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ABSTRACT

A 1 : 1 : 1 stoichiometric reaction among CrO3, aqueous HF and pyridine

affords orange crystalline pyridinium fluorochromate(VI), C5H5NH-

[CrO3F] (PFC), in 99.2% isolated yield. The reagent under solvent-free

conditions readily converts benzylic, secondary, and allylic alcohols to

the corresponding carbonyls and selectively oxidizes secondary alcohols

in the presence of primary alcohols, polycyclic hydrocarbons to cyclic

ketones, benzoin to benzil, PPh3 to O55PPh3, methylphenyl sulfide to

sulfoxide, cyclohexanone oxime to cyclohexanone, an allylic D5-steroid
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to the corresponding a,b-unsaturated ketone and deprotects dioxolanes

and dithiolanes to aldehydes; the economic synthesis of PFC, its ease

of reaction without solvent, versatility, and high isolated yields of the

products are the significant features of the protocol.

Key Words: Pyridinium fluorochromate; Oxidations; Solvent-free;

D5-steroid; Deprotection.

INTRODUCTION

Partial oxidations play an important role in organic synthesis and chemi-

cal technology. The oxidized products of alcohols and hydrocarbons, for

instance, are valuable as precursors for fine and specialty chemicals, pharma-

ceuticals, and agrochemicals. It is because of this that a number of oxidants

have been introduced.[1] However, the reagents based on chromium(VI) have

been very popular, useful, and successful. They are easy to handle, cost-

effective, and readily available. This caused Cr(VI)-reagents to metamorphose

over the decades from Collins’ reagent,[2] CrO3-3,5-dimethyl pyrazole

complex,[3] pyridinium chlorochromate(VI) PCC,[4] pyridinium dichromate

(PDC),[5] 2,20-bipyridinium chlorochromate (BiPCC),[6] through pyridinium

fluorochromate(VI) (PFC),[7] quinolinium fluorochromate(VI) (QFC),[8]

and 3,5-dimethyl pyrazolium fluorochromate(VI) (DmpzHFC),[9] to overcome

the typical problems encountered in the oxidations and improve the selectivity.

Among these, PCC and PFC stand out to be highly potential with PFC
having additional advantages in terms of stability, versatility, controlled

acidity, selectivity, operational simplicity, and capability of functioning

well under mild conditions, thereby assuming significant importance over

the years. To date, there have been a large number of reports on the use of

PFC in the studies of oxidative transformations. Thus, it very efficiently

oxidizes primary, secondary, and allylic alcohols, fused ring hydrocarbons,

benzylic systems, toluenes, sulfides, benzyl ethers, phosphorus compounds,

arylalkanes, hydroxy acids, thio acids, benzaldehydes, and aromatic anils, for

instance.[10 – 14] PFC, owing to its controlled acidity (pka, 2.7),[7,9] was success-

ful in oxidizing acid sensitive substrates such as 5-andostene-3b,17b̃-diol

to the corresponding 17-keto-steroid,[10] and was used in the synthesis of

biochemically important S-(þ )-4-formyl-4-butanolide, chiral synthon (R)-1-

benzoyloxy-3-buten-2-ol, derivatives of dimethyl penam and dimethyl

penam-S,S-dioxide[14] and 3b-acetoxy-lanost-8-en-24-one (24-ketolanosteryl

acetate).[14] It also permits oxidative deprotection of oximes and desilylative

oxidations of alkyl trimethyl silyl ethers.[15] This reagent has been used exten-

sively in the studies of reaction dynamics of a variety of substrates. All these
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investigations were conducted in solutions. Having been intrigued by the

outstanding performance of PFC, it was considered worthwhile to try out its

economic synthesis to enable waste minimization and then ascertain its efficacy

in solvent-free oxidative transformations including selective oxidations,

D5-steroidal oxidations, deoximations, and deprotections. The reactions

under solvent-free conditions have been gaining importance[16,17] because

they may offer several advantages including improved yield, selectivity, and

procedural simplicity. Reported herein are the results of our investigations as

addressed to in the title.

RESULTS AND DISCUSSION

Thus, in a typical economic synthesis (Scheme 1), to a solution of 15.0 g

(150 mmol) of CrO3 in 6.25 mL (150 mmol) of 48% HF and 9.0 mL of water

made in a polyethylene beaker was added under stirring 12.1 mL (150 mmol)

of pyridine leading to an exothermic reaction to afford 29.63 g (99.2%) of

orange-colored crystalline pyridinium fluorochromate, C5H5NH[CrO3F] (PFC).

PFC melts at 106–1088C and the results of analysis and characterization

data compare very well with those reported earlier.[7] No recrystallization is

required. The reaction can be scaled up to 500 g, if desired.

