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Abstract. An efficient synthesis of substituted quinolines has been achieved in a one-pot reaction from 
o-nitrobenzaldehyde and enolizable ketones using SnCl2.2H2O as the reductant under microwave irradia-
tion without any solvent or catalyst. 
 
Keywords. Quinolines; o-nitrobenzaldehyde; enolizable ketone; SnCl2.2H2O; microwave; solvent-free 
synthesis. 

1. Introduction 

Quinoline derivatives have been well known not 
only in medicinal chemistry, because of their wide 
occurrence in natural products1 and drugs,2 but also 
in polymer chemistry, electronics and optoelectronics 
for their excellent mechanical properties.3 Diblock 
and triblock copolymers incorporating polyquinoline 
blocks have been found to undergo hierarchical self-
assembly into a variety of nano- and meso-structures 
with interesting electronic and photonic functions.4 
The Friedlaender synthesis of quinolines is a classic 
method,5 that involves two steps, wherein reduction 
of o-nitro aryl aldehyde is first achieved followed by 
the condensation of enolizable carbonyl compound 
in presence of a Brønsted or Lewis acid catalyst. 
The relative instability of the intermediate (o-amino 
aldehyde), with its strong tendency to undergo self-
condensation made such reactions rather complicated. 
Accordingly, there have been continuous efforts to 
develop clean and rapid newer protocols6 for the 
construction of quinoline-based structures. This has 
resulted in a few improved procedures for the syn-
thesis of quinolines. As a part of our programme on 
the development of newer processes for organic trans-
formations,7 our attention was drawn to two proto-
cols,6b,d in one of which the o-aminobenzaldehyde 
was generated in situ and reacted immediately with 
an enolizable ketone to produce a quinoline6b. This 
reaction was conducted in anhydrous ethanol under 

an atmosphere of nitrogen using SnCl2 as the reduc-
tant (e.g. –NO2 to NH2) and ZnCl2 as the facilitator 
of enolate formation from the enolizable ketones 
leading to the concomitant coupling condensation 
with the amine affording quinolines in rather low 
yields. The yields of products were remarkably in-
creased by the addition of a significant amount of 
4 Å molecular sieves to the reaction solution. Evi-
dently, the success of this methodology appears to 
depend on the avoidance of both water and air as 
well as the use of ZnCl2 as a Lewis acid catalyst. 
The other protocol6d was based on microwave-assis-
ted coupling condensation reactions between aceto-
phenones and 2-amino-acetophenones or benzophe-
nones in the presence of diphenylphosphate (DPP) 
as the acid catalyst, which was essential to enhance 
cyclization, without the use of any solvent. In addi-
tion, there is a very recent report by Perumal et al8 
on the synthesis of polysubstituted quinolines under 
solvent-free conditions having some advantages over 
many other protocols. However, here again the authors 
have used o-aminoarenes, rather than the corres-
ponding o-nitroarenes, thereby entailing similar 
problems as emphasized above. Thus, it is quite im-
perative that quinolines synthesis requires further at-
tention to obviate the need to maintain stringent 
experimental conditions, use of expensive catalysts, 
and prepare and isolate the o-amino cabonyls as syn-
thetic precursors. 
 This paper reports an efficient solvent-free one-pot 
syntheses of quinolines achieved from o-nitrobenz-
aldehyde and enolizable ketones using SnCl2.2H2O 
and subjecting them to microwaves. 
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Table 1. Microwave-assisted synthesis of quinolines under solvent-free conditions. 

Run Aryl aldehyde Enolizable ketone Products Yields (%)* 
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2. Experimental 

2.1 General 

All procedures were carried out on the bench top. 
Reagent-grade chemicals were used without further 
purification. The substrates and solvents were used 
as received. The products were characterized by 
comparing their spectral data recorded on a Nicolet 
Impact–410 Fourier Transform Infrared Spectropho-
tometer, Varian-400 FT NMR, Perkin–Elmer 2400 

autometic CHNS analyzer and Perkin–Elmer Pre-
cisely Clarus 500 Mass Spectrometer. TLC and col-
umn chromatography were performed on silica gel 
G254 and 60–120 mesh respectively. 

