that is, the morphism $i: \coprod_{f} S_{f} \rightarrow$ S induced by the locally closed embeddings $S_{f} \hookrightarrow S$ has the universal property that for any morphism $g: T \rightarrow S$, the sheaf $g^{*} \pi_{*}(\mathcal{F}(r))$ is locally free on T if and only if g factors via $i: \bigsqcup_{f} S_{f} \rightarrow S$.
(iii) The subschemes S_{f} give the flattening stratification for \mathcal{F}, that is, for any morphism $g: T \rightarrow S$, the sheaf $\mathcal{F}_{T}=(1 \times g)^{*} \mathcal{F}$ on \mathbf{P}_{T}^{n} is flat over T if and only if g factors via $i: \bigsqcup_{f} S_{f} \rightarrow S$. In particular, \mathcal{F} is flat over S if and only if each S_{f} is an open subscheme of S.
(iv) Let $\mathbb{Q}[\lambda]$ be totally ordered by putting $f_{1}<f_{2}$ if $f_{1}(p)<f_{2}(p)$ for all $p \gg 0$. Then the closure of S_{f} in S is set-theoretically contained in $\bigcup_{g \geq f} S_{g}$. Moreover, whenever S_{f} and S_{g} are non-empty, we have $f<g$ if and only if $f(p)<g(p)$ for all $p \geq m$.

The following elementary lemma of Grothendieck on base-change does not need any flatness hypothesis. The price paid is that the integer r_{0} may depend on ϕ. (See [N2] for a cohomological proof.)

Lemma 5. Let $\phi: T \rightarrow S$ be a morphism of noetherian schemes, let \mathcal{F} a coherent sheaf on \mathbf{P}_{S}^{n}, and let \mathcal{F}_{T} denote its pull-back under the induced morphism $\mathbf{P}_{T}^{n} \rightarrow \mathbf{P}_{S}^{n}$. Let $\pi_{S}: \mathbf{P}_{S}^{n} \rightarrow S$ and $\pi_{T}: \mathbf{P}_{T}^{n} \rightarrow T$ denote the projections. Then there exists an integer r_{0} such that the base-change homomorphism $\phi^{*} \pi_{S_{*}} \mathcal{F}(r) \rightarrow \pi_{T *} \mathcal{F}_{T}(r)$ is an isomorphism for all $r \geq r_{0}$.

Proof of Theorem 1. The implication (1) \Rightarrow (2) follows by [EGA], III 7.7.8, 7.7.9, while the implication (2) \Rightarrow (3) follows by taking $\mathcal{E}=L^{\otimes-r}$. Therefore it now remains to show the implication $(3) \Rightarrow(1)$. This we do in a number of steps.

Step 1: Reduction to $S=\operatorname{Spec} R$ with R local, $X=\mathbf{P}_{S}^{n}$ and $L=\mathcal{O}_{\mathbf{P}_{S}^{n}}(1)$. Suppose that \mathcal{F} is not flat over S, but the linear functor $\mathcal{G}^{(r)}$ on S-schemes, defined by $\mathcal{G}^{(r)}(T)=$ $H^{0}\left(X_{T}, \mathcal{F}_{T} \otimes L^{\otimes r}\right)$, is representable by a linear scheme $G^{(r)}$ over S for arbitrarily large integers r. As \mathcal{F} is not flat, by definition there exists some $x \in X$ such that the stalk \mathcal{F}_{x} is not a flat module over the local ring $\mathcal{O}_{S, \pi(x)}$ where $\pi: X \rightarrow S$ is the projection. Let $U=\operatorname{Spec} \mathcal{O}_{S, \pi(x)}$, let \mathcal{F}_{U} be the pull-back of \mathcal{F} to $X_{U}=X \times_{S} U$ and let $G_{U}^{(r)}$ denote the pull-back of $G^{(r)}$ to U. Then \mathcal{F}_{U} is not flat over U but given any integer m, there exists an integer $r \geq m$ such that the functor $\mathcal{G}_{U}^{(r)}$ on U-schemes, defined by $\mathcal{G}_{U}^{(r)}(T)=H^{0}\left(X_{T}, \mathcal{F}_{T} \otimes L^{\otimes r}\right)$, is representable by the U-scheme $G_{U}^{(r)}$.

