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The paper develops a general model for determining the minimum sample size for collecting germplasm for
genetic conservation with an overall objective of retaining at least one copy of each allele with preassigned
probability. It considers sampling from a large heterogeneous 2k-ploid population under a broad range of
mating systems leading to a general formula applicable to a fairly large number of populations. It is found
that the sample size decreases as ploidy levels increase, but increases with the increase in inbreeding. Under
exclusive selfing the sample size is the same, irrespective of the ploidy level, when other parameters are
held constant. Minimum sample sizes obtained for diploids by this general formula agree with those already
reported by earlier workers. The model confirms the conservative characteristics of genetic variability of

polysomic inheritance under chromosomal segregation.

1. Introduction

Plant explorers and\ conservationists are faced with the
problem of collecting genetic material (vegetative or
seeds) from large populations with a view to conser-
ving the germplasm with a certain degree of assu-
rance. The number of plants needed to conserve the
germplasm has been discussed in many papers (Allard
1970, Marshall and Brown 1975; Qualset 1975; Bogyo
et al 1980; Greogorius 1980; Chapman 1984; Yonezawa
1985; Namkoong 1988; Crossa 1989; Yonezawa and
Ichihashi 1989; Crossa et al 1993; Lawrence et al
1995a,b) using probability models mainly for diploid
species.

Lawrence et al (1995a) suggested a sample of about
172 plants for conserving all or very nearly all of the
polymorphic genes with high probability provided the.r
frequency is not less than 0-05, irrespective of whether
the individuals of the species set all of their seed by
self- or by cross-fertilization or by a mixture of both. They
generalized their model for multiple loci with 2 alleles

under extreme cases i.e., complete selfing or complete
random mating. Crossa et al (1993) while discussing the
optimal sample size for regeneration suggested sample
sizes of 160-210 plants for capturing alleles at frequencies
of 0-05 or higher in each of 150 loci, with 90-95%
probability. When allele frequencies are unknown an
equation for estimating an optimal sample size for cap-
turing (a— 1) rare alleles having an identical frequency
of (p,) and the ath allele occurring at a frequency of
{1-(a—1)p,} at a number of independent loci was also
developed by the same authors. However, they did not
incorporate a parameter for association between genes
within individuals (or inbreeding coefficient) in their
expression.

The present study is concerned with the development
of a comprehensive model giving the required minimum
sample size when the sampling is done from a large
diploid or autopolyploid (2k-ploid) population with all
degrees of inbreeding. We have also tried to isolate the
general effects of polysomic inheritance and inbreeding,
on sample size for collecting vegetative samples. Our
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treament extends models adopted by Lawrence et al
(1995a) and Crossa et al (1993) for diploid species.

2. Polysomic model

2.1 Diallelic and single locus model

Let us consider a 2k-auto-polyploid population with 2
alleles A, and A, at a single locus having frequencies
p, and p, respectively, reproducing by constant proportions
of selfing (s) and random mating (1 —s), with no double
reduction or selection. Such a population at equilibrium
can be denoted as

A A%1A,
Z= ,
(pf*(l—Fka,F,, *C pt 'pz(l— F)
"
*C.p*'p,(1-F) . . p¥(1—F)+p,F,

The sum of the allelic frequencies and the sum of the
genotypic frequencies as given above is one. F, is the
theoretical populational inbreeding coefficient at equili-
brium for a 2k-ploid organism and is related to the
proportion of _ selfing(s) by the following formula
{(McConnell ané\ Fyfe 1975):

F, =s/{2k - (2k - 1)s}.

When k=1, the population becomes a diploid and can
be represented as

7= Ap, AA, A
= pi(1-F)+pF, 2pp,(1-F) pl(1+F)+p,F,

where F,=s5/(2-5s).

Our objective of conservation means that a randomly
drawn sample from a 2k-ploid population should capture
at least one copy of each allele. This can be achieved
if the sample contains either one of the heterozygotes
or one each of the homozygotes A* and AZ. The
probability of capturing at least one copy of each allele
can be calculated simply by excluding the probability
of selecting only one of the homozygotes in a sample
of size n, as suggested by Lawrence et al (1995a) for
diploid models. Thus the probability that a randomly
drawn sample of size n contains at least one copy of
each alleles at the said locus is

P[A, A)=1-{p(1-F)+pF})
_{pgk(l_Fk)'i'szk}”- Q)
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We can numerically evaluate equation (1) to obtain
values of n for a given probability of conservation. For
sake of simplicity, if we denote this probability by
(1 -a), then
= {Pfk (1 "Fk)"'Ple}"'*'{ P%k (1 —Fk) +P2Fk}"-
We can further simplify the above expression by assuming
that the allele A, is rare in nature and occurs with a
frequency (p,) of the order of 0-05 or less. Then the
term {p*(1-F)+p,F,}" is almost negligible and can
be dropped. Taking the logarithm on both sides of the
expression, we get

n>log (a)/log (f), ¥
where 8= (1 —p)* (1 - F)+(1 -p)F,

From expression (2), we can derive two important results
for the extreme conditions of complete outcrossing and
complete selfing, as follow:

s=0; n>log(a)/2% log (1-p) 3)

s= n>log(a@)/log (1 -p,) . @

Expressions (3) and (4) indicate that the sample size
under complete selfing is almost 2k times of that under
random mating. As expected, with mixed mating
systems, the sample size lies between these two limits
and can be obtained numerically by evaluating either
(1) or (2).

