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Abstract 

The half-doped manganite, (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3, has been found to exhibit 

sharp step-like metamagnetic transitions below 5 K. The number of magnetic steps 

increases with decreasing temperature and this number suddenly rises from 3 at 2 K to 

~50 at 1.7 K. The self-similar character of the multiple magnetic steps at reduced 

temperature identifies these steps as avalanche-like transitions. The occurrence of a 

multitude of magnetic steps at low temperatures, the decreasing effect of magnetic field 

sweep rate on the step-like metamagnetism, and the decreasing irreversibility of transition 

in the specific heat suggest that reduced spin-lattice coupling facilitates the 

transformation of antiferromagnetic to ferromagnetic state via an avalanche-like 

behavior. 

 

 

 

* Present address:  Institute of Laser Engineering, 

   Osaka University, Japan  

   Email: rana-d@ile.osaka-u.ac.jp

 
§ Present address:  International Centre for Condensed Matter Physics-ICCMP,  

University of Brasilia, Brasilia, Brazil  

Email: skm@tifr.res.in  

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291516235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rana-d@ile.osaka-u.ac.jp


 2

 

The half-doped ABO3-type manganite systems of the general formula 

R0.5A0.5MnO3 (R=trivalent rare-earth cation, A=divalent cation), exhibit large 

magnetoresistance and a rich magnetic phase-diagram. Such properties of these 

compounds depend on factors such as the bandwidth of eg electron, the A-site cation size-

disorder and the Mn3+/Mn4+ ratio. A few moderately low bandwidth half-doped systems, 

such as Pr0.5Ca0.5MnO3, Nd0.5Ca0.5MnO3, Pr0.5Sr0.5MnO3, etc., possess highly stable 

charge-ordered (CO) and orbital ordered (OO) states with antiferromagnetic (AFM) 

arrangement of spins1-6. Recently, the breakdown of these CO and OO states and 

transitions of AFM to ferromagnetic (FM) state has been shown to occur via a fascinating 

feature of ultra-sharp magnetic steps at low temperatures. This was first observed by 

Hebert et al. 7 when the Mn sub-lattice was diluted with some magnetic or non-magnetic 

impurities and subsequently by Fisher et al.8 by augmenting the cation-disorder at the A-

site11. Such low temperature metamagnetic behavior in manganite compounds is 

remarkable as these first order transitions display a crossover from a smooth to a sharp 

metamagnetic transition7-13. 

Here, we report the observation of a multitude of sharp metamagnetic steps in a 

new manganite system, namely, (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 (ELSCMO), which 

possesses a large cation-disorder at the A-site. The number of magnetic steps increases 

with decreasing temperature and aggregates to ~50 at 1.7 K, which is a new and a novel 

illustration of an avalanche-like phenomenon of magnetic steps in A-site disordered 

manganites. The occurrence of a multitude of magnetic steps is analogous to avalanche-

like systems, namely, Martensitic transitions, Barkhausen Noise and natural occurring 

processes such as falling of sand-dunes, occurrence of earthquakes, etc. We show that a 

reduced spin-lattice coupling is responsible for the occurrence of avalanche-like magnetic 

steps at low temperatures. 

The ELCSMO sample was synthesized using the standard solid-state reaction 

method. Powder X-ray diffraction pattern showed that this is single-phase compound 

crystallizing in a distorted orthorhombic structure (space group Pnma, No. 62) with cell 

parameters: a= 5.422(1) Å, b = 7.639(1) Å and c = 5.421(1) Å. Isothermal magnetization 

measurements were performed using a vibrating sample magnetometer (VSM, Oxford 
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instruments, UK). While collecting the isothermal magnetization data, the samples were 

warmed to 250 K each time (well above any magnetic ordering temperature) to remove 

the magnetic history effects. For magnetic relaxation measurements [PPMS, Quantum 

Design, USA], the sample was cooled to a specific temperature and a field of 80 kOe was 

applied for 300 seconds. After reducing this field to zero, magnetization was measured as 

a function of time (for 10,000 secs.) in a field of 50 Oe. The specific heat data were 

obtained using the relaxation method (PPMS, Quantum Design, USA).  