Therefore, by replacing S by U, we can assume that S is of the form Spec R where R is a noetherian local ring. Let $i: X \hookrightarrow \mathbf{P}_{S}^{n}$ be the embedding given by L. Then replacing \mathcal{F} by $i_{*} \mathcal{F}$, we can further assume that $X=\mathbf{P}_{S}^{n}$ and $L=\mathcal{O}_{\mathbf{P}_{S}^{n}}(1)$.
Step 2: Flattening stratification of Spec R. There exists an integer m as asserted by Theorem 4, such that for any $r \geq m$, the flattening stratification of S for the sheaf $\pi_{*} \mathcal{F}(r)$ on S is the same as the flattening stratification of S for the sheaf \mathcal{F} on \mathbf{P}_{S}^{n}. Let $r \geq m$ be any integer. As \mathcal{F} is not flat over $S=\operatorname{Spec} R$, the sheaf $\pi_{*} \mathcal{F}(r)$ is not flat. Let $M_{r}=H^{0}\left(S, \pi_{*} \mathcal{F}(r)\right)$, which is a finite R-module. Let $\mathfrak{m} \subset R$ be the maximal ideal, and let $k=R / \mathfrak{m}$ the residue
field. Let $s \in S=\operatorname{Spec} R$ be the closed point, and let $d=\operatorname{dim}_{k}\left(M_{r} / \mathfrak{m} M_{r}\right)$. Then there exists a right-exact sequence of R-modules of the form

$$
R^{\delta} \xrightarrow{\psi} R^{d} \rightarrow M_{r} \rightarrow 0
$$

Let $I \subset R$ be the ideal formed by the matrix entries of the $(d \times \delta)$-matrix ψ. Then I defines a closed subscheme $S^{\prime} \subset S$ which is the flattening stratification of S for M_{r}. As M_{r} is not flat by assumption, I is a non-zero proper ideal in R.

It follows from Theorem 4 that I is independent of r as long as $r \geq m$.
Step 3: Reduction to Artin local case with principal I with $\mathfrak{m} I=0$. Let $I=\left(a_{1}, \ldots, a_{t}\right)$ where a_{1}, \ldots, a_{t} is a minimal set of generators of I. Let $J \subset R$ be the ideal defined by

$$
J=\left(a_{2}, \ldots, a_{t}\right)+\mathfrak{m} I
$$

Then note that $J \subset I \subset \mathfrak{m}$, and the quotient $R^{\prime}=R / J$ is an Artin local R-algebra with maximal ideal $\mathfrak{m}^{\prime}=\mathfrak{m} / J$, and $I^{\prime}=I / J$ is a non-zero principal ideal which satisfies $\mathfrak{m}^{\prime} I^{\prime}=0$. For the base-change under $f: \operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R$, the flattening stratification for $f^{*} \pi_{*} \mathcal{F}(r)$ is defined by the ideal I^{\prime} for $r \geq m$. Let \mathcal{F}^{\prime} denote the pull-back of \mathcal{F} to $\mathbf{P}_{R^{\prime}}^{n}$, and let $\pi^{\prime}: \mathbf{P}_{R^{\prime}}^{n} \rightarrow \operatorname{Spec} R^{\prime}$ the projection. As f is a morphism of noetherian schemes, by Lemma 5 there exists some integer m^{\prime} such that the base-change homomorphism $f^{*} \pi_{*} \mathcal{F}(r) \rightarrow \pi_{*}^{\prime} \mathcal{F}^{\prime}(r)$ is an isomorphism whenever $r \geq m^{\prime}$. Choosing some $m^{\prime} \geq m$ with this property, and replacing R by R^{\prime}, \mathcal{F} by \mathcal{F}^{\prime} and m by m^{\prime}, we can assume that R is Artin local, and I is a non-zero principal ideal with $\mathfrak{m} I=0$, which defines the flattening stratification for $\pi_{*} \mathcal{F}(r)$ for all $r \geq m$.

