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[1] Reliable medium range prediction of monsoon weather
is crucial for disaster preparedness. Weather in tropics,
controlled by fast growing convective instabilities is,
however, intrinsically less predictable than that in extra-
tropics. Increased frequency and intensity of extreme rain
events in the tropics in the backdrop of global warming has
a potential for further decreasing the potential predictability
of the tropical weather. Using nonlinear dynamical
techniques on gridded daily rainfall data over India for
104 years (1901–2004), here we show that the deterministic
predictability of monsoon weather over central India in the
latest quarter of the period has indeed decreased
significantly compared to that in the earlier three quarters.
The decrease of initial error doubling time from
approximately 3.0 days to 1.5 days is consistent with
higher frequency of extreme events and increased potential
instability of the atmosphere in the recent quarter. To
overcome the increased difficulty in predicting monsoon
weather, significant increase in efforts to improve models,
observations and enhancement of computing power would
be required. Citation: Mani, N. J., E. Suhas, and B. N.

Goswami (2009), Can global warming make Indian monsoon

weather less predictable?, Geophys. Res. Lett., 36, L08811,

doi:10.1029/2009GL037989.

1. Introduction

[2] Monsoon synoptic systems namely lows and depres-
sion account for most of monsoon rain during the June–
September monsoon season [Mooley and Shukla, 1989].
Reliable prediction of these events 5–7 days in advance is
crucial for various agricultural practices, water resource and
disaster management. In contrast to extra-tropics where the
weather is primarily governed by baroclinic instability
(vertical shear of zonal wind driven) [Charney, 1949;
Holton, 1992], the tropical weather is largely governed by
barotropic instability (horizontal shear of zonal winds across
the tropical convergence zone, TCZ), while the feedback
with organized convection determines its intensity and
growth rate [Mak, 1987]. During Boreal summer, the large
easterly jet at upper troposphere over the Indian monsoon
region makes the vertical shear of zonal winds appreciable
and combined barotropic-baroclinic instability becomes re-
sponsible for initiation of monsoon lows and depressions
[Shukla, 1978]. However, feedback with active convection is
crucial for their intensification and scale selection [Goswami
et al., 1980]. Small scale instabilities, such as convective
activity, have very short timescales and are typically less
predictable than the larger scales [Lorenz, 1969;Dalcher and

Kalnay, 1987]. Errors in small unresolved scales grow fast
and through non linear interactions, introduce finite errors in
the synoptic scale, thus setting an upper limit to its predict-
ability. As a result of the seminal role played by feedback
with convection, tropical weather is much less predictable
than extra-tropical weather [Shukla, 1989]. Increasing mois-
ture in the atmosphere [Trenberth et al., 2005] as a result of
increasing global temperature makes the tropical atmosphere
increasingly more unstable. The frequency of occurrence as
well as the intensity of extreme rainfall events have shown
a significant increasing trend in tropics in general [Hegerl
et al., 2007] and over the central Indian region during
summer monsoon in particular [Goswami et al., 2006],
consistent with the warming environment. Such an increase
in number of high frequency events is likely to lead to a
faster growth of errors in the synoptic scales, lowering the
predictability of the monsoon weather in recent times.
[3] Most studies on predictability use model simulations

where growth rate of errors (e.g., error doubling time) is
estimated from comparison between predictions with the
model from a suite of perturbed initial conditions and a
‘control’ prediction. Almost all models’ inability to repro-
duce the observed space-time spectra of tropical clouds [Lin
et al., 2006] may affect the model based estimation of
potential predictability. For example, the estimate of error
doubling time of 2.5 days for extratropical weather, estimat-
ed with a coarser version of ECMWF prediction model in
eighties [Lorenz, 1982] has been revised to 1.5 days in the
northern hemisphere and 1.7 days in the southern hemi-
sphere [Simmons et al., 1995; Simmons and Hollingsworth,
2002] due to use of higher resolution models in recent years.
With the availability of good long records of daily rainfall
data [Rajeevan et al., 2008], it may be worthwhile to attempt
to estimate the predictability of Indian monsoon weather
from observations. Such an estimate will require a measure-
ment of the growth rate of initial uncertainties. Lyapunov
exponents are such a measure of sensitivity to initial con-
ditions with the magnitude of the exponent reflecting the
time scale at which the system becomes unpredictable. In
any dissipative dynamical system, there is at least one
negative exponent and the sum of all of the exponents is
negative. In chaotic systems there would be at least one
positive Lyapunov exponent. Different methods have been
proposed to estimate the largest Lyapunov exponent from an
observed single time series [Wolf et al., 1985; Rosenstein et
al., 1993], or the whole spectrum of Lyapunov exponents
[Eckmann et al., 1986], and some of it has been adapted for
short noisy time series [Zeng et al., 1991]. An understanding
of the total spectrum of Lyapunov exponents will give a
measure of the total error growth in all possible modes.
Applying Zeng et al. [1991] algorithm to recently available
daily gridded rainfall data over India for 104 (1901–2004)
years [Rajeevan et al., 2008], we investigate the changes in