2.2 Synthesis of quinolines. A general procedure 

Typically, 2-nitro aryl aldehyde (2 mmol) and an 
enolizable ketone (2 mmol) were uniformly mixed 
with SnCl2.2H2O (6mmol). The resulting mixture 
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was then irradiated with microwaves in a microwave 
oven (Samsung model# CE118KF) at 1050W (70% 
of total power) for 5 minutes (3 + 2 with an inter-
mission of 5 minutes). The reaction mixture was 
cooled at room temperature and rendered basic (pH 
8) with 10% NaHCO3, and then extracted with ethyl 
acetate. The organic layer was washed with brine, 
dried over Na2SO4, and evaporated to leave behind 
the crude product, which was further purified by 
column chromatography over silica gel (hexane : 
ethyl acetate :: 4 : 1). Details of the substrates used, 
products obtained and yields are all set out in table 1. 

3. Results and discussion 

In view of the problems encountered in quinoline 
synthesis, a relatively more versatile yet simplified 
procedure was perceived, based on the reasoning 
that the substrates like o-nitrobenzaldehyde and eno-
lizable ketones could be made to interact in the pres-
ence of SnCl2 under microwave irradiation without 
using any solvent. Microwave synthesis has received 
attention as a new strategy for organic synthesis due 
to the fact that many reactions seem to proceed with 
much alacrity under such conditions as opposed to 
the corresponding thermal-assisted reactions.9 Our 
arguments have been that under microwave irradia-
tion, the reduction of o-nitrobenzaldehyde by SnCl2 
to the corresponding amino derivatives, in situ eno-
lization of the chosen ketones, and enhanced dipole–
dipole interactions between the activated reaction inter-
mediates would lead to an instantaneous condensation 
to afford quinolines without the use of any solvent 
or catalyst. The strategy worked well affording the 
desired products in respectable yields (scheme 1). 
Notably, the present reactions have been relatively 
faster, as anticipated, compared to those of Perumal 
et al.8 It is necessary to mention that in all cases the 
conversion was less than 100%. Small amounts of 
starting materials were recovered after each reac-
tion. Temperature of the reaction mixture recorded 
immediately after microwave irradiation for the given 
period of time was found to be c.a. 105°C. To en-
sure the contribution of microwave effects, the re- 
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Scheme 1. 

actions in entries 1 and 7 were examined by simply 
heating in a preheated oil-bath being maintained at 
105°C for the same duration as mentioned in the 
typical procedure with microwave irradiation. A 
very small amount (1–3%) of quinoline derivative 
was isolated in each case leading us to state that, 
under the given experimental conditions, microwave 
irradiation is responsible for bringing about the reac-
tion. A wide range of enolizable ketones (cycloalkyl, 
n-alkyl, alkyl aryl) were screened in order to ascer-
tain the scope of the present reaction protocol and 
the results are summarized in table 1. It is evident 
from the results that alkyl and cycloalkyl enolizable 
ketones readily cyclized with the in situ generated o-
amino benzaldehyde to afford the corresponding 
quinolines10 in good to very good yields. However, 
lower yields were observed with alkyl aryl ketones 
(entries 7 and 8) and no quinoline formation was ob-
served with a hydroxy-substituted aromatic ring of 
an alkyl aryl ketone (entry 9).  

4. Conclusion 

We have developed a solvent-free, microwave-assis-
ted, very facile protocol for the synthesis of quinolines 
without the intervention of any acid catalyst and mole-
cular sieves. Another important advantage is the re-
dundancy of extra preparation and isolation of o-amino 
benzaldehyde. This protocol offers scope for further 
work involving a variety of substrates with varied 
substituents. The microwave-facilitated version of 
quinoline synthesis is expected to be a viable alter-
native to the classic Friedlaender synthesis, owing to 
several advantages summarized herein. 
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