Step 4: Decomposition of $\pi_{*} \mathcal{F}(r)$ via lemma of Srinivas.
Lemma (Srinivas). Let R be an Artin local ring with maximal ideal \mathfrak{m}, and let E be any finite R module whose flattening stratification is defined by an ideal I which is a non-zero proper principal ideal with $\mathfrak{m} I=0$. Then there exist integers $i \geq 0$ and $j>0$ such that E is isomorphic to the direct sum $R^{i} \oplus(R / I)^{j}$.

Proof. See Lemma 4 in [N1].
We apply the above lemma to the R-module $M_{r}=H^{0}\left(S, \pi_{*} \mathcal{F}(r)\right)$, which has flattening stratification defined by the principal ideal I with $\mathfrak{m} I=0$, to conclude that (up to isomorphism) M_{r} has the form

$$
M_{r}=R^{i(r)} \oplus(R / I)^{j(r)}
$$

for non-negative integers $i(r)$ and $j(r)$ with $j(r)>0$. Note that $i(r)+j(r)=\Phi(r)$ where Φ is the Hilbert polynomial of \mathcal{F}.

Step 5: Structure of the hypothetical representing scheme $G^{(r)}$. Let $\phi: \operatorname{Spec}(R / I) \hookrightarrow$ Spec R denote the inclusion and \mathcal{F}^{\prime} denote the pull-back of \mathcal{F} under $\mathbf{P}_{R / I}^{n} \hookrightarrow \mathbf{P}_{R}^{n}$. The sheaf \mathcal{F}^{\prime} is flat over R / I, and the functor $\mathcal{G}_{R / I}^{(r)}$, which is the restriction of $\mathcal{G}^{(r)}$, is represented by the linear scheme $\mathbf{A}_{R / I}^{d}=\operatorname{Spec}(R / I)\left[y_{1}, \ldots, y_{d}\right]$ over R / I, where $d=\Phi(r)$ where Φ is the Hilbert polynomial of \mathcal{F}. Hence, the pull-back of the hypothetical representing scheme $G^{(r)}$ to R / I is the linear scheme $\mathbf{A}_{R / I}^{d}$. We now use the following fact (see Lemmas 6 and 7 of [N1] for a proof).

Lemma. Let R be a ring and I a nilpotent ideal ($I^{n}=0$ for some $n \geq 1$). Let X be a scheme over $\operatorname{Spec} R$, such that the closed subscheme $Y=X \otimes_{R}(R / I)$ is isomorphic over R / I to $\operatorname{Spec} B$ where B is a finite-type R / I-algebra. Let $b_{1}, \ldots, b_{d} \in B$ be a set of algebra generators for B over R / I. Then X is isomorphic over R with $\operatorname{Spec} A$ where A is a finite-type R-algebra. Moreover, there exists a set of R-algebra generators a_{1}, \ldots, a_{d} for A, such that each a_{i} restricts modulo I to $b_{i} \in B$ over R / I. Let $R\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring in d variables over R, and consider the surjective R-algebra homomorphism $R\left[x_{1}, \ldots, x_{d}\right] \rightarrow A$ defined by sending each x_{i} to a_{i}, and let J be its kernel. Then $J \subset I R\left[x_{1}, \ldots, x_{d}\right]$.

It follows from the above lemma that $G^{(r)}$ is affine of finite type over R, and its coordinate ring A as an R algebra is of the form

$$
A=R\left[a_{1}, \ldots, a_{d}\right]=R\left[x_{1}, \ldots, x_{d}\right] / J,
$$