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L08811, doi:10.1029/2009GL037989, 2009
Click
Here

for

Full
Article

1Indian Institute of Tropical Meteorology, Pune, India.

Copyright 2009 by the American Geophysical Union.
0094-8276/09/2009GL037989$05.00

L08811 1 of 5

http://dx.doi.org/10.1029/2009GL037989


the growth rate of small errors for the four quarters of the
104 year period.

2. Data and Methodology

[4] Our objective is to estimate the change in predictabil-
ity over Central India (73�E–85�E, 18�N–27�N) as the
track of monsoon lows and depressions largely follow the
monsoon trough zone of central India [Mooley and Shukla,
1989]. The daily rainfall data used in our study [Rajeevan et
al., 2008], is based on daily accumulated rainfall from about
1384 stations and analyzed in to 1� � 1� grid boxes. Daily
rainfall anomalies at each grid box are constructed as
deviations of daily values from an annual cycle defined
by sum of the annual mean and first three harmonics. The
period from May 1 to October 31 is taken to represent the
summer monsoon season. Spectra of the daily rainfall
anomalies in this period shows large power in the synoptic
time scale (2–8 days) and significant power in sub-seasonal
time scales (10–60 days). Daily temperature and humidity
data from ERA40 [Uppala et al., 2005] have been used to
calculate the convective available potential energy (CAPE)
and convective inhibition energy (CINE).
[5] From the single time series of daily rainfall anoma-

lies, the phase space of evolution of the monsoon weather is
reconstructed by the method of time delay [Takens, 1981].
In preparation for estimating the positive Lyapunov expo-
nents over central India, the correlation dimension (dc) of
rainfall time series at all grid point over the region is
estimated following Grassberger and Procacia algorithm
[Grassberger and Procaccia, 1983] using data between
1901 and 2004. The number of vectors which fall within

a small radius ‘r’ (r greater than noise scales), C(r) versus r
for different embedding dimensions ‘m’ is shown in Figure 1
for four different points. Slopes of these curves as a function
of embedding dimension indicate that they reach a saturation
level for embedding dimension between 5 and 7 giving dc
between 1.1 and 1.5 (not shown).
[6] With our objective of finding change in predictability

of monsoon weather over central India, the total data was
divided into four quarters of 26 years each, namely 1901–
1926 (Q1), 1927–1952 (Q2), 1953–1978 (Q3) and 1979–
2004 (Q4). Having obtained a measure of the attractor
dimension of the monsoon daily rainfall time series at each
grid boxes, an embedding dimension of 5 (�2dc + 1) was
considered reasonable for computing the Lyapunov expo-
nents following the Zeng et al. [1991] algorithm. Since the
weather over the central Indian region is governed by the
same lows and depressions, the estimated Lyapunov expo-
nents (LEs) should be similar across the region. To test this,
we estimate Lyapunov exponents at a number of grid boxes
across the region for each quarter. In order to have better
confidence in the estimation of LEs, we increase the length
of the time series by combining 12 neighbouring 1� 1 boxes
in sixteen 3� � 4� boxes (Figure 2) over the central Indian
region. Two 3� � 4� boxes in the north–east corner of the
domain shown in Figure 2 are not considered as the rainfall
over these boxes is influenced by topography and error
growth characteristics could be different from the rest of
the region. So, daily rainfall anomalies for 184 days and
26 years of each quarter from the twelve 1� � 1� boxes
within each of the 3� � 4� boxes are combined to create a
time series of length 57408 days and used to make stable
estimates of LEs.