2. Multiallelic and multilocus model

Let us consider again a 2k-auto-polyploid population
with a number of alleles at each of A independent loci
and producing a proportion of seed (s) by selfing and
(1-5) by random mating. The number of genotypes for
such a population become too large for computation
when k>2 and a>2. Therefore we will deduce our
results on the basis of methodology and results already
published by Crossa et al (1993) without a complete
algebraic explanation. However, we present an empirical
verification of our results in an appendix.

Let us recall the results obtained by Crossa et al
(1993) by assuming that (@—1) alleles have identical
low frequencies of p, and the ath allele has a frequency
of {1-(a-1)p,} for each of the A independent loci.
Thus, for

Alleles (@), loci (1); n> log(a)—log(a—1)}/B

&)

Alleles(a), loci (A); n>A/B 6)
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where A=log {1 -(1 -a)”*}-log(a—1)
log (1-pg) .

Comparing our result (4) with (5) and (6) obtained
by Crossa et al (1993) we find that (4) is a special
case of (5) and (6) when there are only 2 alleles at a
single locus. All these results contain the term (1-p,)
which is nothing but the probability of capturing a rare
allele in a sample of size one when the sampling is
done either from an inbred population or a population
containing only homozygous lines. However, when one
samples from a population which deviates from selfing,
a term other than (1 — p,) must be incorporated to account
for this deviation from selfing as well as for diploidy
in the expressions (5) and (6). When we replace the
term (1 - p,) in expression (6) by 8 from expression (2)
it can describe both multiallelic as well as multilocus
populations. After replacement we get

and B=

n>A/log (B). )

Expression (7) evaluates sample sizes directly for a
given set of parameters. This can be further rewritten
to isolate the effects of deviation from selfing and
diploidy present in our model on the sample sizes as
follows:

n>A/(B+0), ®

where C=log{(1 -p)* ' (1-F)+F).

Thus, in expression (8) we have minimal sample size
as n>A/(B+ C) whereas, Crossa et al (1993) obtained
n>A/B, which is possible when C=0 or the population
in consideration is completely inbred (s=1). The term
C involves the polyploidy parameter (k) and the corres-
ponding inbreeding coefficient (F,); hence, it accounts
for a reduction in sample size owing to deviations from
selfing and diploidy. For a given ploidy level, reduction
in sample size continues until the state of complete
random mating, where sample size reaches a minimum
value of A/2kB. Thus, for any given population, the
minimum sample size lies between A/2kB and A/B. The
upper bound (A/B) is attained under the condition of
no random mating (s = 1) and is unaffected by the ploidy
level. As we deviate from complete inbreeding, the role
of ploidy in reducing minimal sample size increases until
the minimum value (A/2kB) is reached. This occurs
under the condition of no selfing (s=0). Thus, the
sample sizes under this condition for diploid, tetraploid,
hexaploid and octaploid populations are almost
n/2, n/4, n/6, and n/8, respectively, where n_ is
A/B. With increasing ploidy, the curves displayed in
figure 1 almost become parallel to the X-axis except at
very high rates of selfing where the minimum sample
size rises steeply.

One may debate our justification for replacing the
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term (1-p,) by B in expression (2) to simplify the
derivation of results without giving a mathematical proof.
For a diallelic situation, no verification is necessary as
the expression (2) itself contains the said term. However
for the multiallelic situation, we have verified it empi-
rically by considering a single locus with 3 and 4 alleles
for diploids and single locus with 3 alleles for tetraploids
(see appendix). We determined sample sizes exactly up
to the first decimal place as described in the appendix
for 60 cases with varying levels of probability of con-
servation, rare allele frequencies, and selfing rates. These
exact values were then compared with those obtained
from our expression (8). To our expectation, in 22 cases,
our sample sizes matched exactly to the first decimal
place, in 27 cases, the absolute difference was less than
or equal to 05, in 7 cases, it was 0:6 to 09, and, only
in 4 cases, we observe absolute differences ranging from
1.1 to 1.6. Of course actual sample size is a whole
number. Rounding our calculated values to integers can
at the most overestimate or underestimate the sample
size by a single plant (tables 1, 2, 3). The close agreement
of exact values with those calculated by expression (8)
over varied conditions justifies our elemination of the
term {p*(1-F)+p,F,})", thus, expression (8) can be
safely applied for determining minmum sample sizes
with a high degree of accuracy for large. populations.