where a_{i} is the residue of x_{i}, and a_{1}, \ldots, a_{d} restrict over R / I to the linear coordinates y_{1}, \ldots, y_{d} on the linear scheme $\mathbf{A}_{R / I}^{d}$, and J is an ideal with $J \subset I \cdot R\left[x_{1}, \ldots, x_{d}\right]$. Being an additive group-scheme, $G^{(r)}$ has its zero section $\sigma: \operatorname{Spec} R \rightarrow G^{(r)}$, and this corresponds to an R-algebra homomorphism $\sigma^{*}: A \rightarrow R$. Modulo I, the section σ restricts to the zero section of $\mathbf{A}_{R / I}^{d}$ over $\operatorname{Spec}(R / I)$, therefore $\sigma^{*}\left(a_{i}\right) \in I$ for all $i=1, \ldots, d$. Let $x_{i}^{\prime}=x_{i}-\sigma^{*}\left(a_{i}\right) \in R\left[x_{1}, \ldots, x_{d}\right]$ and $a_{i}^{\prime}=a_{i}-\sigma^{*}\left(a_{i}\right) \in A$ be its residue modulo J. Then $R\left[x_{1}, \ldots, x_{d}\right]=R\left[x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right]$, the elements $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ generate A as an R-algebra, and moreover the a_{i}^{\prime} restrict over R / I to the linear coordinates y_{i} on the linear scheme $\mathbf{A}_{R / I}^{d}$. Therefore, by replacing the x_{i} by the x_{i}^{\prime} and the a_{i} by the a_{i}^{\prime}, we can assume that for each i, we have

$$
\sigma^{*}\left(a_{i}\right)=0 .
$$

Next, consider any element $f\left(x_{1}, \ldots, x_{d}\right) \in J$. Then $f\left(a_{1}, \ldots a_{d}\right)=0$ in A, so $\sigma^{*} f\left(a_{1}, \ldots a_{d}\right)=0 \in R$, which shows that the constant coefficient of f is zero, as $\sigma^{*}\left(a_{i}\right)=0$. As we already know that $J \subset I \cdot R\left[x_{1}, \ldots, x_{d}\right]$, the vanishing of the constant term of any element of J now establishes that

$$
J \subset I \cdot\left(x_{1}, \ldots, x_{d}\right)
$$

From the above, using $I^{2}=0$, it follows that for any $\left(b_{1}, \ldots, b_{d}\right) \in I^{d}$, we have a welldefined R-algebra homomorphism

$$
\Psi_{\left(b_{1}, \ldots, b_{d}\right)}: A \rightarrow R: a_{i} \mapsto b_{i} .
$$

We now express the linear-scheme structure of $G^{(r)}$ in terms of the ring A, using the fact that each a_{i} restricts to y_{i} modulo I, and $G_{R / I}^{(r)}$ is the standard linear-scheme $\mathbf{A}_{R / I}^{d}$ with linear co-ordinates y_{i}. Note that the vector addition morphism $\mathbf{A}_{R / I}^{d} \times R / I \mathbf{A}_{R / I}^{d} \rightarrow \mathbf{A}_{R / I}^{d}$ corresponds to the R / I-algebra homomorphism

$$
\begin{aligned}
(R / I)\left[y_{1}, \ldots, y_{d}\right] & \rightarrow(R / I)\left[y_{1}, \ldots, y_{d}\right] \otimes_{R / I}(R / I)\left[y_{1}, \ldots, y_{d}\right]: y_{i} \\
& \mapsto y_{i} \otimes 1+1 \otimes y_{i}
\end{aligned}
$$

while the scalar-multiplication morphism $\mathbf{A}_{R / I}^{1} \times_{R / I} \mathbf{A}_{R / I}^{d} \rightarrow \mathbf{A}_{R / I}^{d}$ corresponds to the R / I-algebra homomorphism

$$
\begin{aligned}
(R / I)\left[y_{1}, \ldots, y_{d}\right] & \rightarrow(R / I)\left[t, y_{1}, \ldots, y_{d}\right] \\
& =(R / I)[t] \otimes_{R / I}(R / I)\left[y_{1}, \ldots, y_{d}\right]: y_{i} \mapsto t y_{i}
\end{aligned}
$$

It follows that the addition morphism $\alpha: G^{(r)} \times_{R} G^{(r)} \rightarrow G^{(r)}$ corresponds to an algebra homomorphism $\alpha^{*}: A \rightarrow A \otimes_{R} A$ which has the form

$$
a_{i} \mapsto a_{i} \otimes 1+1 \otimes a_{i}+u_{i} \text { where } u_{i} \in I\left(A \otimes_{R} A\right)
$$