Figure 1. Computation of correlation dimension from the daily rainfall time series. Plots of ln(C(r)) versus ln(r) for
embedding dimensions m = 2, 3, . . .8, ordered from left to right, at different locations, (a) 21�N 79�E, (b) 24�N 78�E, (c)
22�N 82�E, (d) 20�N 81�E.
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[7] Lyapunov exponents are estimated using the Zeng et
al. [1991] algorithm. For Lyapunov exponent computation,
we determine the set of vectors xj which fall within a short
distance r (5% or 10% of the horizontal extent of attractor),
from each vector xi. After n time steps of evolution, the
trajectories diverge and small vectors xj � xi evolve to
vectors x j+n � x i+n. A m X m matrix Ti is defined to
describe the evolution of the system as

Xjþn � Xiþn ¼ Ti Xj � Xi

� �

The elements of Ti matrices are estimated by least square
algorithm. Then each of the Ti matrix is QR decomposed
into orthogonal matrices Qj and upper triangular matrices

Rj.The Lyapunov exponents are obtained by ll = 1
tk

Pk�1

j¼0

ln

(Rj)ll where l = 1, 2, . . . m, where k is the number of Ti
matrices. The error doubling time is then found by the
formula, ln(2)/(sum of all positive Lyapunov exponents).

3. Results and Discussions

[8] Using Grassberger Procacia algorithm on 19136 days
of data (184 days � 104 years) at several locations over
central India, we obtained a correlation dimension dc
between 1.1 and 1.5, which can be considered as a good
approximation to the underlying attractor dimension. These
are first such estimates of dc of daily rainfall over India
using long time series and the fractal nature of dc supports
our original premise that Indian monsoon rainfall time series
is chaotic. The global tropical weather may be considered as
comprised of a number of loosely coupled subsystems and
hence may have a reasonably large correlation dimension
[Lorenz, 1991]. Why then, the daily rainfall time series over
the Indian monsoon region has small correlation dimension?
It may be because the monsoon weather (lows and depres-
sions) is characteristic of only the monsoon region and is a
rather strongly convectively coupled subsystem of the

tropical weather. For such strongly coupled subsystem, a
small correlation dimension is possible [Lorenz, 1991].
[9] The rainfall time series for each quarter invariably

gave two positive Lyapunov exponents in almost all loca-
tions over our central Indian domain. Error doubling time
calculated from the Lyapunov exponents for the two recent
quarters (Figure 2) show that there is a systematic decrease
in error doubling time during Q4 compared to that during
Q3. The average error doubling time over the region has
reduced from 3.0 days during Q3 to 1.5 days in Q4. The
statistical significance of the decrease in the mean error
doubling time is tested using t-test and found to be signif-
icant at 99% level. The potential predictability of monsoon
weather, therefore, has decreased significantly in recent
couple of decades compared to in fifties and sixties.
Therefore, it is not surprising that even though the weather
prediction systems have improved in recent years, predict-
ing the daily rainfall over the Indian monsoon region has
remained a challenging problem.
[10] Robustness of our results depends on the confidence

in the estimates of Lyapunov exponents from the time
series. Our confidence is based on the fact that we use
Zeng et al’s methodology for estimating the Lyapunov
exponents designed to provide reliable estimate even when
the data length is not too long. We also took additional care
to increase the length of the time series to 57408 days. The
embedding dimension of five and the number of nearest
neighbors are chosen through a series of sensitivity experi-
ments to provide stable and robust estimates. The fact that
both the exponents are homogeneous and continuous over
the region (Figure S1 of the auxiliary material) also pro-
vides some support to our confidence in our estimates.1 One
could still ask whether any of these estimates of error
doubling time could have been obtained purely by chance.
To answer this question, we carried out Monte-Carlo
simulations at several locations. For both periods, Lyapunov
exponents were calculated for 1000 surrogate time series
created from the original time series by keeping the spectral
powers intact and by giving a small random perturbation on
the phases. The pdf of the doubling time obtained with the
surrogate time series for the box shown by (*) in Figure 2
for both the periods shows (Figure S2) that there is less than
5% chance that the values 3.76 and 1.06 could have been
obtained by chance. Thus, null hypothesis that it could be
obtained by chance is rejected with 95% confidence. This is
tested at other boxes and other periods and uniformly
similar results are found.
[11] Although the decrease in the error doubling time