 Figures 1(a), 1(b) and 1(c) show the magnetization (M), resistance [R] and 

specific heat [Cp] vs. field [H] isotherms, respectively, at 2 K, 3 K and 5 K for 

(Eu0.4La0.1)(Sr0.4Ca0.1)MnO3. The magnetic isotherms display metamagnetic transition 

with a crossover from a smooth broad transition at 5 K to sharp transition below it [Fig 

1(a)]. For instance, at 2 K, the two steps at 45 kOe and 60 kOe are extremely sharp with a 

maximum width of 50 Oe. Compared to these few magnetic steps in the temperature 

range of 2 K - 5 K, we observe another fascinating feature of metamagnetic transitions at 

1.7 K where the number of discernible metamagnetic steps increases tremendously in the 

same field region (Fig. 2). To show the occurrence of such multitude of steps, the related 

regions have been expanded and shown in Figs. 2(a) and 2(b). The number of steps at 3 K 

and 2 K is 2 and 3, respectively, while this number increases to ~50 at 1.7 K. This 

occurrence of the multitude of steps at low temperature is a unique observation of its kind 

in the A-site disordered manganites. The steps are also observed in resistance [R] and 

specific heat [Cp] data [Fig. 1(b) & 1(c)] at nearly the same critical magnetic field (HC) as 

that of magnetic steps, which demonstrates the strongly correlated nature of magnetic and 

electronic transitions in this compound. It may also be pointed out that at 5 K, the M-H 

curve shows a smooth transition while the R-H and the Cp-H curves display step-like 

transitions. Such a disparity is likely to originate from the method of sweeping the field.14 

Furthermore; it is evident from the magnetization isotherms shown in Fig. 1(a) that this 

sample (ELCSMO) attains substantial value of spontaneous magnetization in a field of 50 

kOe. Therefore, temperature dependent magnetization data in a field of around 50 kOe 

would be appropriate to determine the order of AFM-FM phase transition. Figure 3 

shows the magnetization [M] versus temperature [T] data in fields of 50 kOe and 70 kOe, 

collected in cooling and warming mode. A large and a moderate hysteresis, respectively, 
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in fields of 50 kOe and 70 kOe, in cooling and warming data at the AFM-FM transition 

(around 100 K) reveal that the AFM-FM transition is of the first-order. This is consistent 

with similar observations in other manganites8. 

During forward field scan (0 – 9 T) of the isothermal magnetization of ELCSMO 

sample at 1.7 K, the large number of steps have the amplitude varying from ~0.04µB to 

~1µB (Fig. 2). These steps of varying amplitudes are reminiscent of the avalanche-like 

character. Various avalanche-like natural processes such as earthquakes, falling of sand 

dunes, Barkhausen noise, Martensitic like transitions, etc. are self similar in nature and 

are known to obey the universal power law15-17. In the case of presently studied 

ELCSMO compound, we observe that the number of steps at 1.7 K is nearly 50. A 

magnified part of the 1.7 K curve shown in Figs. 2(b) & 2(c) depicts that the shape of this 

curve on larger and smaller scales is qualitatively similar. This illustrates the self-similar 

character of magnetic steps, which is a characteristic feature of the avalanche-like 

behavior. The observation of avalanche-like behavior in ELSCMO is an exotic feature 

which is seen for the first time in A-site disordered manganites. The Mn-site doped 

Pr0.5Ca0.5Mn0.96Ga0.04O3 manganite is the only other compound, which has been reported 

to exhibit such multitude of steps18. The validity of the power law distribution of the 

number of steps (n) in ELSCMO [given by n(∆M) ∝ (∆M)τ, where ∆M is the amplitude 

of the steps and τ is the power law exponent] cannot be ascertained because of the small 

value of n. This is attributed to the fact that a temperature of 1.7 K (the lowest attainable 

in our VSM) is not low enough to get a large statistics of steps for verification of the 

power law. 

 The physical origin for the breakdown of sharp steps into an avalanche-like 

multitude of steps is expected to lie in the temperature dependent weakening of spin-

lattice coupling, on the basis of following experimental evidence. 

i) The specific heat [Cp)] data (Fig.1b) reveals that the irreversibility (at the transition) in 

the heat capacity isotherms starts decreasing with decreasing temperature and almost 

vanishes in 2K isotherm vis-à-vis the increasing irreversibility in magnetization with 

decreasing temperature (Figs. 1a & 4). According to the relation Cp=γT+βT3, the major 

contributions to the specific heat arise from the conduction electrons (γT) and the lattice 

(βT3). It is known that in charge-ordered insulating manganites, there is almost no 
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electronic contribution to the specific heat which means it is the lattice (phonon) 

contribution which decreases with decreasing temperature. The consequent weakening of 

the spin-lattice coupling results in almost no irreversibility in the specific heat isotherms 

at 2 K. 

ii) The effect of varying magnetic field sweep rate on the metamagnetic transitions in 

ELSCMO (Fig. 4) shows that, at 4.5 K, a smooth metamagnetic transition in 3 kOe/min 

sweep rate transforms to a step-like transition in 5 kOe/min sweep rate. While there is 

only a spread of 1 kOe in HC (of first step) at 2 K, the spread in HC at intermediate 

temperature of 4 K is ~3 kOe [not shown]. The effect of field sweep rate was also studied 

at 1.7 K but we did not observe any pronounced qualitative behavioral change19. These 

data suggest that the lower the field sweep rate, the higher is the critical field. Also, the 

effect of field sweep rate is more pronounced near the crossover temperature but 

decreases with decreasing temperature. Such a behavior is most likely associated with 

decreasing spin-lattice coupling at low temperatures in such a way that, at 4.5 K (for 

instance), in low field sweep rates, the lattice gets more time to accommodate strain. 