Let the element u_{i} in the above equation for $\alpha^{*}\left(a_{i}\right)$ be written as a polynomial expression

$$
u_{i}=f_{i}\left(a_{1} \otimes 1, \ldots, a_{d} \otimes 1,1 \otimes a_{1}, \ldots, 1 \otimes a_{d}\right)
$$

with coefficients in I. The additive identity 0 of $G^{(r)}(R)$ corresponds to $\sigma^{*}: A \rightarrow R$ with $\sigma^{*}\left(a_{i}\right)=0$, and we have $0+0=0$ in $G^{(r)}(R)$. This implies that $f_{i}(0, \ldots, 0)=0$, and so the constant term of f_{i} is zero. From this, using $I^{2}=0$, we get the important consequence that

$$
f_{i}\left(w_{1}, \ldots, w_{2 d}\right)=0 \text { for all } w_{1}, \ldots, w_{2 d} \in I
$$

The scalar-multiplication morphism $\mu: \mathbf{A}_{R}^{1} \times{ }_{R} G^{(r)} \rightarrow G^{(r)}$ prolongs the standard scalar multiplication on $\mathbf{A}_{R / I}^{d}$, and so μ corresponds to an algebra homomorphism $\mu^{*}: A \rightarrow$ $A[t]=R[t] \otimes_{R} A$ which has the form

$$
a_{i} \mapsto t a_{i}+v_{i} \text { where } v_{i} \in I A[t]
$$

Let v_{i} be expressed as a polynomial $v_{i}=g_{i}\left(t, a_{1}, \ldots, a_{d}\right)$ with coefficients in I. As multiplication by the scalar 0 is the zero morphism on $G^{(r)}$, it follows by specialising under $t \mapsto 0$ that $g_{i}\left(0, a_{1}, \ldots, a_{d}\right)=0$. This means $v_{i}=g_{i}\left(t, a_{1}, \ldots, a_{d}\right)$ can be expanded as a finite sum

$$
v_{i}=\sum_{j \geq 1} t^{j} h_{i, j}\left(a_{1}, \ldots, a_{d}\right)
$$

where the $h_{i, j}\left(a_{1}, \ldots, a_{d}\right)$ are polynomial expressions with coefficients in I. As the zero vector times any scalar is zero, it follows by specialising under σ^{*} that $g_{i}(t, 0, \ldots, 0)=0$. It follows that the constant term of each $h_{i, j}$ is zero. From this, and the fact that $I^{2}=0$, we get the important consequence that

$$
g_{i}\left(t, b_{1}, \ldots, b_{d}\right)=0 \text { for all } b_{1}, \ldots, b_{d} \in I
$$

Step 6: The kernel of the map $G^{(r)}(R) \rightarrow G^{(r)}(R / I)$.
Lemma. Let $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}: A \rightarrow R$ be the R-algebra homomorphism defined in terms of the generators by $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}\left(a_{k}\right)=b_{k}$. Let $\Psi: I^{d} \rightarrow \operatorname{Hom}_{R-\operatorname{alg}}(A, R)$ be the set-map defined by $\left(b_{1}, \ldots, b_{d}\right) \mapsto\left(\Psi_{\left(b_{1}, \ldots, b_{d}\right)}: A \rightarrow R\right)$. Then Ψ is a homomorphism of R modules, where the R-module structure on $\operatorname{Hom}_{R-\operatorname{alg}}(A, R)$ is defined by its identification with the R-module $G^{(r)}(R)$.

The map Ψ is injective, and its image is the R-submodule $\operatorname{ker} G^{(r)}(\phi) \subset G^{(r)}(R)$, where $\phi: \operatorname{Spec}(R / I) \hookrightarrow \operatorname{Spec} R$ is the inclusion.