3. Conclusion

In the present paper we attempt to determine a theoretical
minimum number of vegetative samples to capture all
alleles from a population with a given probability of
conservation. We developed a general model by consi-
dering a 2k-auto polyploid population under a broad
range of mating systems. Our work is primarily based
on the diploid models suggested by Yonezawa and
Ichihashi (1989), Crossa et al (1993) and Lawrence et al
(1995a). Theoretically speaking, the required minimum
sample size under our model is A/(B+ C) which lies
between the bounds A/2kB and A/B, attained under the
extreme conditions of no selfing and no random mating.
Crossa et al (1993) reported a similar conclusion, but
for a diploid model. They indicated that if there are no
associations between genes within individuals at any
loci, then the required sample size is exactly half the
sample size of that under perfect association. If the
degree of association is unknown, then the required
sample size is between n/2 and n. Our general model
yields the same results as given by the said authors
when k=1 and s=0 or 1.

Minimum sample sizes for given probabilities of
conser vation, rare allele frequencies, and numbers of
alleles and loci, under our set of assumptions have a
minimum value of A/B for all inbred populations
irrespective of ploidy level. Sample sizes are smallest
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Figure 1. Relationship between sample size and proportion of selfing(s) at various ploidy levels for a population with 2 alleles,
P,=0:05 and probability of conservation, 99-99%.

Tables 1 and 2. Comparison of results of exact calculations (n,) with those obtained by expression (8) n, for various
values of a,5,k 1 —a, and p,. ’

Table 1. Diploid with 3 alleles. Table 2. Diploid With 4 alleles.

a $ k | —a p n n, n,—n, a K k e Py n, n, n-—n
3 00 99-99 0-05 96-5 96-6 4 00 1 9999 005 1005 100-5 00
3 0-2 99-99 0-05 102-4 1024 4 02 9999 005 1065 106-6 01
3 05 99-99 0-05 1162 1163 4 05 99-99 005 1210 1211 0-1
3 0-8 99-99 005 1454 145-5 4 0-8 99-99  0-05 151-4 1514 0-0
3 1-0 99-99 0-05 193-1 193-1 4 1.0 9999 005 2010 201-0 00
3 00 1 95-00 0-05 36-0 36-0 4 00 9500 005 399 398 -01
3 02 1 95-00 0-05 381 383 4 02 9500 005 423 422 -01
3 0-5 1 95-00 0-05 433 435 4 05 9500 005 48-1 479 -02
3 08 95-00 0-05 54-2 54-4 4 0-8 95-00 0-05 60-1 600 -01
3 1-0 95-00 005 71-9 722 4 1.0 9500 0:05 79-8 796 -02
3 00 99.99 0-01 4927 4927 4 00 9999 001 512 5129 00
3 0-2 99-99 001 521-8 5219 4 02 9999 001 5432 5432 00
3 05 99-99 0-01 5916 5917 4 05 9999 001 6159 6159 0-0
3 0-8 99-99 001 7397 7397 4 08 9999 001 7699 7700 01
3 1-0 99-99 0-01 9854 9854 4 1-0 99-99 001 10257 1025-8 01
3 00 95.00 0-01 183.5 184-2 4 00 9500 001 2037 2029 -08
3 02 95-00 001 1944 195-0 4 02 95-00 001 2157 2149 -08
3 05 95.-00 001 2204 2211 4 05 95:00. 0-01 2446 2437 -09
3 0-8 95-00 0-01 2755 2764 4 0-8 9500 0-01 3058 3046 -12
3 1-0 95-00 0-01 3670 3683 4 1.0 9500 001 4074 4058 -146
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Table 3. Tetraploid with 3 alleles.

a s k -« P n, n, n,—n
3 00 2 9999 0-05 483 483 0-0
3 02 2 9999 0-05 507 507 0-0
3 05 2 9999 0-05 574 575 0-1
3 08 2 9999 0-05 79-1 791 0-0
3 10 2 9999 0-05 193-1 1931 0-0
3 00 2 95-00 0-05 180 180 0-0
3 02 2 9500 005 189 189 0-0
3 05 2 9500 005 214 214 0-0
3 08 2 9500 005 294 294 0-0
3 1.0 2 9500 0-05 719 718 -01
3 00 2 9999 001 2463 2464 0-1
3 02 2 9999 0-01 2579 2579 0-0
3 05 2 9999 001 2904 2905 01
3 08 2 9999 0-01 3959 3960 01
3 10 2 99-99 0-01 985-4 9854 00
3 00 2 95-00 0-01 91-8 915 -03
3 02 2 9500 0-01 96-1 958 -03
3 05 2 9500 0-01 1082 1079 -03
3 08 2 95-00 0-01 1475 1470 -05
3 1.0 2 9500 001 3670 3659 -1-1

under random mating equilibrium. Sample sizes in this
state reduce further with increasing ploidy levels. The
behaviour of our model confirms the conservative char-
acteristics of genetic variability related to polysomic
inheritance as reported by Bray (1983) in the case of
tetraploids.