Hence, a certain amount of spin-lattice coupling facilitates the smooth metamagnetic 

transition. However, with the same energy, lattice does not get ample time to 

accommodate strain when field is swept at a larger rate of 5 kOe/min, and this results in 

sharp steps and multitude of steps at still lower temperatures. This indicates that the 

weakening of spin-lattice coupling is responsible for occurrence of multitude of steps. 

iii) Magnetic relaxation, measured at temperatures of 50 K, 30 K, 10 K and 2 K, was 

found to decays logarithmically [Fig. 5]. The considerable relaxation observed at 30 K 

decreases moderately at 10 K but disappears entirely at temperatures closer to 2 K. This 

suggests that at low temperatures the spin moments, saturated in FM state, do not get any 

energy from lattice to return to their original state even after field is reduced to zero. 

The above-mentioned experimental evidence suggests that at low temperatures, a 

reduced thermal energy and, hence, depleting spin-lattice coupling result in a crossover 

from broad to sharp steps and, at further lower temperatures, these few sharp steps show 

a breakdown into multitude of magnetic steps. This may be further understood by 

correlating it with strain that develops (below the crossover temperature) at the interfaces 

of different crystallographic structures associated with the AFM and the FM phases20
.  
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Due to the reduced spin-lattice coupling at low temperatures, the AFM and FM structural 

interfaces may get more distorted and strained and, hence, not allow the smooth growth 

of FM phases. However, at a certain critical magnetic field, the FM phases attain 

sufficient energy to overcome strain and grow in a multiple step-like catastrophic 

manner. A further understanding of the multiple magnetic avalanches may be envisaged 

in the framework of a unified picture correlating the phase coexistence to the intrinsic 

elastic energy and to the strain as proposed by Ahn et al.21, and by invoking a correlation 

of strain with the reduced lattice energy, as follows. At 4.5 K, the occurrence of only one 

magnetic step (Fig. 4) indicates that magnetic field overcomes a long-range strain to 

facilitate sudden growth of a FM phase. However, owing to the decreased lattice energy 

(below 4.5 K) the strain between various coexisting FM and AFM phases does not retain 

its long-range order and, therefore, results in distinct growth of FM phases in multiple 

number of steps with decreasing temperature. The occurrence of multiple steps at 1.7 K 

suggests that the strain between various FM and AFM phases is of discrete nature causing 

the growth of FM phase in an avalanche-like multitude of steps. 

In summary, an interesting evolution of multitude of magnetic steps at low 

temperatures has been observed in (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 manganite. A large 

number of magnetic steps at 1.7 K and the decreasing effect of field sweep rate with 

decreasing temperature on sharp metamagnetic steps suggests that the reduced thermal 

energy and, hence, the reduced spin-lattice coupling favors the transformation of AFM to 

FM state via nearly an avalanche-like behavior of magnetic steps. This is a unique 

observation of avalanche like magnetic transitions in the A-site disordered manganite 

compounds and it opens up new avenues for further experimental and theoretical 

investigations on charge-ordered manganites. 

Authors thank Prof. Mustansir Barma for useful discussions. 
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Figure 1(a, b and c): 

 
Figure 1: (a) Magnetization [M] vs. field [H] (b) Resistance [R] vs. field [H] and (c) 

specific heat [Cp] vs. field [H] isotherms at various temperatures for 

(Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 compound. 
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Figure 2: 

 

 
Figure 2: (a) Magnetization [M] as a function of magnetic field [H] at 2 K and 1.7 K for 

(Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 compound, b) a part of 1.7 K M-H curve enclosed in a box 

of (a) is magnified and similarly c) a part of enclosed M-H curve in a box of (b) is 

magnified to highlight the self-similar character of 1.7 K M-H curve.  
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Figure 3: 

 

 

 
 

Figure 3 (color online): Magnetization [M] vs. temperature [T] in fields of 50 kOe and 

70kOe for (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 compound. The arrows indicate the 

cooling/warming mode for collecting the data. 
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Figure 4: 

 

 
 

Figure 4: Magnetization [M] as a function of magnetic field [H] in varying field sweep 

rates of 1 kOe/sec, 3 kOe/sec and 5 kOe/sec for (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3 compound. 
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Figure 5:  

 

 
Figure 5: Normalized magnetization [M(t)/M(t=0)] versus time [t] at various 

temperatures. 

 