Proof. For any $\left(b_{1}, \ldots, b_{d}\right)$ and $\left(c_{1}, \ldots, c_{d}\right)$ in I^{d}, we have

$$
\begin{aligned}
\left(\Psi_{\left(b_{1}, \ldots, b_{d}\right)}+\Psi_{\left(c_{1}, \ldots, c_{d}\right)}\right)\left(a_{i}\right)= & \left(\Psi_{\left(b_{1}, \ldots, b_{d}\right)} \otimes \Psi_{\left(c_{1}, \ldots, c_{d}\right)}\right)\left(\alpha^{*}\left(a_{i}\right)\right) \\
= & b_{i}+c_{i}+f_{i}\left(b_{1}, \ldots, b_{d}, c_{1}, \ldots, c_{d}\right) \\
& \text { by substituting for } \alpha^{*}\left(a_{i}\right) \\
= & b_{i}+c_{i} \text { as } b_{k}, c_{k} \in I \\
= & \Psi_{\left(b_{1}+c_{1}, \ldots, b_{d}+c_{d}\right)}\left(a_{i}\right) .
\end{aligned}
$$

This shows the equality $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}+\Psi_{\left(c_{1}, \ldots, c_{d}\right)}=\Psi_{\left(b_{1}, \ldots, b_{d}\right)+\left(c_{1}, \ldots, c_{d}\right)}$, which means the map $\Psi: I^{d} \rightarrow G^{(r)}(R)$ is additive.

For any $\lambda \in R$, let $f_{\lambda}: R[t] \rightarrow R$ be the R-algebra homomorphism defined by $f_{\lambda}(t)=\lambda$. Then for any $\left(b_{1}, \ldots, b_{d}\right) \in I^{d}$ we have

$$
\begin{aligned}
\left(\lambda \cdot \Psi_{\left(b_{1}, \ldots, b_{d}\right)}\right)\left(a_{i}\right) & =\left(f_{\lambda} \otimes \Psi_{\left(b_{1}, \ldots, b_{d}\right)}\right)\left(\mu^{*}\left(a_{i}\right)\right) \\
& =\left(f_{\lambda} \otimes \Psi_{\left(b_{1}, \ldots, b_{d}\right)}\right)\left(t a_{i}+g_{i}\left(t, a_{1}, \ldots, a_{d}\right)\right) \\
& =\lambda b_{i}+g_{i}\left(\lambda, b_{1}, \ldots, b_{d}\right) \\
& =\lambda b_{i} \text { as } b_{k} \in I \\
& =\Psi_{\left(\lambda b_{1}, \ldots, \lambda b_{d}\right)}\left(a_{i}\right) .
\end{aligned}
$$

This shows the equality $\lambda \cdot \Psi_{\left(b_{1}, \ldots, b_{d}\right)}=\Psi_{\lambda \cdot\left(b_{1}, \ldots, b_{d}\right)}$, hence the map $\Psi: I^{d} \rightarrow G^{(r)}(R)$ preserves scalar multiplication. This completes the proof that $\Psi: I^{d} \rightarrow G^{(r)}(R)$ is a homomorphism of R-modules.

The map Ψ is clearly injective. The map $G^{(r)}(\phi): G^{(r)}(R) \rightarrow G^{(r)}(R / I)$ is in algebraic terms the map $\operatorname{Hom}_{R-\operatorname{alg}}(A, R) \rightarrow \operatorname{Hom}_{R-\operatorname{alg}}(A, R / I)$ induced by the quotient $R \rightarrow R / I$. An element $g \in \operatorname{Hom}_{R-\operatorname{alg}}(A, R / I)$ represents the zero element of $G^{(r)}(R / I)$ exactly when $g\left(a_{i}\right)=0 \in R / I$ for the generators a_{i} of A. Therefore $f \in \operatorname{Hom}_{R-\mathrm{alg}}(A, R)$ is in the kernel of $G^{(r)}(\phi)$ precisely when $f\left(a_{i}\right) \in I$ for the generators a_{i}. Putting $b_{i}=f\left(a_{i}\right)$, we see that such an f is the same as $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}$.

This completes the proof of the lemma that $\operatorname{ker} G^{(r)}(\phi)=I^{d}$.
In particular, as $\mathfrak{m} I=0$, it follows from the above lemma that $\operatorname{ker} G^{(r)}(\phi)$ is annihilated by \mathfrak{m}, so it is a vector space over R / \mathfrak{m}, and its dimension as a vector space over R / \mathfrak{m} is $d=\Phi(r)$, as by assumption I is a non-zero principal ideal.