The oxidant worked very well under solvent-free conditions, and the reac-

tions proceeded with alacrity. The reactions were carried out by grinding the

mixture of stoichiometric amounts of the substrate and the reagent in an agate

mortar or in a silica boat with an agate pestle, either at ambient temperature or

at temperatures between 50 and 708C in a hot air oven for the time period as

shown against the entries in Table 1. The solid substrates and the reagent

were powdered separately before mixing together. The progress was moni-

tored with TLC and GC. The product was extracted with diethylether

(ca. 50 mL/mmol of substrate) followed by filtration through a short silica

gel column. The solvent was removed in a rotary evaporator to get the

product. This procedure was adopted for 1–5, 8–10, and 12–15. However,

for 6, 7, and 11, the product was purified by column chromatography over a

short pad of silica gel using ethylacetate-hexane (1 : 9) as eluent. Isolation

of anthracene-9, 10-dione (6a) was possible also by sublimation from a

Scheme 1.
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mixture after conducting a separate reaction. This represents a case of

all-solid-phase reaction and may serve as a paradigm for similar or related

transformations. In all cases, the transformations were selective, and the

conversions (GC) were quantitative except for 6, 7, and 11. Isolated yields

are reported in Table 1. As evident, the reagent worked very well to con-

vert benzylic (1), allylic (3, 4) and secondary (2, 5, and 8) alcohols to the

corresponding carbonyls (Scheme 2).

It is important that the acid-sensitive transformation like geraniol (4) to

geranial (4a) occurred smoothly. Such reactions in solution often require

buffer. Notably important are also the selective oxidation of a secondary

alcohol in the presence of a primary alcohol (5 to 5a). Oxidation of poylcyclic

hydrocarbons generally requires stringent conditions. Under the present

experimental conditions, both anthracene (6) and phenanthene (7) were readily

oxidized to anthracene-9, 10-dione (6a) and phenanthene-9, 10-dione (7a),

respectively. The very facile oxidation of PPh3 (9) to O55PPh3 (9a) provides a

good example to show that an oxo-transfer reaction can be carried out easily in

a solid-phase reaction. Also important is the oxidation of organic sulfide to the

corresponding sulfoxide (10 to 10a) without over oxidation. Incidentally, selec-

tive oxidation of sulfides to sulfoxides is an important synthetic problem for

which not many suitable reagents and protocols are available in literature.[18]

An important concern of the present investigation was the oxidation of

D5-steroids to the corresponding a,b-unsaturated ketone owing to their intrin-

sic importance.[19] This was because the literature methods have one or more

of the following limitations (i.e., requirement of a large excess of the oxidants,

use of very expensive reagents, stringent reaction conditions, and very

sluggish reactions with poor yields of the products in many instances). It

was significant that under the solvent-free conditions 3-acetoxy cholesterol

(11) was typically oxidized by PFC to 3-acetoxy-7-ketocholesterol (11a) in

64% isolated yield in about 2 hr at 658C. Incidentally, although oxidation of

D5-steroids in refluxing benzene with PFC was quite effective,[20] a similar

oxidation in CH2Cl2 or CH3CN under prolonged reflux did not afford any

promising results.[9]

The efficacy of the protocol is demonstrated also by the alacrity with

which the deoximation of 12 to the corresponding ketone (12a) occurred.

Deoximations are important as alternative pathways to the synthesis of

Scheme 2.
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aldehydes and ketones from noncarbonyl substrates. It is pertinent that con-

ventional oxidations do not seem to work satisfactorily especially because

of long reaction times and low yields. To generalize the superiority, similar

solvent-free transformations with other oxidants such as QFC, DmpzHFC

are now underway. The results obtained so far are in the affirmative.

To extend the scope of the protocol, the deprotection of dioxolanes and a

dithiolane were investigated. This attracted our attention especially because

selective protection and deprotection of carbonyl groups constitute key

steps in many synthetic reactions.[21] Moreover, the deprotection of thio-

acetals, which are important as acyl carbanion equivalent in organic synthesis,

is rather challenging because of their stability toward normal acidic and basic

conditions. The deprotection of dioxolanes (13 and 14) and a dithiolane (15)

went off very readily to afford the corresponding aldehydes (13a, 14a, and

15a, respectively) in high isolated yields.

A comparison of the results of PFC oxidations in solvents with those of

the solvent-free conditions shows that the reactions work much faster without

solvent (present results). Three selected examples are cited in Table 2 for

comparison. Notable is that the yields of the products are either similar (2,
4) or remarkably higher (11) for solvent-free reactions. Rapidity of the

solid-phase reactions is believed to be facilitated by the intervention of a

liquid phase, which is formed at a stage of initiation of the reaction from

the interaction of a very small amount of the product and the reagent. This

is important particularly when both the substrate and the reagent are solid

and happens possibly owing to the existence of a lower melting eutectic.

Indeed, the appearance of a liquid or melt phase was observed in each reaction

reported herein. This might have imbued the individual molecules with

required mobility enabling productively important reactive collisions,

thereby allowing for rapid reactions to take place between the two solid

reactants.

Notable in conclusion is that PFC is capable of being synthesized in

an economic way and very effectively used as an oxidant under solvent-free

conditions. The new protocol is not only facile and selective but also more

versatile in that it can readily oxidize certain substrates (c.f. D5-steroidal

systems), which were not possible in the corresponding solution phase reac-

tion. Further studies are now in progress to show that solvent-free oxidations

proceed with a much greater alacrity than their solution counterparts.
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