Notably, our treatment only provides a model for the
required minimum sample size for collecting the vege-
tative-materials. As mentioned by Lawrence et al (1995a)
when seed is collected, sampling is done from the next
generation, because the plants raised from this seed are
the offspring of the plants from which the collections
have been made. Potentially, questions of how many
seeds per plant should be sampled or whether we can
achieve greater efficiency by collecting more seeds from
a smaller number of plants have been investigated by
Yonezawa and Ichihashi (1989) using probability models
and Lawrence et al (1995b) using the analytical proce-
dures of quantitative genetics for diploid species. This
problem in relation to our model needs further investi-
gation.

Appendix

As mentioned above, here we will outline procedures
for determining the minimum sample size with given
probablity of conserving at least a copy of each allele
present in the population for three special cases.

(i) Diploid with 3 alleles

Let us denote a diploid population with 3 alleles A, A,

and A, as
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Genotype AA, AA,

Gl GZ
Frequency p}(1-F,)+p,F, pi(1-F) +p,F,
Genotype  AA, AA,

G, G,
Frequency  pl(1-F,)+p,F, 2pp,(1-F)
Genotype  A,A, AA,

GS GG -
Frequency 2pp,(1-F,) 2pp, (1-F))

The expression for evaluating n can be formulated as

3 3
P[A,ALA)=(1-a)=1-Y P(A)+ Y P@AA),

i=1 1=i<j<3

where P [A, A,, A;] is the probablity of including all the
alleles at least once in a sample of size n, P (A)° is the
probability of missing A, and P (A;A; ) is the probability
of missing both A, and A;. Putting the values of proba-
bilities in terms of genotypic frequencies in the above
expression, .we get a simpler expression for evaluating n:

a=Cr+C}+C} -G} -G} -G!, (a)

where

C,=1-G,-G,-G,,
¢,=1-G,-G,-G,,

C,=1-G,-G,-G;.
(ii) Diploid with 4 alleles

Similarly we can formulate the expression for 4 alleles
as;

4
P[A,A A A)=(1-a)=1-3 P(A)

4 4

+Y, PAAY-Y P@AAAY
1=i<js4 l=i<j<ks4

where P[A,, Ay A, Al is the probability of including all
alleles (A,, A,, A;, A)) at least once in a sample of size
n, P(A) is the probability of missing A, PAA) is
the probability of missing both A, and A; and
P(A,A;A) is the probability of missing 3 alleles (A,
A;, A) at a time. After putting the values of probabilities
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in terms of genotypic frequencies, we get the final
expression which can be numerically solved for n

a=Cr+Cr-Cr+Cr—C7-CI-Cr - C}

—-C-C,+G +G+G.+G, (b)

G, =pi(1-F)+pF,, G,=p,(1-F)+p,F,,
Gy=p;(1-F) +p;F), G,=p; (1-F)+pjF,
G;=2pp,(1-F), G=2pp,(1-F),
G,=2pp,(1-F)), Gy=2pp;(1-F),

Gy =2pp,(1-F), Gy,=2pp,(1-F),
C,=1-G,-G,-G,-G, C,=1-G,-G,-G;-G,
C,;=1-G~G-G-~G,, C,=1-G,-G,-G,-G,,
C;=G,+G,+G, C,=G,+G,+G,,
C,=G,+G,+G,, C;=G,+G,+G,,
C,=G,+G;+G,, C\;=G,+G,+G,

(iii) Tetraploid with 3 alleles

We can also formulate the expression for a tetraploid
population with 3 alleles A,, A,, and A,, and 15 possible
genotypes as

a=C+C}+C;-G! -G} -G, ©
—

G,=p{(1-F)+pF, G,=p;(1-F)+p,F,
G,=p,(1-F)+p,F,, G,=4p’p,(1-F),
G5=4p::p3 (1-F), G6=2p§p| (1-F),
G.,=4p;p3 (1-F), Gs=4p§pl (1-F),
Gy=2p,p,(1-F), G,,=12pip,p;(1-F),
G, =12p;pp, (1 -F), G,=12p}pp, (1 - F),
G,;=6pip;(1-F), G, =6p;p; (1-F),
G,s=6pip; (1-F),
C,=G,+G,+G,+G,+G,,
C,=G,+G,+G,+G,+G,,,
C,=G,+G,+G,+G,+G,,
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