The above determination of the dimension over R / \mathfrak{m} of the kernel of $G^{(r)}(\phi)$ will contradict a more direct functorial description, which is as follows.

Step 7: Functorial description of kernel of $\mathcal{G}^{(r)}(R) \rightarrow \mathcal{G}^{(r)}(R / I)$. As $\mathcal{F}_{R / I}(r)$ is flat over R / I, and as for $r \geq m$ all higher direct images of $\mathcal{F}(r)$ vanish, $\mathcal{G}^{(r)}(R / I)$ is isomorphic to the R / I-module $(R / I)^{d}$ where $d=\Phi(r)$. By Lemma 5, there exists $m^{\prime \prime} \geq m$ such that for $r \geq m^{\prime \prime}$ the inclusion $\phi: \operatorname{Spec}(R / I) \hookrightarrow \operatorname{Spec} R$ induces an isomorphism $\phi^{*} \pi_{*} \mathcal{F}(r) \rightarrow \pi_{*}^{\prime} \mathcal{F}^{\prime}(r)$ where $\pi^{\prime}: \mathbf{P}_{R / I}^{n} \rightarrow \operatorname{Spec}(R / I)$ is the projection and \mathcal{F}^{\prime} is the pull-back of \mathcal{F} under $\mathbf{P}_{R / I}^{n} \hookrightarrow \mathbf{P}_{R}^{n}$. Note that $\mathcal{G}^{(r)}(R)=R^{i(r)} \oplus(R / I)^{j(r)}$, and so for $r \geq m^{\prime \prime}$ we get an induced decomposition

$$
\mathcal{G}^{(r)}(R / I)=(R / I)^{i(r)} \oplus(R / I)^{j(r)}
$$

such that the map $\mathcal{G}^{(r)}(\phi): \mathcal{G}^{(r)}(R) \rightarrow \mathcal{G}^{(r)}(R / I)$ is the map

$$
(q, 1): R^{i(r)} \oplus(R / I)^{j(r)} \rightarrow(R / I)^{i(r)} \oplus(R / I)^{j(r)}
$$

where q is the quotient map modulo I. It follows that the kernel of $\mathcal{G}^{(r)}(\phi)$ is the R-module $I^{i(r)} \oplus 0 \subset R^{i(r)} \oplus(R / I)^{j(r)}=\mathcal{G}^{(r)}(R)$. This is a vector space over R / \mathfrak{m} of dimension $i(r)<i(r)+j(r)=\Phi(r)$.

We thus obtain two different values for the dimension of the same vector space $\operatorname{ker} G^{(r)}(\phi)=\operatorname{ker} \mathcal{G}^{(r)}(\phi)$, which shows that our assumption that $\mathcal{G}^{(r)}$ is representable for arbitrarily large values of r is false. This completes the proof of Theorem 1.

Acknowledgement

This note was inspired by a question posed by Angelo Vistoli to the participants of the workshop 'Advanced basic algebraic geometry' held at the Abdus Salam ICTP, Trieste, in July 2003. The Corollary 2 answers that question. I thank the ICTP for hospitality while this work was in progress.

References

[EGA] Grothendieck A, Éléments de Géométrie Algébriques (written with the collaboration of Dieudonné), Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32 (1960-67)
[TDTE IV] Grothendieck A, Techniques de construction et théorèmes d'existence en géométrie algébriques IV: les schémas de Hilbert. Séminaire Bourbaki 221 (1960/61)
[M] Mumford, Lectures on Curves on an Algebraic Surface (Princeton University Press) (1966)
[N1] Nitsure N, Representability of GL_{E}, Proc. Indian Acad. Sci. (Math. Sci.) 112 (2002) http://arXiv.org/abs/math/0204047
[N2] Nitsure N, Construction of Hilbert and Quot Schemes, Lectures at the ICTP Summer School on Advanced Basic Algebraic Geometry, July 2003 (follow the web link http: //www.ictp.trieste/ for an electronic version)