comes from a systematic increase in the magnitude of both
the Lyapunov exponents (Figure S1) during Q4 compared to
that in Q3, major contribution comes primarily from in-
crease in the first Lyapunov exponent (l1). As there is
higher level of confidence in estimation of the first Lyapu-
nov exponent compared to the second, the fact that our main
result is primarily due to the first Lyapunov exponent gives
us little more confidence in our result. l1 is significantly
larger than l2 everywhere and in both the periods. While the
error growth associated with (l1) and (l2) are both likely to
be related the weather disturbances with high frequency end

Figure 2. Error doubling time at sixteen 3� � 4� boxes in
the region 18.5�N–27.5�N, 5.5�E–85.5�E. Light numbers
are error doubling time for the period 1953–1978 (Q3)
while the bold numbers are for the period 1979–2004 (Q4).
Results of Monte Carlo simulations are shown in Figure S2
for the box with *.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL037989.
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of the spectrum (period < 10 days), we are unable to identify
them to any specific frequency or mode of variability at this
time. While we recognize that in depth understanding of
these aspects would require much further work, we believe
that the clear and present danger presented by the gross
decrease in potential predictability is worth noting even at
this time.
[12] Similar estimates of Lyapunov exponents at each

3� � 4� boxes were made for Q1 and Q2 as well and it is
found that the averaged initial error doubling time over
central India during both these periods is closer to that
during Q3 (Figure 3a). Close correspondence between
relatively high initial error doubling time during the first
three quarters and low error doubling time during the fourth
quarter are consistent with the fact that the average frequen-
cy of extreme events (daily rainfall > 150 mm) over central
India during the first three quarters is relatively low and
similar while that during Q4 is much larger (Figure 3a). As

there is a multidecadal variation of the extreme events (EEs)
[Rajeevan et al., 2008] could our choice of four equal
quarters affected the relationship between error doubling
time and frequency of extreme events? To answer this
question, we identified two regimes with equal low level
EEs and another regime with high level of EEs, each of 30
year duration (Figure S3). Repetition of LE calculation for
the three regimes show (Figure 3b), that the average error
doubling time over central India in the two regimes with
smaller number of extreme events is much higher than that
during the recent high extreme event regime.
[13] Extreme events are results of convective instability

of the atmosphere. If our hypothesis is correct, an increasing
trend of the convective available potential energy (CAPE)
over the region during June–September may be expected.
Calculation of daily CAPE and CINE from ERA40 data
averaged over the season and over central India indicates
that CAPE has an increasing trend significant at 99% level
(Figure 3c) [Riemann-Campe et al., 2008] while CINE
shows a clear decreasing trend (Figure 3c) indicating that
the convective instability is increasing and becoming in-
creasing easier to realize. These results support our original
hypothesis that the global warming may be seriously
decreasing the potential predictability of monsoon weather.

4. Conclusions

[14] The increased instabilities in the tropical atmosphere
manifesting as increase in frequency of occurrence and
intensity of fast growing high frequency events may lead
to the faster initial error growth rate of tropical weather. This
is likely to bring down the potential predictability of tropical
weather. The hypothesis is tested in the context of Indian
summer monsoon weather. Estimates of predictability of
Indian monsoon weather, in this study, brings out clear
evidence of significant decrease in predictability over the
monsoon trough region of central India during the past
couple of decades compared to earlier parts of this century.
While the error doubling time over central India was close
to 3 days during the first three quarters of the century, it has
decreased to 1.5 day during the most recent quarter throw-
ing up new challenges in predicting the monsoon weather.
To improve the poor skill of current weather prediction
systems would, therefore, require a quantum leap in im-
provement of prediction models, better initial conditions
(observations) and large computing power.
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